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CHAPTER 13

Applications of
Partial Derivatives

Introduction In this chapter we will discuss some of the ways partial derivatives
contribute to the understanding and solution of problems in applied mathematics.
Many such problems can be put in the context of determining maximum or min-
imum values for functions of several variables, and the first four sections of this
chapter deal with that subject. The remaining sections discuss some miscellaneous
problems involving the differentiation of functions with respect to parameters, and
also Newton’s Method for approximating solutions of systems of nonlinear equa-
tions. Much of the material in this chapter may be considered optional. Only
Sections 13.1-13.3 contain core material, and even parts of those sections can be
omitted (e.g., the discussion of linear programming in Section 13.2).

X

Figure 13.1 x% + v2 has minimum
value 0 at the origin

™

X
Figure 13.2 1 — x? — y? has
maximum value 1 at the origin

2

The function f(x, y) = x? + y?, part of whose graph is shown in Figure 13.1, has
a minimum value of 0; this value occurs at the origin (0, 0) where the graph has
a horizontal tangent plane. Similarly, the function g(x, y) = 1 — x> — y?, part of
whose graph appears in Figure 13.2, has a maximum value of 1 at (0, 0). What
techniques could be used to discover these facts if they were not evident from a
diagram? Finding maximum and minimum values of functions of several variables
is, like its single-variable counterpart, the crux of many applications of advanced
calculus to problems that arise in other disciplines. Unfortunately, this problem is
often much more complicated than in the single-variable case. Our discussion will
begin by developing the techniques for functions of two variables. Some of the
techniques extend to functions of more variables in obvious ways. The extension
of those that do not will be discussed later in this section.

Let us begin by reviewing what we know about the single-variable case. Recall
that a function f(x) has a local maximum value (or a local minimum value) at a
point g in its domain if f(x) < f(a) (or f(x) > f(a)) for all x in the domain of
f that are sufficiently close to a. If the appropriate inequality holds for all x in the
domain of f, then we say that f has an absolute maximum (or absolute minimum)
value at a. Moreover, such local or absolute extreme values can occur only at points
of one of the following three types:

(a) critical points, where f/(x) =0,

(b) singular points, where f’'(x) does not exist, or

(c) endpoints of the domain of f.
A similar situation exists for functions of several variables. For example, we say
that a function of two variables has a local maximum or relative maximum value
at the point (g, b) in its domain if f(x,y) < f(a,b) for all points (x, y) in the
domain of f that are sufficiently close to the point (a, b). If the inequality holds

Sor all (x,y) in the domain of f, then we say that f has a global maximum or
absolute maximum value at (g, »). Similar definitions obtain for local (relative)




784

CHAPTER 13  Applications of Partial Derivatives

and absolute (global) minimum values. In practice, the word absolute or global
is usually omitted, and we refer simply to the maximum or the minimum value
of f.

The following theorem shows that there are three possibilities for points where
extreme values can occur, analogous to those for the single-variable case.

Necessary conditions for extreme values

A function f(x, y) can have a local or absolute extreme value at a point (g, b) in
its domain only if (a, b) is one of the following:

(a) a critical point of f, that is, a point satisfying Vf(a, b) = 0,
(b) a singular point of f, that is, a point where V£ (a, b) does not exist, or
(c) a boundary point of the domain of f.

PROOF Suppose that (a, b) belongs to the domain of f. If (a, b) is not on the
boundary of the domain of f, then it must belong to the interior of that domain, and
if (a, b) is not a singular point of f then Vf(a, b) exists. Finally, if (a, b) is not
a critical point of f, then Vf(a, b) # 0, so f has a positive directional derivative
in the direction of V£ (a, b) and a negative directional derivative in the direction
of —Vf(a, b); thatis, f is increasing as we move from (a, b) in one direction and
decreasing as we move in the opposite direction. Hence, f cannot have either a
maximum or a minimum value at (a, »). Therefore, any point where an extreme
value occurs must be either a critical point or a singular point of f, or a boundary
point of the domain of f.

Note that Theorem 1 remains valid with unchanged proof for functions of any
number of variables. Of course, Theorem 1 does not guarantee that a given function
will have any extreme values. It only tells us where to look to find any that
may exist. Theorem 2, below, provides conditions that guarantee the existence of
absolute maximum and minimum values for a continuous function. It is analogous
to the Max-Min Theorem for functions of one variable. The proof is beyond the
scope of this book; an interested student should consult an elementary text on
mathematical analysis. A setin R" is bounded if it is contained inside some ball
x}+x3 + -+ x2 < R? of finite radius R. A set on the real line is bounded if it is
contained in an interval of finite length.

Sufficient conditions for extreme values

If f is a continuous function of n variables whose domain is a closed and bounded
setin R”, then the range of f is a bounded set of real numbers, and there are points
in its domain where f takes on absolute maximum and minimum values.
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The function f(x,y) = x> + y? (see Figure 13.1) has a critical
point at (0, 0) since Vf = 2xi + 2yj and both components of Vf vanish at (0, 0).
Since

Fx,y)>0=7(0,0) if (x,y)#(0,0),

f must have (absolute) minimum value O at that point. If the domain of f is not
restricted, f has no maximum value. Similarly, g(x, y) = 1 —x?—y? has (absolute)
maximum value 1 at its critical point (0, 0). (See Figure 13.2.)

=

The function A (x, y) = y* — x? also has a critical point at (0, 0)
but has neither a local maximum nor a local minimum value at that point. Observe
that 2(0, 0) = 0 but A(x, ) < 0 and 2(0, y) > O for all nonzero values of x and y.
(See Figure 13.3.) The graph of & is a hyperbolic paraboloid. In view of its shape
x we call the critical point (0, 0) a saddle point of h.

Figure 13.3 v? — x? has a saddle

point at (0, 0) In general, we will somewhat loosely call any interior critical point of the domain

of a function f of several variables a saddle point if f does not have a local

z maximum or minimum value there. Even for functions of two variables, the graph

will not always look like a saddle near a saddle point. For instance, the function

fx,y)= —x3 has a whole line of saddle points along the y-axis (see Figure 13.4),

although its graph does not resemble a saddle anywhere. These points resemble

inflection points of a function of one variable. Saddle points are higher-dimensional
analogues of such horizontal inflection points.

The function f(x, y) = /x%+ y? has no critical points but does
have a singular point at (0, 0) where it has a local (and absolute) minimum value,
zero. The graph of f is a circular cone. (See Figure 13.5(a).)

Figure 13.4 A line of saddle points

_u

Y

Figure 13.5

(a) /x2 + y2 has a minimum value
at the singular point (0, 0)

(b) When restricted to the disk
x? 4 y2 < 1, the function 1 — x
has maximum and minimum
values at boundary points
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SETL W The function f(x, y) = 1 — x is defined everywhere in the xy-

plane and has no critical or singular points. (Vf(x, y) = —i at every point (x, y).)
Therefore f has no extreme values. However, if we restrict the domain of f to
the points in the disk x> + y?> < 1 (a closed bounded set in the xy-plane), then f
does have absolute maximum and minimum values, as it must by Theorem 2. The
maximum value is 2 at the boundary point (—1, 0) and the minimum value is O at
(1, 0). (See Figure 13.5(b).)

_u

Classifying Critical Points

The above examples were very simple ones; it was immediately obvious in each
case whether the function had a local maximum, local minimum, or a saddle point
at the critical or singular point. For more complicated functions, it may be harder
to classify the interior critical points. In theory such a classification can always be
made by considering the difference

Af = flat+h bt+k)— fla. b

for small values of # and k, where (a, b) is the critical point in question. If the
difference is always nonnegative (or nonpositive) for small 4 and k, then f must
have a local minimum (or maximum) at (a, b); if the difference is negative for
some points (k, k) arbitrarily near (0, 0) and positive for others, then f must have
a saddle point at (a, b).

m Find and classify the critical points of f(x, y) = 2x> — 6xy +3y?.

Solution The critical points must satisfy the system of equations:

0= filx,y)=6x>—6y <= x’=y

0= foalx,y)=—-6x+6y < x=y.
Together, these equations imply that x* = x so that x = 0 or x = 1. Therefore, the
critical points are (0, 0) and (1, 1).

Consider (0, 0). Here Af is given by

Af = f(h, k) — £(0,0) = 2h> — 6hk + 3k>.

Since f(h,0) — £(0,0) = 2h3 is positive for small positive 4 and negative for
small negative i, f cannot have a maximum or minimum value at (0, 0). Therefore
(0, 0) is a saddle point.

Now consider (1, 1). Here Af is given by
Af = fA+h 14k —f(1,1
=2(1+h)> —6(1 + h)(1 +k) +3(1 +k)? — (—1)
=24 6h + 6h*> + 21> — 6 — 6h — 6k — 6hk + 3 + 6k + 3k> + 1
= 6h* — 6hk + 3k* + 21>
=3(h — k)> + 23 +2h).
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Both terms in the latter expression are nonnegative if |2| < 3/2, and they are not
both zero unless 4 = k = 0. Hence, Af > 0 for small % and k, and f has a local

minimum value —1 at (1, 1).
| |

The method used to classify critical points in the above example takes on a “brute
force™” aspect if the function involved is more complicated. However, there is a
second derivative test similar to that for functions of one variable. The n-variable
version is the subject of the following theorem, the proof of which is based on
properties of quadratic forms presented in Section 10.6.

A second derivative test

Suppose thata = (a3, a2, . . ., a,) isacritical pointof f(x) = f(xy, x2, ..., x,) and
is interior to the domain of f. Also, suppose that all the second partial derivatives
of f are continuous throughout a neighbourhood of a, so that the Hessian matrix

fu®  fr® o filx)
2% f2(x) - fan(x)
Hx) = . : ) .
fnl(x) fnZ(X) fnn(x)
is also continuous in that neighbourhood. Note that the continuity of the partials
guarantees that ‘H is a symmetric matrix.

(a) If H(a) is positive definite, then f has a local minimum at a.

(b) If H(a) is negative definite, then f has a local maximum at a.

(c) If H(a) is indefinite, then f has a saddle point at a.

(d) If H(a) is neither positive nor negative definite nor indefinite, this test gives no
information.

PROOF Letg(tr) = f(a+rh) for 0 <t < 1, where his an n-vector. Then

gy=>Y_ fia+thn
i=1

g' =YY" fij@+rth)hihj = h"H(a+ hh.

i=1 j=1
(In the latter expression, h is being treated as a column vector.) We apply Taylor’s
Formula with Lagrange remainder to g to write

1
g()=2g0)+g'(0) + 58”(9)

for some 0 between 0 and 1. Thus,

u 1
fa+h) = f(a)+ ; fi(@) ki + EhTH(a + 6h)h.

Since a is a critical point of f, f;(a) =0for1 <i <n, so
1
fa+h) - f(a) = 5hTH(a + 6h)h.
If H(a) is positive definite, then, by the continuity of H, so is H(a + 6h) for |h|
sufficiently small. Therefore, f(a+h) — f(a) > O for nonzero h, proving (a).

Parts (b) and (c) are proved similarly. The functions f(x,y) = x* + y*,
gx,y) = —x*—y* and h(x, y) =x*— y* all fall under part (d) and show that in
this case a function can have a minimum, a maximum, or a saddle point.
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[SETLTIN  Find and classify the critical points of the function
fx,y,2) =x%y +y*z+ 2% — 2x.

Solution The equations that determine the critical points are
0=filx,y,2) =2xy -2,

0= foalx,y,2) = x> +2yz,
0= fs(x,y,2) = y* +2z

The third equation implies z = —y?/2, and the second then implies y* = x2. From
the first eauation we get v/2 = 1. Thus y = 1 and z = —%. Since xy = 1, we
N6 2557
Since
> > 2 2 0
2 >0, ‘2 _1.=—6<0, 2 -1 2|=-20<0,
0 2 2

‘H is indefinite by Theorem 8 of Section 10.6, so P is a saddle point of f.

Remark Applying the test for positive or negative definiteness or indefiniteness
given in Theorem 8 of Section 10.6, we can paraphrase the second derivative test
for a function of two variables as follows:

Suppose that (a, b) is a critical point of the function f(x, y) that is interior
to the domain of f. Suppose also that the second partial derivatives of f are
continuous in a neighbourhood of (a, b) and have at that point the values

A= fula,b), B= finlab)= fulab), and C= fnla,b).

(a) If AC > B%and A > 0, then f has a local minimum value at (a, b).
(b) IfAC > BZand A < 0, then f has a local maximum value at (a, b).
(c) If AC < B2, then f has a saddle point at (a, b).

(d) If AC = B?, this test provides no information; f may have a local maximum
or a local minimum value or a saddle point at (a, b).

S CIIEW AR Reconsider Example 5 and use the second derivative test to classify
the two critical points (0, 0) and (1, 1) of f(x,y) = 2x* — 6xy + 32

Solution 'We have

Su,y)=12x, fialx,y) = -6, and fo(x,y) =6.
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At (0, 0) we therefore have
A=0, B=-6, C=6and B°—AC=36>0
so (0, 0) is a saddle point. At (1, 1) we have
A=12>0, B=-6, C=6,and B’ —AC=-36<0,

so f must have a local minimum at (1, 1).

S ETILEN  Find and classify the critical points of

flx,y)=xye IR,

Does f have absolute maximum and minimum values? Why?

Solution We begin by calculating the first- and second-order partial derivatives

of f:

filx, y) = y(1 — x2) e & D/2
Hlx,y) =x(1 —y2) e X2

fil(x, y) = xy(x2 — 3) e~ 02
fiale, ) = (1 —x2)(1 — y?) e &HI2,
Fo(x,y) = xy(y2 — 3y e~ &2,

At any critical point f; = 0 and f> = 0, so the critical points are the solutions of
the system of equations

yl—x)=0
x(1=y»H =0.

The first of these equations says that y = 0 or x = x1. The second equation
says that x = O or y = 1. There are five points satisfying both conditions:
0,0), (1, 1), (1, 1), (=1, 1), and (—1, —1). We classify them using the second
derivative test.

At (0,0) wehave A=C =0, B =1, so that B> — AC =1 > 0. Thus f has
a saddle point at (0, 0).

At(1,1)and (—1,—1) wehave A = C = —2/e < 0, B = 0. It follows that
B? — AC = —4/e* < 0. Thus, f has local maximum values at these points. The
value of f is 1/e at each point.

At (1,—1) and (—1,1) we have A = C = 2/e > 0, B = 0. If follows that
B? — AC = —4/e2 < (0. Thus, f has local minimum values at these points. The
value of f at each of them is —1/e.
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Figure 13.6

Indeed, f has absolute maximum and minimum values, namely, the values
obtained above as local extrema. To see why, observe that f(x, y) approaches 0 as
the point (x, y) recedes to infinity in any direction because the negative exponential
dominates the power factor xy for large x?> + y2. Pick a number between 0 and
the local maximum value 1/e found above, say, the number 1/(2¢). For some R,
we must have | f(x, y)| < 1/(2e¢) whenever x> + y?> > R2. On the closed disk
x2+4y? < R?, f must have absolute maximum and minimum values by Theorem 2.
These cannot occur on the boundary circle x> + y> = R? because | f| is smaller
there (< 1/(2e)) than it is at the critical points considered above. Since f has
no singular points, the absolute maximum and minimum values for the disk, and

therefore for the whole plane, must occur at those critical points.
]

S'ETNTI M Find the shape of a rectangular box with no top having given volume
V and the least possible total surface area of its five faces.
Solution 1If the horizontal dimensions of the box are x, y, and its height is z (see
Figure 13.6), then we want to minimize

S=xy+2yz+2xz

subject to the restriction that xyz = V, the required volume. We can use this
restriction to reduce the number of variables on which § depends, for instance, by
substituting

Vv
z=—:
Xy

Then S becomes a function of the two variables x and y:

2V 2v
S=8x,y)=xy+—+—.
x y

A real box has positive dimensions, so the domain of S should consist of only those
points (x, y) that satisfy x > 0 and y > 0. If either x or y approaches 0 or co,
then § — 00, so the minimum value of S must occur at a critical point. (S has no
singular points.) For critical points we solve the equations

_as 2V )

O=—=y— — — x“y =2V,
ax x2
0 08 2v 2oy
= — =X — — {: X = .
ay y? Y

Thus x2y — xy? = 0, or xy(x — y) = 0. Since x > 0 and y > 0, this implies that
x = y. Therefore, x> =2V, x = y = V)3, and z = V/(xy) = 223V =
x/2. Since there is only one critical point it must minimize S. (Why?) The
box having minimal surface area has a square base but is only half as high as its
horizontal dimensions.

|

Remark The preceding problem is a constrained extreme value problem in three
variables; the equation xyz = V is a constraint limiting the freedom of x, y, and
z. We used the constraint to eliminate one variable, z, and so to reduce the problem
to a free (i.e., unconstrained) problem in two variables. In Section 13.3 we will
develop a more powerful method for solving constrained extreme value problems.
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|Exercises 13.1
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In Exercises 1-15, find and classify the critical points of the
given functions.

1.

2.

10.

12.

17.

18.

20.

21.

22.

. flx,y) =cosx +cosy

flx,y) =x2+ Zy2 —4x + 4y

fl,y)=xy—x+y 3. fl,y=x"+y —3xy
: 4, 4 x 8

-f(x,)’):x +.V —4Xy 5. f(xsy):;“—;_y

. fix,y) =cos{x +y) 7. f(x,y)=xsiny

9. f(x,y)=xPye B

Xy

24 xt 4yt
1

I—x+y+x24+)y?

flx,y) = 11. f(x,y) = xe XY

S, y) =

. Sy = (H %)(H é)(éjL%)
#14.

* 15,
*16.

fony, ) =ayz —x? —y? - 22

fay =+t —x—y-2

Show that f(x. v, z) = 4xyz — x* — y* — z* has a local
maximum value at the point (1, 1, 1).

Find the maximum and minimum values of

S, y) =xy e~

Find the maximum and minimum values of

S vy =x/(+ 27 +y2).

. Find the maximum and minimum values of

. 222
f(x,y,2) = xyze ™ 7Y 7%, How do you know that such
extreme values exist?

1
Find the minimum value of f(x, y) = x + 8y + — inthe
X

first quadrant x > 0, y > 0. How do you know that a
minimum exists?

Postal regulations require that the sum of the height and
girth (horizontal perimeter) of a package should not exceed
L units. Find the largest volume of a rectangular box that
can satisfy this requirement.

The material used to make the bottom of a rectangular box is
twice as expensive per unit area as the material used to make
the top or side walls. Find the dimensions of the box of given
volume V for which the cost of materials is minimum.

23.

24.

25.

* 26.

% 27.

28.

%29,

Find the volume of the largest rectangular box (with faces
parallel to the coordinate planes) that can be inscribed inside
the ellipsoid

x2

=+
a2

[\
[\

+ =1

T
("K.\’| &~

Find the three positive numbers a, b, and ¢, whose sum is 30
and for which the expression ab?c? is maximum.

Find the critical points of the function z = g(x, y) that
satisfies the equation 2= _ 32050y g,

Classify the critical points of the function g in the previous
exercise.

Let f(x,y)=(y— x2)(y — 3x2). Show that the origin is a
critical point of f and that the restriction of f to every
straight line through the origin has a local minimum value at
the origin. (That is, show that f(x, kx) has a local minimum
value at x = O for every k and that (0, y) has a local
minimum value at y = 0.) Does f(x, y) have a local
minimum value at the origin? What happens to f on the
curve y = 2x2? What does the second derivative test say
about this situation?

Verify by completing the square (that is, without appealing
to Theorem 8§ of Section 10.6) that the quadratic form

Qu,vy=1(x,y) (2 g) (j}) = Au’+2Buv+Cv’

is positive definite if A > 0 and ‘ g g ‘ > 0, negative

definite if A < Oand | 7 2 \ > 0, and indefinite if
2 g < 0. This gives independent confirmation of the

assertion in the remark preceding Example 7.

State and prove (using square completion arguments rather
than appealing to Theorem 8 of Section 10.6) a result
analogous to that of the previous exercise for a Quadratic
form Q(u, v, w) involving three variables. What are the
implications of this for a critical point (a, b, ¢) of a function
Sf(x,y, z) all of whose second partial derivatives are known
at (a, b, ¢)?

n Restricted Domains

Much of the previous section was concerned with techniques for determining
whether a critical point of a function provides a local maximum or minimum
value or is a saddle point. In this section we address the problem of determining
absolute maximum and minimum values for functions that have them—usually
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(- V2.-VD) : ‘ W2,—2)

Figure 13.7 Points that are
candidates for extreme values in
Example 1

functions whose domains are restricted to subsets of R? (or R”) having nonempty
interiors. In Example 8 of Section 13.1 we had to prove that the given function had
absolute extreme values. If, however, we are dealing with a continuous function on
a domain that is closed and bounded, then we can rely on Theorem 2 to guarantee
the existence of such extreme values, but we will always have to check boundary
points as well as any interior critical or singular points to find them. The following
examples illustrate the technique.

Find the maximum and minimum values of f(x, y) = 2xy on the
closed disk x> + y? < 4. (See Figure 13.7.)

Solution Since f is continuous and the disk is closed, f must have absolute max-
imum and minimum values at some points of the disk. The first partial derivatives
of f are

Silx,y) =2y and L, y) =2x,

so there are no singular points, and the only critical point is (0, 0), where f has the
value 0.

We must still consider values of f on the boundary circle x? + y2 = 4. We
can express f as a function of a single variable on this circle by using a convenient
parametrization of the circle, say,

X = 2cost, y = 2sint, (—m <t <m).
We have
f<2cost, 2sint) = 8costsint = g(¢).

We must find any extreme values of g(r). We can do this in either of two ways.

If we rewrite g(t) = 4sin2¢, it is clear that g(¢) has maximum value 4 (at t = 7
and —37”) and minimum value —4 (at t = —% and 3%). Alternatively, we can
differentiate g to find its critical points:

0=g'(t) = —8sin’r +8cos’t <<= tan’r=1
/4 3n
— t=+—or £ —,

4 4
which again yield the maximum value 4 and the minimum value —4. (It is not
necessary to check the endpoints t = —m and ¢+ = m; since g is everywhere
differentiable and is periodic with period 7, any absolute maximum or minimum
will occur at a critical point.)

In any event, f has maximum value 4 at the boundary points (+/2, +/2) and
(—«/5, —ﬁ) and minimum value —4 at the boundary points (\/_ , —\/5) and
(=2, V2). 1tis easily shown by the Second Derivative Test (or otherwise) that
the interior critical point (0, 0) is a saddle point. (See Figure 13.7.)
|
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Figure 13.8 Points of interest in
Example 2

Figure 13.9 Where should Q and R
be to cnsure that triangle P Q R has
maximum area?
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m Find the extreme values of the function f(x, y) = x’ye~ "+ on
the triangular region T givenby x >0,y > 0,and x + y < 4.

Solution First, we look for critical points:

0=filx,y) =xy2—x)e " = x=0,y=0, orx =2,
0= fitr,y) = x2(1 — )~ = x=0ory=1.

The critical points are (0, y) for any y and (2, 1). Only (2, 1) is an interior point
of T. (See Figure 13.8.) f(2,1) = 4/¢* ~ 0.199. The boundary of T consists of
three straight line segments. On two of these, the coordinate axes, f is identically
zero. The third segment is given by

y=4-—x, 0<x <4,
so the values of f on this segment can be expressed as a function of x alone:
g(x):f(x,4—x)=x2(4—x)e_4, 0<x <4

Note that g(0) = g(4) = 0and g(x) > 0if 0 < x < 4. The critical points of g are
given by 0 = g’'(x) = (8x — 3x2)e ™, so they are x = 0 and x = 8/3. We have

g(g) = f(g g) = ?e—“ ~0.174 < f(2,1).

We conclude that the maximum value of f over the region T is 4/ and that it
occurs at the interior critical point (2, 1). The minimum value of f is zero and
occurs at all points of the two perpendicular boundary segments. Note that f has
neither a local maximum nor a local minimum at the boundary point (8/3, 4/3),
although g has a local maximum there. Of course, that point is not a saddle point
of f either. It is not a critical point of f.
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Figure 13.10
A(0.¢)

The domain of

m Among all triangles with vertices on a given circle, find those that
have the largest area.

Solution Intuition tells us that the equilateral triangles must have the largest area.
However, proving this can be quite difficult unless a good choice of variables in
which to set up the problem analytically is made. With a suitable choice of units
and axes we can assume the circle is x> + y? = 1 and that one vertex of the triangle
is the point P with coordinates (1, 0). Let the other two vertices, Q and R, be
as shown in Figure 13.9. There is no harm in assuming that Q lies on the upper
semicircle and R on the lower, and that the origin O is inside triangle PQR. Let
P Q and PR make angles 6 and ¢, respectively, with the negative direction of the
x-axis. Clearly 0 < 6 < m/2and 0 < ¢ < m/2. The lines from O to Q and
R make equal angles 1 with the line @R, where 20 + 2¢ + 2y = . Dropping
perpendiculars from O to the three sides of the triangle P QR, we can write the
area A of the triangle as the sum of the areas of six small, right-angled triangles:

1 1 1
A=2x Esin60059+2 X Esin¢cos¢+2x Esinl//cosw
1
= E(sin 26 + sin2¢ + sin 2¢).

Since 2¢ = 7 — 2(8 + ¢), we can express A as a function of the two variables 6
and ¢:

1
A=A@0,9)= E(Sin 26 + sin 2¢ + sin2(6 + ¢)).
The domain of A is the triangle 8 > 0, ¢ > 0,6 + ¢ < 7/2. A = 0 at the
vertices of the triangle and is positive elsewhere. (See Figure 13.10.) We show that

the maximum value of A(6, ¢) on any edge of the triangle is 1 and occurs at the
midpoint of that edge. On the edge 6 = 0 we have

1
A0, ¢) = E(sin 2¢ +sin2¢) = sin2¢ < 1 = A(0, 7/4).
Similarly,on¢ =0, A(6,0) < 1 = A(7r/4,0). Onthe edge 6 + ¢ = 7/2 we have

1
Ao, 2 —6) = 3(sin20 + sinGr - 26))

—sin20 <1= A(z, z).
44

‘We must now check for any interior critical points of A(6, ¢). (There are no singular
points.) For critical points we have

JA
0= 50 = c0s 20 + cos(20 + 2¢),

A
0= ﬁ = ¢0s 2¢ + cos(26 + 2¢),

so the critical points satisfy cos 26 = cos 2¢ and, hence, 6 = ¢. We now substitute
this equation into either of the above equations to determine 0:
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cos28 +cos40 =0
2¢0s°20 +cos20 —1=0
(2c0s26 — 1)(cos20+1)=0

1
cos 26 = 3 or cos20 =—1.

The only solution leading to an interior point of the domainof A is § = ¢ = 7/6.
Note that

7oy 13 3 V3) 33
ED-3(FF9) -2
6 6 2\ 2 2 2 4
this interior critical point maximizes the area of the inscribed triangle. Finally,
observe that for 6 = ¢ = 7/6, we also have ¥ = /6, so the largest triangle is

indeed equilateral.
||

Remark Since the area A of the inscribed triangle must have a maximum value (A
is continuous and its domain is closed and bounded), a strictly geometric argument
can be used to show that the largest triangle is equilateral. If an inscribed triangle
has two unequal sides, its area can be made larger by moving the common vertex
of these two sides along the circle to increase its perpendicular distance from the
opposite side of the triangle.

Linear Programming

Linear programming is a branch of linear algebra that develops systematic tech-
niques for finding maximum or minimum values of a linear function subject to
several linear inequality constraints. Such problems arise frequently in manage-
ment science and operations research. Because of their linear nature they do not
usually involve calculus in their solution; linear programming is frequently pre-
sented in courses on finite mathematics. We will not attempt any formal study of
linear programming here, but we will make a few observations for comparison with
the more general nonlinear extreme value problems considered above that involve
calculus in their solution.

The inequality ax +by < cis an example of a linear inequality in two variables.
The solution set of this inequality consists of a half-plane lying on one side of the
straight line ax 4+ by = c¢. The solution set of a system of several two-variable
linear inequalities is an intersection of such half-planes, so it is a convex region of
the plane bounded by a polygonal line. If it is a bounded set, then it is a convex
polygon together with its interior. (A set is called convex if it contains the entire
line segment between any two of its points. On the real line the convex sets are
intervals.)

Let us examine a simple concrete example that involves only two variables and
a few constraints.

IR Find the maximum value of F(x,y) = 2x + 7y subject to the
constraints x +2y <6, 2x+y <6, x>0, and y=>0.
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Figure 13.11 The shaded region is
the solution set for the constraint
inequalities in Example 4

Solution The solution set S of the system of four constraint equations is shown
in Figure 13.11. It is the quadrilateral region with vertices (0, 0), (3, 0), (2, 2), and
(0, 3). Several level curves of the linear function F are also shown in the figure.
They are parallel straight lines with slope —%. We want the line that gives F the
greatest value and that still intersects S. Evidently this is the line F = 21 that
passes through the vertex (0, 3) of S. The maximum value of F subject to the

constraints is 21.
_m

As this simple example illustrates, a linear function with domain restricted by linear
inequalities does not achieve maximum or minimum values at points in the interior
of its domain (if that domain has an interior). Any such extreme value occurs at a
boundary point of the domain or a set of such boundary points. Where an extreme
value occurs at a set of boundary points, that set will always contain at least one
vertex. This phenomenon holds in general for extreme value problems for linear
functions in any number of variables with domains restricted by any number of
linear inequalities. For problems involving three variables the domain will be a
convex region of R* bounded by planes. For a problem involving n variables the
domain will be a convex region in R* bounded by (n — 1)-dimensional hyperplanes.
Such polyhedral regions still have vertices (where n hyperplanes intersect), and
maximum or minimum values of linear functions subject to the constraints will still
occur at subsets of the boundary containing such vertices. These problems can
therefore be solved by evaluating the linear function to be extremized (it is called
the objective function) at all the vertices and selecting the greatest or least value.

In practice, linear programming problems can involve hundreds or even thou-
sands of variables and even more constraints. Such problems need to be solved with
computers, but even then it is extremely inefficient, if not impossible, to calculate
all the vertices of the constraint solution set and the values of the objective function
at them. Much of the study of linear programming therefore centres on devising
techniques for getting to (or at least near) the optimizing vertex in as few steps as
possible. Usually this involves criteria whereby large numbers of vertices can be
rejected on geometric grounds. We will not delve into such techniques here but will
content ourselves with one more example to illustrate, in a very simple case, how
the underlying geometry of a problem can be used to reduce the number of vertices
that must be considered.




x
Figure 13.12 The convex set of
points satisfying the constraints in
Example 5
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m A tailor has 230 m of a certain fabric and has orders for up to 20

suits, up to 30 jackets, and up to 40 pairs of slacks to be made from the fabric. Each
suit requires 6 m, each jacket 3 m, and each pair of slacks 2 m of the fabric. If the
tailor’s profit is $20 per suit, $14 per jacket, and $12 per pair of slacks, how many
of each should he make to realize the maximum profit from his supply of the fabric?

Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his
profit will be

P =20x + 14y + 12z.
The constraints posed in the problem are

>0, x <20,
y >0, y < 30,
>0, z <40,

6x + 3y + 2z <230.

The last inequality is due to the limited supply of fabric. The solution set is shown
in Figure 13.12. It has 10 vertices, A, B, ..., J. Since P increases in the direction
of the vector VP = 20i+ 14j+ 12Kk, which points into the first octant, its maximum
value cannot occur at any of the vertices A, B, ..., G. (Think about why.) Thus
we need look only at the vertices H, I, and J.

H = (20,10,40), P =1,020at H.
[ =(10,30,40), P =1,100at /.
J =(20,30,10), P =940 at J.

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize
the maximum profit, $1,100, from the fabric.

|
| Exercises 13.2
1. Find the maximum and minimum values of (0, 0), (1,0), and (0, 1).
: _ 2 2
J(x,y) =x —x" 4y~ on the rectangle 0 < x <2, 7. Find the maximum and minimum values of
0=y=1l f(x,y) = sinx cos y on the closed triangular region
2. Find the maximum and minimum values of bounded by the coordinate axes and the line x + v = 27.
J(x,y) =xy —2x on the rectangle —1 < x <1, 8. Find the maximum value of
0<y<l
3. Find the maximum and minimum values of f(x,y) = sinxsin ysin(x + y)
g v 2 : 2 2 .
S(x,y) =xy— y~ onthedisk x* + y~ < 1. over the triangle bounded by the coordinate axes and the line
4. Find the maximum and minimum values of x+y=m.
. _ . 2 2
J(x,y) =x + 2y onthe disk x“ + y~ < 1. 9. The temperature at all points in the disk x2 + y2 < 1 is
5. Find the maximum value of f(x, y) = xy — x>y over the given by
square 0 <x < 1,0<y < 1. 2 s
— —xi—y
6. Find the maximum and minimum values of I'=@&+ye ’
f(x,y) =xy(l —x — y) over the triangle with vertices Find the maximum and minimum temperatures at points of

the disk.
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10.

14.
15.
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Find the maximum and minimum values of
. xX—y
X. = ——
S =7 +x24+y2

on the upper half-plane y > 0.

first quadrant: x > 0, y > 0. Show that
limy o f(x,kx) = 0. Does f have a limit as (x, y)
recedes arbitrarily far from the origin in the first quadrant?
Does f have a maximum value in the first quadrant?

S il

Repeat Exercise 13 for the function f(x, y) = xy e ™.

In a certain community there are two breweries in
competition, so that sales of each negatively affect the
profits of the other. If brewery A produces x L of beer per
month and brewery B produces y L per month, then brewery
A’s monthly profit $ P and brewery B’s monthly profit $Q
are assumed to be

22 2
P2y X<+ y

100

4y? 4 52
=2y — .
Q== 1

Find the sum of the profits of the two breweries if each
brewery independently sets its own production level to

16.

18.

19.

20.

maximize its own profit and assumes its competitor does
likewise. Find the sum of the profits if the two breweries
cooperate to determine their respective productions to
maximize that sum.

Equal angle bends are made at equal distances from the two
ends of a 100 m long straight length of fence so the resulting
Minimize ¥ (x, y,z) = 2x +3y + 4z supjectto'’x > v,"" *-
y>0,z>0,x+y>2,y+z>2,andx+27> 2.

A textile manufacturer produces two grades of
wool-cotton-polyester fabric. The deluxe grade has
composition (by weight) 20% wool, 50% cotton, and 30%
polyester, and it sells for $3 per kilogram. The standard
grade has composition 10% wool, 40% cotton, and 50%
polyester, and sells for $2 per kilogram. If he has in stock
2,000 kg of wool and 6,000 kg each of cotton and polyester,
how many kilograms of fabric of each grade should he
manufacture to maximize his revenue?

A 10 hectare parcel of land is zoned for building densities of
6 detached houses per hectare, 8 duplex units per hectare, or
12 apartments per hectare. The developer who owns the
land can make a profit of $40,000 per house, $20,000 per
duplex unit, and $16,000 per apartment that he builds.
Municipal bylaws require him to build at least as many
apartments as houses or duplex units. How many of each
type of dwelling should he build to maximize his profit?

A constrained extreme-value problem is one in which the variables of the function
to be maximized or minimized are not completely independent of one another, but
must satisfy one or more constraint equations or inequalities. For instance, the

problems
maximize

and

minimize f(x,y,z, w)

e,y

subjectto g(x,y)=C

subject to g(x,y,z, w) = Cj,
and A(x,y,z,w) =C,

have, respectively, one and two constraint equations, while the problem

maximize

fx,y,2)

subjectto g(x,y,z) <C

has a single constraint inequality.




glx,»)=0

Figure 13.13 If Vf(Py)isnota
multiple of Vg(Pp), then Vf(Py) has a
nonzero projection v tangent to the
level curve of g through Py

SECTION 13.3: Lagrange Multipliers 799

Generally, inequality constraints can be regarded as restricting the domain of the
function to be extremized to a smaller set that still has interior points. Section 13.2
was devoted to such problems. In each of the first three examples of that section we
looked for free (i.e., unconstrained) extreme values in the interior of the domain, and
we also examined the boundary of the domain, which was specified by one or more
constraint equations. In Example 1 we parametrized the boundary and expressed
the function to be extremized as a function of the parameter, thus reducing the
boundary case to a free problem in one variable instead of a constrained problem
in two variables. In Example 2 the boundary consisted of three line segments, on
two of which the function was obviously zero. We solved the equation for the third
boundary segment for y in terms of x, again in order to express the values of f(x, y)
on that segment as a function of one free variable. A similar approach was used in
Example 3 to deal with the triangular boundary of the domain of the area function
A8, ¢).

The reduction of extremization problems with equation constraints to free
problems with fewer independent variables is only feasible when the constraint
equations can be solved either explicitly for some variables in terms of others or
parametrically for all variables in terms of some parameters. It is often very difficult
or impossible to solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers

A technique for finding extreme values of f(x, y) subject to the equality constraint
g(x, y) = 0 is based on the following theorem:

Suppose that f and g have continuous first partial derivatives near the point
Py = (xq, yo) on the curve C with equation g(x, ¥) = 0. Suppose also that, when
restricted to points on C, the function f(x, y) has a local maximum or minimum
value at Py. Finally, suppose that

(i) Pp is not an endpoint of C, and
(i) Vg(Po) # 0.

Then there exists a number Ao such that (xo, yo, Ap) i8 a critical point of the
Lagrangian function

Lx,y,») = f(x,y)+Aglx,y).

PROOF Together, (i) and (ii) imply that C is smooth enough to have a tangent line
at Py and that Vg(Pp) is normal to that tangent line. If V£ (Py) is not parallel to
Vg(Po), then V£ (Py) has a nonzero vector projection v along the tangent line to C
at Py. (See Figure 13.13.) Therefore, f has a positive directional derivative at P,
in the direction of v and a negative directional derivative in the opposite direction.
Thus, f(x,y) increases or decreases as we move away from Py along C in the
direction of v or —v, and f cannot have a maximum or minimum value at Py. Since
we are assuming that f does have an extreme value at P, it must be that V£ (Pp)
is parallel to Vg(Pp). Since Vg(Py) # 0, there must exist a real number Ay such
that Vf(Py) = —1oVg(Py), or

V(f + 28) (o) = 0.

The two components of the above vector equation assert that dL/3x = 0 and
dL/dy = 0 at (xo, yo, 2o). The third equation that must be satisfied by a critical
pointof L is 3L /91 = g(x, y) = 0. This is satisfied at (xo, yo, Ag) because P, lies
on C. Thus (xo, Yo, Ag) is a critical point of L(x, y, A).
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Figure 13.14 The level curve of the
function representing the square of

distance from the origin is tangent to
the curve x2y = 16 at the two points on
that curve that are closest to the origin

Theorem 4 suggests that to find candidates for points on the curve g(x, y) = 0 at
which f(x, y) is maximum or minimum, we should look for critical points of the
Lagrangian function

Ly, M =

At any critical point of L we must have

aL

0= e S1(x, ) +Agi(x, y),
i.e., Vf is parallel to Vg,

9L
0= By = fo(x,y) + Aga(x, y),

oL
and 0= I =g(x,y) the constraint equation.

Note, however, that it is assumed that the constrained problem has a solution.
Theorem 4 does not guarantee that a solution exists; it only provides a means for
finding a solution already known to exist. It is usually necessary to satisty yourself
that the problem you are trying to solve has a solution before using this method to
find the solution.

Let us put the method to a concrete test:

Find the shortest distance from the origin to the curve x%y = 16.

Solution The graph of x2y = 16 is shown in Figure 13.14. There appear to be
two points on the curve that are closest to the origin, and no points that are farthest
from the origin. (The curve is unbounded.) To find the closest points it is sufficient
to minimize the square of the distance from the point (x, y) on the curve to the
origin. (It is easier to work with the square of the distance rather than the distance
itself, which involves a square root and so is harder to differentiate.) Thus we want
to solve the problem

minimize f(x,y) = x>+ y> subjectto g(x,y)=x’y—16=0.

Let L(x, v, A) = x* + y? 4+ A(x%y — 16). For critical points of L we want

aL
0= W =2x 4+ 2xxy = 2x(1 + Ay) (A)

X

L
0=— =2y+ x> (B)

dy
0=2L_y_16 C

= —=x"y—16.
an y ©
Equation (A) requires that either x = Q0 or Ay = —1. However, x = Qis inconsistent

with equation (C). Therefore Ay = —1. From equation (B) we now have
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0=2y2 4+ ryx? =2y* — x°

Thus, x = ++/2y, and (C) now gives 2y> = 16, so y = 2. There are, therefore,
two candidates for points on xzy = 16 closest to the origin, (iZﬁ, 2). Both of
these points are at distance /8 + 4 = 2+/3 units from the origin, so this must be the
minimum distance from the origin to the curve. Some level curves of x* + y? are
shown, along with the constraint curve x>y = 16, in Figure 13.14. Observe how the
constraint curve is tangent to the level curve passing through the minimizing points
(2+/2, 2), reflecting the fact that the two curves have parallel normals there.

|

Remark 1In the above example we could, of course, have solved the constraint
equation for y = 16/x2, substituted into f, and thus reduced the problem to one of
finding the (unconstrained) minimum value of

16 256
F(x):f(x,—2> :xz—i——4—.
x X

The reader is invited to verify that this gives the same result.

The number A that occurs in the Lagrangian function is called a Lagrange
multiplier. The technique for solving an extreme-value problem with equation
constraints by looking for critical points of an unconstrained problem in more
variables (the original variables plus a Lagrange multiplier corresponding to each
constraint equation) is called the method of Lagrange multipliers. It can be
expected to give results as long as the function to be maximized or minimized
(called the objective function) and the constraint equations have smooth graphs in
a neighbourhood of the points where the extreme values occur, and these points are
not on edges of those graphs. See Example 3 and Exercise 26 below.

m Find the points on the curve 17x2 + 12xy + 8y? = 100 that are
closest to and farthest away from the origin.

Solution The quadratic form on the left side of the equation above is positive
definite, as can be seen by completing a square. Hence the curve is bounded and
must have points closest to and farthest from the origin. (In fact, the curve is an
ellipse with centre at the origin and oblique principal axes. The problem asks us to
find the ends of the major and minor axes.)

Again, we want to extremize x> 4+ y? subject to an equation constraint. The
Lagrangian in this case is

Lx,y,») = x? 4+ y? + 2(17x* + 12xy + 8y* — 100),
and its critical points are given by

aL
0= -~ =2x+A(G4x + 12y) (A)

aL

0=

ay
IL 2 2
87=17x + 12xy + 8y% — 100. (C)
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1702412y +8y2=100

(2.—4)

Figure 13.15 The points on the
ellipse that are closest to and farthest
from the origin

Figure 13.16 The minimum of y
occurs at a point on the curve where the
curve has no tangent line

Solving each of equations (A) and (B) for A and equating the two expressions for A
obtained, we get
—2x =2y
34x + 12y 12x + 16y

or 12x% 4 16xy = 34xy + 12y

This equation simplifies to
2x2 = 3xy =2y =0. (D)

We multiply equation (D) by 4 and add the result to equation (C) to get 25x2 = 100,
so that x = £2. Finally, we substitute each of these values of x into (D) and obtain
(for each) two values of y from the resulting quadratics:

Forx=2: y?>+3y—4=0, Forx =-2: y>—3y—4=0,
y—D(+4 =0 v+ Dy—-4)=0.

We therefore obtain four candidate points: (2, 1), (—2, —1), (2, —4), and (-2, 4).
The first two points are closest to the origin (they are the ends of the minor axis of
the ellipse); the second pair are farthest from the origin (the ends of the major axis).
(See Figure 13.15.)

_u

Considering the geometric underpinnings of the method of Lagrange multipliers, we
would not expect the method to work if the level curves of the functions involved are
not smooth or if the maximum or minimum occurs at an endpoint of the constraint
curve. One of the pitfalls of the method is that the level curves of functions may not
be smooth, even though the functions themselves have partial derivatives. Problems
can occur where a gradient vanishes, as the following example shows.

Find the minimum value of f(x, y) = y subject to the constraint
equation g(x, y) = y* —x2 =0.

Solution The semicubical parabola y* = x? has a cusp at the origin. (See
Figure 13.16.) Clearly, f(x, y) = y has minimum value 0 at that point. Suppose,
however, that we try to solve the problem using the method of Lagrange multipliers.
The Lagrangian here is

L(x,y,A) =y 4+ 1 —x?),

which has critical points given by

—2xix =0,
1433y =0,
y?—x?=0.

Observe that y = O cannot satisfy the second equation, and, in fact, the three
equations have no solution (x,y, )). (The first equation implies either A = 0 or
x = 0, but neither of these is consistent with the other two equations.)

_

Remark The method of Lagrange multipliers breaks down in the above example
because Vg = 0 at the solution point, and therefore the curve g(x, y) = 0 need not




At Py, Vf, Vg, and
Vh are all perpendicular to T. Thus,
V/ is in the plane spanned by Vg and
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be smooth there. (In this case, it isn’t smooth!) The geometric condition that Vf
should be parallel to Vg at the solution point is meaningless in this case. When
applying the method of Lagrange multipliers, be aware that an extreme value may
occur at

(i) acritical point of the Lagrangian,

(i1) a point where Vg = 0,
(iii) a point where Vf or Vg does not exist, or
(iv) an “endpoint” of the constraint set.

This situation is similar to that for extreme values of a function f of one variable,
which can occur at a critical point of f, a singular point of f, or an endpoint of the
domain of f.

Problems with More than One Constraint

Next consider a three-dimensional problem requiring us to find a maximum or
minimum value of a function of three variables subject to two equation constraints:

extremize f(x,y,z) subjectto g(x,v,z)=0andh(x,y,z)=0.

Again, we assume that the problem has a solution, say at the point Py = (xg, yo, zo),
and that the functions f, g, and k have continuous first partial derivatives near P,.
Also, we assume that T = Vg(Py) X Vh(Fy) # 0. These conditions imply that
the surfaces g(x,y,z) = 0 and A(x, y,z) = 0 are smooth near Py and are not
tangent to each other there, so they must intersect in a curve C that is smooth near
Py. The curve C has tangent vector T at Py. The same geometric argument used
in the proof of Theorem 4 again shows that V£ (Py) must be perpendicular to T.
(If not, then it would have a nonzero vector projection along T, and f would have
nonzero directional derivatives in the directions £T and would therefore increase
and decrease as we moved away from P, along C in opposite directions.)

Vg(Po) V£ (Py)

Since Vg(Py) and Vh(P;) are nonzero and both are perpendicular to T (see
Figure 13.17), Vf(Py) must lie in the plane spanned by these two vectors and
hence must be a linear combination of them:

V£ (x0, ¥0, 20) = —2o Vg(x0, Yo, 20) — 1oV (x0, Yo, Z0)
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When none of the equations
factors, try to combine two or
more of them to produce an
equalion that does factor.

for some constants Ag and . It follows that (xg, o, 2o, Ao, Ko) 1S a critical point
of the Lagrangian function

Ly, 2,k 1) =[x, y;2) +Ag(x, ¥, 2) + ph(x, y, 7).

We look for triples (x, y, z) that extremize f(x, y, z) subject to the two constraints
g(x,v,z) = 0and h(x, y, z) = 0 among the points (x, y, z, A, u) that are critical
points of the above Lagrangian function, and we therefore solve the system of
equations

Silx, y,2) + Agi(x, y,2) + phi(x, y,2) =0,
falx, ¥, 2) + Aga(x, ¥, 2) + pha(x, y,2) = 0,
filx, v, 2) + Aga(x, ¥, 2) + uhs(x, y,2) =0,
glx,y,2) =0,
hix,y,2) =0.

Solving such a system can be very difficult. It should be noted that, in using the
method of Lagrange multipliers instead of solving the constraint equations, we have
traded the problem of having to solve two equations for two variables as functions
of a third one for a problem of having to solve five equations for numerical values
of five unknowns.

3 ENIEEN  Find the maximum and minimum values of f(x,y,z) = xy + 2z

on the circle that is the intersection of the plane x + y + z = 0 and the sphere
22+ yr 472 =24

Solution The function f is continuous, and the circle is a closed bounded set in
3-space. Therefore, maximum and minimum values must exist. We look for critical
points of the Lagrangian

L=xy+2z+A(x+y+2)+px2+y24+272-24).

Setting the first partial derivatives of L equal to zero, we obtain

y+Ai+2ux =0, (A)
x+ArA+2uy =0, (B)

24+ 14+2uz=0, (@)
x+y+z=0, (D)
Xyt -24=0. (E)

Subtracting (A) from (B) we get (x — y)(1 — 2u) = 0. Therefore either 4 = % or
x = y. We analyze both possibilities.

CASEI If o = 1, we obtain from (B) and (C)

x+Ar4+y=0 and 24+ 1+4+2z=0.
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Thus x + y = 2 + z. Combining this with (D), we getz = —landx +y = 1.
Now, by (E), x> + y> = 24 — 72 = 23. Since x> + y> + 2xy = (x + y)* = 1, we
have 2xy = 1 —23 = —22 and xy = —11. Now (x — y)?> = x?> + y? — 2xy =
23 422 = 45,50 x — y = #3+/5. Combining this with x + y = 1, we obtain two

critical points arising from pu = %, namely, ((1 +345)/2, (1 = 3/5)/2, —1) and

((1 ~35)/2, (14+3v3)/2, —1). Atboth of these points we find that f(x, y, 7) =
xy+2z=-11-2=-13.
CASEII If x = y, then (D) implies that z = —2x, and (E) then gives 6x> = 24,
so x = £2. Therefore, points (2, 2, —4) and (-2, —2, 4) must be considered. We
have f(2,2,—4)=4—8 = —4and f(-2,-2,4)=4+8 =12.

We conclude that the maximum value of f on the circle is 12, and the minimum

value is —13.
||

The method of Lagrange multipliers can be applied to find extreme values of a
function of n variables, that is, of a vector variable x = (xy, x2, ..., x,) subject to
m < n — 1 constraints:

extremize f(x) subjectto g,(x)=0, ... gux) =0.

Assuming that the problem has a solution at the point Py, that f and all of the
functions g(;) have continuous first partial derivatives in a neighbourhood of P,
and that the intersection of the constraint (hyper)surfaces is smooth near Py, then
we should look for Py among the critical points of the (n + m)-variable Lagrangian
function

L At hn) = FO) + ) 28(7)(X).
=1

J

We will not attempt to prove this general assertion. (A proof can be based on the
Implicit Function Theorem.) Any critical points must satisfy the n + m equations

L ] L )
8xi=0, (1=i=n), 8—)Lj=g(j)(X)=0, (1=<j=<m).

Nonlinear Programming

When we looked for extreme values of functions f on restricted domains R in the
previous section, we had to look separately for critical points of f in the interior
of R and then for critical points of the restriction of f to the boundary of R. The
interior of R is typically specified by one or more inequality constraints of the form
g < 0, while the boundary corresponds to equation constraints of the form g = 0
(for which Lagrange multipliers can be used).

It is possible to unify these approaches into a single method for finding extreme
values of functions defined on regions specified by inequalities of the form g < 0.

Consider, for example, the problem of finding extreme values of f(x, y) over
the region R specified by g(x, y) < 0. We can proceed by trying to find critical
points of the four-variable function

Lx,y, A, u)= f(x,y)+ )»(g(x, y)+ u2).
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Such critical points must satisfy the four equations

oL
0:5;=f1(x,y)+)»81(x’y)v *)
oL
0= By f(x,y) +Ag2(x, ), ®
oL _ :
0=~ =gk.y)+u, ©
du

Suppose that (x, y, A, u) satisfies these equations. We consider two cases:
CASEI u # 0. Then (D) implies that A = 0, (C) implies that g(x, y) = —u> < 0,
and (A) and (B) imply that f;(x, y) = Oand f>(x, y) = 0. Thus, (x, y) is aninterior
critical point of f.

CASE II u = 0. Then (C) implies that g(x,y) = 0, and (A) and (B) imply
that Vf(x, y) = —AVg(x, y), so that (x, y) is a boundary point candidate for the
location of the extreme value.

This technique can be extended to the problem of finding extreme values of a
function of » variables, X = (xy, x3, ..., X,), over the intersection R of m regions
R; defined by inequality constraints of the form g(;,(x) < 0.

extremize f(x) subjectto g ,(x) <0, ... gw(x) <0

In this case we look for critical points of the (n + 2m)-variable Lagrangian

LAy ey h Ul ) = FO+ Y A(8(H(X) + u3).
j:

The critical points will satisfy n + 2m equations

Vix) =— Z 2 Vg (x), (n equations)
=

8HX) = —szw 1 =j=m), (m equations)

2hju; =0, (1=<j=m. (m equations)

The last m equations show that A; = 0 for any j for which u#; # 0. If all u; # 0
then x is a critical point of f interior to R. Otherwise some of the u; will be zero,
say those corresponding to j in a subset J of {1,2, ..., m}. In this case x will lie
on the part of the boundary of R consisting of points lying on the boundaries of
each of the regions R; for which j € J, and Vf will be a linear combination of the
corresponding gradients Vg ;:

Vi) == 1 VgX).

jeJ

These are known as Kuhn-Tucker conditions, and this technique for solving
extreme-value problems on restricted domains is called nonlinear programming.
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1.

10.

11.

12.

14.

* 15,

Use the method of Lagrange multipliers to maximize x> y°

subject to the constraint x + y = 8.

. Find the shortest distance from the point (3, 0) to the

parabola y = x2,
(a) by reducing to an unconstrained problem in one
variable, and

(b) by using the method of Lagrange multipliers.

. Find the distance from the origin to the plane

X+2y+2: =3
(a) using a geometric argument (no calculus),

(b) by reducing the problem to an unconstrained problem in
two variables, and

(c) using the method of Lagrange multipliers.

. Find the maximum and minimum values of the function

flx,y,2) = x + y — z over the sphere x2 +y242=1.

. Use the Lagrange multiplier method to find the greatest and

least distances from the point (2, 1, —2) to the sphere with
equation x2 + y2 + z2 = . (Of course, the answer could be
obtained more easily using a simple geometric argument.)

. Find the shortest distance from the origin to the surface

xyz2=2.

. Find a, b, and ¢ so that the volume V = 4wabc/3 of an

2

ellipsoid a + = + — = 1 passing through the point
a2 p2 2

(1.2, 1) is as small as possible.

. Find the ends of the major and minor axes of the ellipse

3x% 4 2xy + 3y% = 16.

. Find the maximum and minimum values of

f(x, y,2) = xvz on the sphere x2 + y2 4 72 = 12.

Find the maximum and minimum values of x 4+ 2y — 3z
over the ellipsoid x> 4+ 4y2 + 972 < 108.

Find the maximum and minimum values of the function
Sf{x,y,z) = x over the curve of intersection of the plane
z=x+ v and the ellipsoid x% + 2y% + 27% = 8.

Find the maximum and minimum values of

fe,y,2) = x% 4+ y2 + 7% on the ellipse formed by the
intersection of the cone z2 = x2 + y2 and the plane

x —2z=3.

. Find the maximum and minimum values of

S{x,y,2) =4 — z on the ellipse formed by the intersection
of the cylinder x> 4+ y2 = 8 and the planex + y+z=1.

Find the maximum and minimum values of

flx,y,2) = x + y?z subject to the constraints yV+2=2
and z = x.

Use the method of Lagrange multipliers to find the shortest
distance between the straight lines x = y = z and

X = —y, z = 2. (There are, of course, much easier ways to
get the answer. This is an object lesson in the folly of
shooting sparrows with cannons.)

16.

17.

18.

19.

21.

* 22,

* 23,

* 24,

% 25,

26.

Find the maximum and minimum values of the n-variable
function x| + x3 + - - - 4+ X, subject to the constraint
x%+x§+---+x3 =1

Repeat Exercise 16 for the function

X1 4 2x3 + 3x3 + « - - + nx, with the same constraint.
Find the most economical shape of a rectangular box with
no top.

Find the maximum volume of a rectangular box with faces
parallel to the coordinate planes if one corner is at the origin
and the diagonally opposite corner lies on the plane

4x +2y+z=2.

. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin
and the diagonally opposite corner is on the first octant part
of the surface xy + 2yz + 3xz = 8.

A rectangular box having no top and having a prescribed
volume Vm? is to be constructed using two different
materials. The material used for the bottom and front of the
box is five times as costly (per square metre) as the material
used for the back and the other two sides. What should be
the dimensions of the box to minimize the cost of materials?

Find the maximum and minimum values of xy + z> on the
ball x2 + y2+2z2 < 1. Use Lagrange multipliers to treat the
boundary case.

Repeat Exercise 22 but handle the boundary case by
parametrizing the sphere x2 + y% + z2 = 1 using
x =sin¢ cosd,

y =sin¢gsing, z=cosg,

where0 < ¢ <mwand0 <0 < 27.

If o, B, and y are the angles of a triangle, show that
o By _ 1
—sin —sin - < =,
sin = sin 5 in > <3
For what triangles does equality occur?

Suppose that f and g have continuous first partial
derivatives throughout the xy-plane, and suppose that
g2(a, b) # 0. This implies that the equation

g(x,y) = g(a, b) defines y implicitly as a function of x
near the point (a, b). Use the Chain Rule to show that if
Sf(x, y) has alocal extreme value at (a, b) subject to the
constraint g(x, y) = g(a, b), then for some number A the
point (a, b, 1) is a critical point of the function

L(x,y,A) = f(x,y)+Agx,y).

This constitutes a more formal justification of the method of
Lagrange multipliers in this case.
What is the shortest distance from the point (0, —1) to the

curve y = /1 — x2? Can this problem be solved by the
Lagrange multiplier method? Why?
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27. Example 3 showed that the method of Lagrange multipliers point. Can the method also fail if Vf = @ at the extremizing
might fail to find a point that extremizes f (x, y) subject to point? Why?
the constraint g(x, y) = 0 if Vg = 0 at the extremizing

Important optimization problems arise in the statistical analysis of experimental
data. Frequently experiments are designed to measure the values of one or more
quantities supposed to be constant or to demonstrate a supposed functional rela-
tionship among variable quantities. Experimental error is usually present in the
measurements, and experiments need to be repeated several times in order to arrive
at mean or average values of the quantities being measured.

Consider a very simple example. An experiment to measure a certain physical
constant ¢ is repeated n times, yielding the values ¢y, ¢z, ..., c,. If none of the
measurements is suspected of being faulty, intuition tells us that we should use
the mean value ¢ = (¢; + ¢2 + -+ + ¢,)/n as the value of ¢ determined by the
experiments. Let us see how this intuition can be justified.

Various methods for determining ¢ from the data values are possible. We could,
for instance, choose ¢ to minimize the sum 7T of its distances from the data points:

T'=lc—cal+lc—cl+ - +lc—cul

This is unsatisfactory for a number of reasons. Since absolute values have singular
points, it is difficult to determine the minimizing value of ¢. More importantly,
¢ may not be determined uniquely. If n = 2, any point in the interval between
c1 and ¢, will give the same minimum value to 7. (See Exercise 24 below for a
generalization of this phenomenon.)

A more promising approach is to minimize the sum S of squares of the distances
from ¢ to the data points:

n
S=(—c)l+—c)+ - =) (c—c).
i=1
This function of ¢ is smooth, and its (unconstrained) minimum value will occur at
a critical point ¢ given by

_ds _—_Xn:Z(E—ci)zan‘—zzn:Ci~
i=1

de i=1

0

c=c

Thus ¢ is the mean of the data values:

1<
E‘=——ZC,"=CI+CZ+ +Cn.
ni=1 n

The technique used to obtain ¢ above is an example of what is called the method
of least squares. It has the following geometric interpretation. If the data values

c1, €2, ..., ¢y are regarded as components of a vector ¢ in R, and w is the vector
with components 1, 1, .. ., 1, then the vector projection of ¢ in the direction of w,
cew cpted 40y
Cw = = w,

= W=
w2 n




Figure 13.18 Fitting a straight line
through experimental data
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has all its components equal to the average of the data values. Thus, determining
¢ from the data by the method of least squares corresponds to finding the vector
projection of the data vector onto the one-dimensional subspace of R" spanned
by w. Had there been no error in the measurements c;, then ¢ would have been
equal to cw.

Linear Regression

In scientific investigations it is often believed that the response of a system is a
certain kind of function of one or more input variables. An investigator can set up
an experiment to measure the response of the system for various values of those
variables in order to determine the parameters of the function.

For example, suppose that the response y of a system is suspected to depend
on the input x according to the linear relationship

y=uax+b,

where the values of @ and b are unknown. An experiment set up to measure values of
y corresponding to several values of x yields n data points, (x;, y;),i = 1.2,...,n.
If the supposed linear relationship is valid, these data points should lie approximately
along a straight line, but not exactly on one because of experimental error. Suppose
the points are as shown in Figure 13.18. The linear relationship seems reasonable
in this case. We want to find values of @ and b so that the straight line y = ax + b
“best” fits the data.

V1

.
(xn.yn)

X

In this situation the method of least squares requires that a and b be chosen to
minimize the sum § of the squares of the vertical displacements of the data points
from the line:

S= Z(y,» — ax; — b)*~.
i=1

This is an unconstrained minimum problem in two variables, a and b. The minimum
will occur at a critical point of S that satisfies

A 1

0= PPl -2 ;zl xi(yi —ax; — b),
as 1

0= —==-2 C— A
b i:EI (yi —ax; — b).
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These equations can be rewritten

(ixl?)a + (‘: xi> b = Xn:x,-yi,

i=1 i=1 i=1

(i x,-)a + nb = Zn:yi-
i=1 i=1

Solving this pair of linear equations, we obtain the desired parameters:

i (x};xiyi) — (;x) (%y) _T-5
)z

In these formulas we have used a bar to indicate the mean value of a quantity; thus
xy = (1/n) Y i, xiyi, and so on.

This procedure for fitting the “best” straight line through data points by the
method of least squares is called linear regression, and the line y = ax + b
obtained in this way is called the empirical regression line corresponding to
the data. Some scientific calculators with statistical features provide for linear
regression by accumulating the sums of x;, y;, xiz, and x; y; in various registers and
keeping track of the number n of data points entered in another register. At any
time it has available the information necessary to calculate a and b and the value of
y corresponding to any given x.

m Find the empirical regression line for the data (x, y) = (0, 2.10),
(1,1.92), (2,1.84), and (3, 1.71), (4, 1.64). What is the predicted value of y at
x =157

Solution We have

0+1+2+3+4

5
2.10+1.92+1.84+1.71 4+ 1.64

5

=1
1

=2,

= 1.842,

<
I




Figure 13.19 p = ax + bw is the
projection of y onto the plane spanned
by x and w
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_(0)(2.10) + (1)(1.92) + (2)(1.84) + 3)(1.7T1) + (H(1.64)

Xy 5 = 3.458,
— P+ 1?4223+ 4
x2 = =6.
5
Therefore,
. — 1.
0= 3.458 — (2)(1.842) — 0113,
6—22
6)(1.842) — (2)(3.458
po OU84D) -G48
6—22
and the empirical regression line is
y =2.068 —0.113x.
The predicted value of y at x = 515 2.068 — 0.113 x 5 = 1.503.
_u
Linear regression can also be interpreted in terms of vector projection. The data
points define two vectors x and y in R* with components x(, x7,...,x, and
¥1,¥2, ..., ¥, respectively. Let w be the vector with components 1,1,..., 1.

Finding the coefficients a and & for the regression line corresponds to finding the
orthogonal projection of y onto the two-dimensional subspace (plane) in R” spanned
by x and w. (See Figure 13.19.) This projection is p = ax + bw. In fact, the two
equations obtained above by setting the partial derivatives of S equal to zero are
just the two conditions

y—p ex=0,
y—pew=0,

stating that y minus its projection onto the subspace is perpendicular to the subspace.
The angle between y and this p provides a measure of how well the empirical
regression line fits the data; the smaller the angle, the better the fit.

Linear regression can be used to find specific functional relationships of types
other than linear if suitable transformations are applied to the data.

Find the values of constants K and s for which the curve
y = Kx’

best fits the experimental data points (x;, y;), i = 1,2,...,n. (Assume all data
values are positive.)

Solution Observe that the required functional form corresponds to a linear rela-
tionship between In y and In x:

Iny=InK +slnx.
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If we determine the parameters a and b of the empirical regression line 7 = a& + b
corresponding to the transformed data (§;, ;) = (Inx;,Iny;), then s = a and

K = " are the required values.
=B

Remark 1t should be stressed that the constants K and s obtained by the method
used in the solution above are not the same as those that would be obtained by direct
application of the least squares method to the untransformed problem, that is, by
minimizing 3'_, (y; — Kx]). This latter problem cannot readily be solved. (Try
ith

Generally, the method of least squares is applied to fit an equation in which the
response is expressed as a sum of constants times functions of one or more input
variables. The constants are determined as critical points of the sum of squared
deviations of the actual response values from the values predicted by the equation.

Applications of the Least Squares Method to Integrals

The method of least squares can be used to find approximations to reasonably well-
behaved (say, piecewise continuous) functions as sums of constants times specified
functions. The idea is to choose the constants to minimize the integral of the square
of the difference.

For example, suppose we want to approximate the continuous function f(x)
over the interval [0, 1] by a linear function g(x) = px 4+ g. The method of least
squares would require that p and g be chosen to minimize the integral

I(P’Q)=Al(f(x)—pX—q)2dx.

Assuming that we can “differentiate through the integral” (we will investigate this
issue in Section 13.5), the critical point of I (p, ¢) can be found from

0= of ——2-/:x<f(x)—px—q)dx,

_5_
oI !
0= —=-2 — —q)dx.
o [ (- pra)as
Thus,
1
§+g=/0 xf(x)dx,
1
Lia=[ roa
2 0

and solving this linear system for p and g we get
1
p= / (12x — 6) f (x) dx,
0

1
q =/ (4—6x)f(x)dx.
0

The following example concerns the approximation of a function by a trigono-
metric polynomial. Such approximations form the basis for the study of Fourier
series, which are of fundamental importance in the solution of boundary-value
problems for the Laplace, heat, and wave equations and other partial differential
equations that arise in applied mathematics.



SECTION 13.4: The Method of Least Squares 813

m Use a least squares integral to approximate f(x) by the sum

Z by sinkx
k:l

on the interval 0 < x < .

Solution We want to choose the constants to minimize

bid n 2
1=/ (f(x)—Zbksinkx> dx.
0 k=1

Foreach 1 < j < n we have

a1 g -
0= % -2 /0 (f(x) - b sinkx) sin jxdx.

k=1

Thus,

Zbk/ sinkxsinjxdx:/ f(x)sin jxdx.
k=1 0 0

However, if j # k, then sin kx sin jx is an even function, so that

T 1 s
/ sinkx sin jxdx = 3 / sinkx sin jx dx
0

-

= élt /n (cos(k — J)x —cos(k+j)x) dx = 0.

-7

If j = k, then we have
i 2. 1 T . g
sin” jxdx = - (1—cos2jx)dx = —,
0 2 Jo 2
so that

2 T
b; = —f f(x)sinjxdx.
T Jo

Remark The series

00 2 i 2
Y besinkx, where bk:—~[ foosinkxdx, k=1,2,...,
0

=1 7t

is called the Fourier sine series representation of f(x) on the interval 10, [. If f
is continuous on [0, 7], it can be shown that

T n 2
lim (f(x) — Y bisin kx) dx =0,
0 k=1

n—>00
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| Exercises 13.4

but more than just continuity is required of f to ensure that this Fourier sine series
converges to f(x) at each point of 10, w[. Such questions are studied in harmonic
analysis. Similarly, the series

a@ o0 ) =4
—+Zakcoskx, where ay, =—-f f)coskxdx, k=0,1,2,...,
2 = TJo

is called the Fourier cosine series representation of f(x) on the interval ]0, [.
(f +8)x) = f(x) +g(x), (cfH(x) = cf (x),

and with the “dot product” defined as
feg= / fx)gx)dx,
0

then the functions e, (x) = +/2/7 sinkx form a “basis.” As shown in the example
above, e; e ¢; = 1, andif k # j, then e; e ¢; = 0. Thus these “basis vectors” are
“mutually perpendicular unit vectors.” The Fourier sine coefficients b; of a function
f are the components of f with respect to that basis.

1. A generator is to be installed in a factory to supply power to 8. y=In(p+gx) 9. y = px +qx°
n machines located at positions (x;, y;),i =1,2,...,n. X .
L 10. y =,/ 11. y =
Where should the generator be located to minimize the sum Y pxtq y=pe tqe
of the squares of its distances from the machines? 12. Find the parabola of the form y = p + gx? that best fits the

2. The relationship y = ax? is known to hold between certain
variables. Given the experimental data (x;, y;),
i =1,2,...,n, determine a value for a by the method of

least squares.

3. Repeat Exercise 2 but with the relationship y = ae*.

4. Use the method of least squares to find the plane

data (x, y) = (1, 0.11), (2, 1.62), (3,4.07), (4,7.55),
(6, 17.63), and (7, 24.20). No value of y was measured at
x = 5. What value would you predict at this point?

13. Use the method of least squares to find constants a, b, and ¢
so that the relationship y = ax® + bx + ¢ best describes the
experimental data (x;, y;),i =1,2,...,n, (n > 3). How is
this situation interpreted in terms of vector projection?

2 = ax + by + c¢ that best fits the data (x;, y;, z;),

i=1,2,...,n.

5. Repeat Exercise 4 using a vector projection argument
instead of the method of least squares.

In Exercises 611, show how to adapt linear regression to

14. How can the result of Exercise 13 be used to fit a curve of the
form y = pe® + g + re™ through the same data points?

15. Find the value of the constant a for which the function
f(x) = ax? best approximates the function g(x) = x> on
the interval [0, 1], in the sense that the integral

determine the two parameters p and g so that the given

relationship fits the experimental data (x;, y;),i =1,2,...,s. 1 2

In which of these situations are the values of p and g obtained I= / (f (x)—g (X)) dx
identical to those obtained by direct application of the method of 0

least squares with no change of variable?

is minimized. What is the minimum value of /?
. L. . 2
16. Find a to minimize [ = foﬂ (ax(n — Xx) — sin x) dx. What

6. v=p+ qx2 7. y = pe?* is the minimum value of the integral?




17.

= 19,
20.

21,

Repeat Exercise 15 with the function f(x) = ax? + b and
the same g. Find a and b.

. L 1
. Find a, b, and ¢ to minimize fo (x3 —ax® —bx — 6)2 dx.

What is the minimum value of the integral?
Find ¢ and b to minimize fon (sinx — ax? — bx)? dx.

Find a, b, and ¢ to minimize the integral

1

. 2

.I:/ (x*asinnx—bsin27rx—csm37tx) dx.
~1

Find constants a;, j =0, 1, ..., n, to minimize

T n 2
/0 (f(x) - a% - Zak coskx) dx.

k=1

22.

23,

24,

SECTION 13.5: Parametric Problems 815

Find the Fourier sine series for the function f(x) = x on

0 < x < 7. Assuming the series does converge to x on the
interval ]0, [, to what function would you expect the series
to converge on | — 7, 0{?

Repeat Exercise 22 but obtaining instead a Fourier cosine
series.

Suppose x|, x2, ..., x, satisfy x; < x; wheneveri < j.
Find x that minimizes Z;;l |x — x;|. Treat the cases n odd
and n even separately. For what values of n is x unique?
Hint: use no calculus in this problem.

In this section we will briefly examine three unrelated situations in which one wants
to differentiate a function with respect to a parameter rather than one of the basic
variables of the function. Such situations arise frequently in mathematics and its

applications.

Differentiating Integrals with Parameters

The Fundamental Theorem of Calculus shows how to differentiate a definite integral
with respect to the upper limit of integration:

d X ' :
£ f Foodrs ror

We are going to look at a different problem about differentiating integrals. If the
integrand of a definite integral also depends on variables other than the variable of
integration, then the integral will be a function of those other variables. How are
we to find the derivative of such a function? For instance, consider the function

F(x) defined by

b
F(x)=/ fx,t)dz.

We would like to be able to calculate F'(x) by taking the derivative inside the

integral:

d [? by
F’(x):d—x/ f(x,t)dt=/ — f(x,t)dr.

0x

Observe that we use “d/dx” outside the integral and “9/0x” inside; this is because
the integral is a function of x only, but the integrand £ is a function of both x and z.
If the integrand depends on more than one parameter, then partial derivatives would
be needed inside and outside the integral:

8 [t b g
a. s ’t = " » Vs .
ax/a flx,y, 0)dt /a 3xf(x y,t)dt
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The operation of taking a derivative with respect to a parameter inside the integral,
or differentiating through the integral, as it is usually called, seems plausible. We
differentiate sums term by term, and integrals are the limits of sums. However, both
the differentiation and integration operations involve the taking of limits (limits of
Newton quotients for derivatives, limits of Riemann sums for integrals). Differen-
tiating through the integral requires changing the order in which the two limits are
taken and, therefore, requires justification.

We have already seen another example of change of order of limits. When
we assert that two mixed partial derivatives with respect to the same variables are
equal,

82f _ 82f
dxdy  dydx’

we are, in fact, saying that limits corresponding to differentiation with respect to x
and y can be taken in either order with the same result. This is not true in general;
we proved it under the assumption that both of the mixed partials were continuous.
(See Theorem 1 and Exercise 16 of Section 12.4.) In general, some assumptions are
required to justify the interchange of limits. The following theorem gives one set of
conditions that justify the interchange of limits involved in differentiating through
the integral.

Differentiating through an integral
Suppose that for every x satisfying ¢ < x < d the following conditions hold:
(i) the integrals

b b
/ flx,0)dt and / filx, t)dt

both exist (either as proper or convergent improper integrals).

(1) f11(x, t) exists and satisfies

[ fit(x, )] < g(1), a<t<b,

where
b
/ gt)dt = K < o0.

Then for each x satisfying ¢ < x < d we have

d b b3

— ,Ddt = — , .

dxfa f&x, 0 / 8xf(x 1) dt
PROOF 1Let

b
Fx) = f fx,t)dz.
a
Ifc <x <d,h #0, and |h| is sufficiently small that c < x +/ < d, then, by
Taylor’s Formula,

h2
fx+ht)y= fx,t)+hfi(x,0) + 3fu(x +6h,1)
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for some 6 between 0 and 1. Therefore,

F(x+h)— F(x)

b
—/ filx,t)dt

h
b _ b
=/ f(x+h’2 f(x’t)dt—/ fl(x,t)dt‘
b —
5/ f(x+h,th) f(x’t)—fl(x,t) dt
abh
:/ Ef”(x+9h,t)~dt
b
Sg./a g(t)dt:KTh — Oash — 0.
Therefore,
. F(x+h —F b
F/(x)Z}llj)T(l)ﬁ-—})l—ﬂ:/a filx, ) dt,

which is the desired result.

Remark 1t can be shown that the conclusion of Theorem 5 also holds under
the sole assumption that fi(x, ) is continuous on the closed, bounded rectangle
¢ <x <d, a <t <b. Wecannot prove this here; the proof depends on a subtle
property called uniform continuity possessed by continuous functions on closed
bounded sets in R”. In any event, Theorem 5 is more useful for our purposes
because it allows for improper integrals.
o
| Example 1 | Evaluate/ t"e " dr.
0

Solution Starting with the convergent improper integral

0 R

we introduce a parameter by substituting s = x#, ds = x dt (where x > 0) and get

/OO —xt 1
e dt = —.
0 X

Now differentiate n times (each resulting integral converges):

o0 1
f —te Mdt = ——,
0 x?

o 2
A T
0 X

n!
xn+1 ’

/oo(—t)" e dt = (1"
0
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Putting x = 1 we get

o0
/ t"e 'dt =nl.
0

Note that this result could be obtained by integration by parts (n times) or a reduction

formula. This method is a little easier.
_ B

Remark The reader should check that the function f(x, ) = t* ¢ satisfies the
conditions of Theorem 5 for x > 0 and k¥ > 0. We will normally not make a point

At e e =

oF oo 1 oF R 1
—=—/ e Mdt =—— and —:/ e Mdt ==,
ox 0 X ay 0 y

It follows that
Fx,y)=—Inx+Ci(y) and F(x,y)=Iny+ Cy(x).

Comparing these two formulas for F, we are forced to conclude that
C1(y) = Iny + C for some constant C. Therefore,

Fx,y)=lny—lnx+C=In2 +C.
X

Since F(1,1) =0, we must have C = 0 and F(x, y) = In(y/x).
_u

Remark We can combine Theorem 5 and the Fundamental Theorem of Calculus
to differentiate an integral with respect to a parameter that appears in the limits of
integration as well as in the integrand. If

b
F(x,b,a) = / fx,t)de,

then, by the Chain Rule,

d o0F 0OF db OF da
— F{x,b(x), =— 4 — — 4+ — —.
ax Pl b0, a0) = o0 4 oo+ o
Accordingly, we have

d b(x)

pill O fx, t)dt

b(x) 8
:/( ) gf(x,z)dt + fx, @)D (x) — f(x, a(x))a' (x).

We require that a(x) and b(x) be differentiable at x, and for the application of
Theorem 5, thata < a(x) < banda < b(x) < b for all x satisfying ¢ < x < d.
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m Solve the integral equation
) =a— f (x — D f)dr.
b

Solution Assume, for the moment, that the equation has a sufficiently well
behaved solution to allow for differentiation through the integral. Differentiating
twice, we get

[ =G —x)fx) —/b fydr = ~/b f@)dt,
1)y =—=f).

The latter equation is the differential equation of simple harmonic motion. Observe
that the given equation for f and that for f’ imply the initial conditions

fb)y=a and f(b)y =0.
Accordingly, we write the general solution of f”(x) = — f(x) in the form

f(x) = Acos(x — b) + Bsin(x — b).
The initial conditions then imply A = a and B = 0, so the required solution is
f(x) = acos(x — b). Finally, we note that this function is indeed smooth enough

to allow the differentiations through the integral and is, therefore, the solution of
the given integral equation. (If you wish, verify it in the integral equation.)

Envelopes

An equation f(x, y, c) = 0 that involves a parameter ¢ as well as the variables x
and y represents a family of curves in the xy-plane. Consider, for instance, the
family

x
f(x,y,c):;+cy—2:0.

This family consists of straight lines with intercepts (2¢, 2/c) on the coordinate
axes. Several of these lines are sketched in Figure 13.20. It appears that there is a
curve to which all these lines are tangent. This curve is called the envelope of the
family of lines.

In general, a curve C is called the envelope of the family of curves with
equations f(x, y, ¢} = 0if, for each value of ¢, the curve f(x, y, ¢) = 0 is tangent
to C at some point depending on c.

For the family of lines in Figure 13.20 it appears that the envelope may be the
rectangular hyperbola xy = 1. We will verify this after developing a method for
determining the equation of the envelope of a family of curves. We assume that the
function f(x, y, ¢) has continuous first partials and that the envelope is a smooth
curve.
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Figure 13.20 A family of straight
lines and their envelope

This is a subtle argument. Take

your time and try to understand
each step in the development.

y
envelope

V) /

c=—2

ad

envelope

For each c, the curve f(x, y, c) = 01is tangent to the envelope at a point (x, y) that
depends on c. Let us express this dependence in the explicit form x = g(c), v =
h(c); these equations are parametric equations of the envelope. Since (x, y) lies on
the curve f(x, y,c) = 0, we have

f(g(e), h(c),c) =0.
Differentiating this equation with respect to ¢, we obtain

fig'e)+ LR+ f=0, ()

where the partials of f are evaluated at (g (), h(c), c).

The slope of the curve f(x.y,¢) = 0 at (g(c), h(c), c¢) can be obtained by
differentiating its equation implicitly with respect to x:

dy
hH+ fL—=0.
dx

On the other hand, the slope of the envelope x = g(¢), ¥y = h(c) at that
point is dy/dx = h'(c)/g'(¢). Since the curve and the envelope are tangent at
F{(g(c), h(c), ¢), these slopes must be equal. Therefore,

W
g

H+r 0, $0 f18'(c) + foh'(c) = 0.

Combining this with equation () we get f3(x, y, ¢) = Oatall points of the envelope.

The equation of the envelope can be found by eliminating ¢ between the
two equations .

f,y,6)=0 . and -;—C-f(x,y,c) = 0.




Figure 13.21 Circles
(x — )2 + y2 = ¢ and their envelope
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12 ETNT R Find the envelope of the family of straight lines
X
fOy,0) == +ey—2=0.
Solution We eliminate ¢ between the equations
X x
f(x,y,c):;—l—cy—Z:O and fg(x,y,c)z—c—2+y=0.

These equations can be easily solved and give x = ¢ and y = 1/c. Hence, they
imply that the envelope is xy = 1, as we conjectured earlier.

—n

m Find the envelope of the family of circles

x—c)P+y=c.

Solution Here, f(x, y,c) = (x — ¢)> + y? — c. The equation of the envelope is
obtained by eliminating ¢ from the pair of equations

fx,y,0)=(x—=0c)?+y*—c=0,

if(x,y,C) =-2x-¢c)—1=0.
dc

From the second equation, x = ¢ — %, and then from the first, y2 =c— i. Hence,
the envelope is the parabola

This envelope and some of the circles in the family are sketched in Figure 13.21.
|

c=0.5

c=2

envelope

A similar technique can be used to find the envelope of a family of surfaces. This
will be a surface tangent to each member of the family.
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Figure 13.22

The Mach cone

(S ETGTINE  (The Mach cone) Suppose that sound travels at speed ¢ in still air
and that a supersonic aircraft is travelling at speed v > ¢ along the x-axis, so that
its position at time ¢ is (v¢, 0, 0). Find the envelope at time ¢ of the sound waves
created by the aircraft at previous times. See Figure 13.22.

Solution The sound created by the aircraft at time t < ¢ spreads out as a spherical
wave front at speed c. The centre of this wave frontis (vt, 0, 0}, the position of the
aircraft at time 7. At time ¢ the radius of this wave frontis ¢(f — t), so its equation
is

fy, 2,0 = —v)Y +y +22 -t —1)* =0. (*)

At time ¢ the envelope of all these wave fronts created at earlier times 7 is obtained
by eliminating the parameter 7 from the above equation and the equation

9
Ef(x, v,2,T) = —2v(x —vt) + 262(t —1)=0.

2
. . . VX —Cc°t
Solving this latter equation for 7, we get t = ——5 - Thus,
Vi —c
v2x — velt c? (0t — )
X—vT =Xx-— = vt —Xx
V2 — 2 V2 — 2
; ; vx — 2t v (vt )
—T=1t— = vt — x).
V2 — 2 2 — 2

We substitute these two expressions into equation () to eliminate 7:
4 2.2
cv

(@t —x) + Y+ -

ey Y (% — )2

2 2

2, 2 ¢ 2_ 2 2 ¢ 2

+7F =W — )V —x)" = —5—— vt —x)".

y ol Yot —x) = s (wt —x)

The envelope is the cone

(vt =x)*>=0

2

)
vi—c
x=vt — ——— /y2+ 22,
c

which extends backward in the x direction from its vertex at (v¢, 0, 0), the position
of the aircraft at time ¢. This is called the Mach cone. The sound of the aircraft

cannot be heard at any point until the cone reaches that point.

vt X
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Equations with Perturbations

In applied mathematics one frequently encounters intractable equations for which
at least approximate solutions are desired. Sometimes such equations result from
adding an extra term to what would otherwise be a simple and easily solved equa-
tion. This extra term is called a perturbation of the simpler equation. Often the
perturbation has coefficient smaller than the other terms in the equation, that is, it
is a small perturbation. When this is the case you can find approximate solutions
to the perturbed equation by replacing the small coefficient by a parameter and
calculating Maclaurin polynomials in that parameter. One example should serve to
clarify the method.

3 EINTJERA  Find an approximate solution of the equation

1
vt In(1+ y) = x*.

Solution Without the logarithm term the equation would clearly have the solution
y = x2. Let us replace the coefficient 1/50 with the parameter ¢ and look for a
solutlon y = y(x, €) to the equation

yﬂ—eln(l—i—y):x2 ()

in the form

2
y=yx, ) =y(x,0) + eye(x, 0)+ yee(x 0)+--

where the subscripts € denote derivatives with respect to €. We shall calculate the
terms up to second order in €. Evidently y(x, 0) = x2. Differentiating equation (*)
twice with respect to € and evaluating the results at ¢ = 0, we obtain
ay € Jy
— +In(1 + — = =0,
de T+ + 1+yde
3* 2 9 3, 1 9
T
de 14y 0e de \1 4y de

ye(x90) = _ln(l +-x2)v

Yee(x,0) = o In(1 + x?).

Hence,

2

y(x,e):xz—eln(l+x2)+ € ]n(1+x2)+-~,
14+ x2

and the given equation has the approximate solution

, In(l+ x5 In(1 + x?)
50 2,500(1 + x2)°

~x

Similar perturbation techniques can be used for systems of equations and for dif-
ferential equations.
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[Exercises 13.5

1
thdt =

1. Let F(yv) =

for x > —1. By repeated

x+1
differentiation of F evaluate the integral

1
DX e N T
/ eITdr;‘=\/7T,

(4%

9.

Find @D (a) if f(x) =1 +f (x =)' f(t)dr.

Solve the integral equations in Exercises 10-12.

FooN

fX

Sy — 2 J R N
0

Find the envelopes of the families of curves in Exercises 13-18.

and differentiating with respect to x, evaluate 13. y = 2cx — 2 14. y — (x —c¢)cosc = sinc
oo o] . X y _
/ 2o dt and / Ao dr 15. xcosc+ ysinc =1 16. ose T = 1
- e — )2 2 02 =
00 —xit _ -yt 17. y=c+ (x —¢) 8. x—o) +(y—-0) =1
- Evaluate f 3 diforx >0, y > 0. 19. Does every one-parameter family of curves in the plane have
TO an envelope? Try to find the envelope of y = x2 + ¢.
X __gv
. Evaluate / ! 1 ! dt forx > ~1, y > —1. 20. For what values of k does the family of curves
0 nt

o0

x% 4+ (y — )2 = kc? have an envelope?

. Given that e~ sintdt = for x > 0 (which 21. Try to find the envelope of the family y* = (x + ¢)2. Are
0 14 x2 the curves of the family tangent to the envelope? What have
can be shown by integration by parts), evaluate you actually found in this case? Compare with Example 3 of
- ~ Section 13.3.
f te ' sintdr and / 12 sint dt. * 22. Show that if a two-parameter family of surfaces
0 0

. Referring to Exercise 5, for x > 0 evaluate

. o _ g Sint
F(x) = e ' ——dt.
0 !

Show that limy_, oo F'(x) = 0 and hence evaluate the integral

o .
sint .
/ —dt = lim F(x).
0 t x—0

< dt
. Evaluate / — 5 and use the result to help you
0 X°+t°

23.

f(x, y,z, X, ) = 0 has an envelope, then the equation of
that envelope can be obtained by eliminating % and w from
the three equations

S,y 2,0, 1) =0,

9
Sy A =0,
akf(xyz u)=0

B
a—f(x,y,z,hu) =0
"

Find the envelope of the two-parameter family of planes

xsinhcosp + ysinAsing +zcosh = 1.

evaluate 24. Find the envelope of the two-parameter family of spheres
©dr ® A4
—— . O R R e
0 (24122 o (24123 2

X
dt
. Evaluate / > and use the result to help you evaluate
0o X+t

! dt * dt
ST 55 and S>3
o (= +1°) o (x=+1%)

In Exercises 25-27, find the terms up to second power in € in the
solution y of the given equation.

25.
27.

y+esinmy =x 26. y2+ee'~"2=l—|—x2

€x

=1
14 y2

2y +
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28. Use perturbation methods to evaluate y with error less than and y from the system
1078 given that y + (¥°/100) = 1/2.
# 29, Use perturbation methods to find approximate values for x x+2y+ _l_e—x =3, x-—-y+ I%O()e_y =0.
100

Calculate all terms up to second order in € = 1/100.

Figure 13.23 Xp1 18 the x-intercept
of the tangent at x,

A frequently encountered problem in applied mathematics is to determine, to some
desired degree of accuracy, a root (i.e., a solution ») of an equation of the form

fr)=0.
Such arootis called a zero of the function f. In Section 4.6 we introduced Newton’s
Method, a simple but powerful method for determining roots of functions that are
sufficiently smooth. The method involves guessing an approximate value x, for a
root r of the function f, and then calculating successive approximations xy, xz, . . .,
using the formula

X1 =%y, j—(—@—)- n=0,1,2,---.

ok

If the initial guess xg is not too far from r, and if | ' (x)| is not too small and | f" (x)|
is not too large near r, then the successive approximations x, x2, . . . will converge
very rapidly to r. Recall that each new approximation x,; is obtained as the x-
intercept of the tangent line drawn to the graph of f at the previous approximation,
x,. The tangent line to the graph y = f(x) at x = x,, has equation

y—fn) = f/(xn)(x — Xp).
(See Figure 13.23.) The x-intercept, x4, of this line is determined by setting
y = 0, x = x,4; in this equation, so is given by the formula in the shaded box
above.

Newton’s Method can be extended to finding solutions of systems of m equa-
tions in m variables. We will show here how to adapt the method to find approxi-
mations to a solution (x, y) of the pair of equations

{ fGx,y)=0

glx,y)=0

starting from an initial guess (xo, yo). Under auspicious circumstances, we will
observe the same rapid convergence of approximations to the root that typifies the
single-variable case.

The idea is as follows. The two surfaces z = f(x, y) and z = g(x, y) intersect
in a curve which itself intersects the xy-plane at the point whose coordinates are
the desired solution. If (x¢, yo) is near that point, then the tangent planes to the two
surfaces at (xg, yo) will intersect in a straight line. This line meets the xy-plane at a
point (x;, y) that should be even closer to the solution point than was (x, yo). We
can easily determine (x;, y1). The tangent planes to z = f(x,y) and z = g(x, y)
at (xp, yo) have equations

z = f(xo, yo) + f1{x0, Yo)(x — x0) + f2(x0, Yo)(y — Yo),
Z = g(xo0, yo) + g1 (xo0, yo)(x — xo) + g2(x0, Yo) (¥ — yo).
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‘ x(+y2)=1

Figure 13.24 The two graphs
intersect near (0.2, 1.8)

The line of intersection of these two planes meets the xy-plane at the point (x;, y)
satisfying

filxo, yo) (x1 — x0) + fa(x0, yo)(¥1 — Yo) + f (x0, yo) =0,

g1(xo, yo)(x1 — x0) + g2(x0, Yo)(y1 — Yo) + &(x0, yo) = 0.

Solving these two equations for x; and y,, we obtain

‘f f2
X = o 82— 8 sy 18 &
1 =Xp— —0——— =x)— —— ,
fng - fZgl (x0.y0) fl f2 (xq,¥0)
g &
h fl
=y fig—Jfa ~ g 8
1=Yo— 75— =Yo— T ——
fng - fzgl (x0.y0) fl f2 (X0, ¥0)
81 82

Observe that the denominator in each of these expressions is the Jacobian deter-
minant d(f, g)/d(x, y)| (ou30)" This is another instance where the Jacobian is the
appropriate multivariable analogue of the derivative of a function of one variable.

Continuing in this way we generate successive approximations (x,, y,) accord-
ing to the formulas

‘f f

[ 7 & &

n+l =X T T .
‘fl f2 Con )
81 B2
1A fl .

Vovisy, g1 8

il =Y .
fi f2 i V)
g1 £

We stop when the desired accuracy has been achieved.

m Find the root of the system

x(1+yH—-1=0, yQ+xH-2=0

with sufficient accuracy to ensure that the left sides of the equations vanish to the
sixth decimal place.

Solution A sketch of the graphs of the two equations (see Figure 13.24) in the
xy-plane indicates that the system has only one root near the point (0.2, 1.8).
Application of Newton’s Method requires successive computations of the quantities

fa=x(1+y) -1, fitx,y) =14y  frlx,y) =2xy,

g, y) =y(1+x%) -2, gilx,y) =2xy, e, y) =1 +x2.

Using a calculator or computer, we can calculate successive values of (x,, v,)
starting from xo = 0.2, yo = 1.8:
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Table 1. Rootnear (0.2, 1.8)

Xn Yn f(xn, yn) g(xm yn)
0.200000 1.800000 —0.152000 —0.128000
0.216941 1.911349 0.009481 0.001303

0.214827 1.911779 —0.000003 0.000008
0.214829 1.911769 0.000000 0.000000

W= o=

The values in this table were calculated sequentially in a spreadsheet by the method
suggested below. They were rounded for inclusion in the table but the unrounded
values were used in subsequent calculations. If you actually use the (rounded)
values of x,, and y, given in the table to calculate f(x,, y,) and g(x,, ¥,), your
results may vary slightly.

The desired approximation to the root are the x,, and y, values in the last line of the
above table. Note the rapidity of convergence. However, many function evaluations
are needed for each iteration of the method. For large systems Newton’s Method
is computationally too inefficient to be practical. Other methods requiring more

iterations but many fewer calculations per iteration are used in practice.
_u

Implementing Newton’s Method Using a Spreadsheet

A computer spreadsheet is an ideal environment in which to calculate Newton’s
Method approximations. For a pair of equations in two unknowns such as the
system in Example 1, you can proceed as follows:

(1) In the first nine cells of the first row (A1-11) put the labels n, %, v, f, g,
1, £2,gl,and g2.

(i) In cells A2-A9 put the numbers 0, 1,2, ..., 7.
(iii) In cells B2 and C2 put the starting values xo and yo.

(iv) In cells D2-12 put formulas for calculating f(x, y), g(x, y), ..., g2(x, )
in terms of values of x and y assumed to be in B2 and C2.

(v) In cells B3 and C3 store the Newton’s Method formulas for calculating
x; and y; in terms of the values x¢ and yy, using values calculated in the
second row. For instance, cell B3 should contain the formula

+B2- (D2%I2-G2%E2) / (F2%I2-G2%H2 ).

(vi) Replicate the formulas in cells D2-12 to cells D3-I3.
(vii) Replicate the formulas in cells B3-13 to the cells B4-I9.

You can now inspect the successive approximations x, and y, in columns B and
C. To use different starting values, just replace the numbers in cells B2 and C2.
To solve a different system of (two) equations, replace the contents of cells D2-12.
You may wish to save this spreadsheet for reuse with the exercises below or other
systems you may want to solve later.

Remark While a detailed analysis of the convergence of Newton’s Method ap-
proximations is beyond the scope of this book, a few observations can be made. At
each step in the approximation process we must divide by J, the Jacobian deter-
minant of f and g with respect to x and y evaluated at the most recently obtained
approximation. Assuming that the functions and partial derivatives involved in the
formulas are continuous, the larger the value of J at the actual solution, the more
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likely are the approximations to converge to the solution, and to do so rapidly. If J
vanishes (or is very small) at the solution, the successive approximations may not
converge, even if the initial guess is quite close to the solution. Even if the first
partials of f and g are large at the solution, their Jacobian may be small if their
gradients are nearly parallel there. Thus, we cannot expect convergence to be rapid
when the curves f(x, y) = 0 and g(x, y) = O intersect at a very small angle.

Newton’s Method can be applied to systems of m equations in m variables; the
formulas are the obvious generalizations of those for two functions given above.

Find the solutions of the systems in Exercises 1-6, so that the
left-hand sides of the equations vanish up to 6 decimal places.

These can be done with the aid of a scientific calculator, but that

approach will be very time consuming. It is much easier to
program the Newton’s Method formulas on a computer to

approximations to a solution of the system

f(xﬁyvz):()v h(qu,z)zo,

glx,y,2) =0,

generate the required approximations. In each case try to
determine reasonable initial guesses by sketching graphs of the

equations.

1

2
3
4.
5.
6
7

. Write formulas for obtaining successive Newton’s Method

.y—e' =0,
. x2+y2—1=0,

L xt yz —16=0,
x2 — XV + 2y2 =10,
y —sinxy =0,

. sinx +siny — 1 =0,

xy — 1 =0 (four solutions)
3yt

v

x —siny =0

y—¢e* =0 (two solutions)

x>+ (y+1)>=2=0 (two solutions)

2

=2 (four solutions)

—-x3=0 (two solutions)

starting from an initial guess (xg, ¥o, 20)-

Use the formulas from Exercise 7 to find the first octant
intersection point of the surfaces y2 4+ z2 =3, x2 4+ 72 = 2,
and x2 — 7z =0.

B s

B 9. Theequations y — x> = 0 and y — x3 = 0 evidently have
the solutions x = y = 0 and x = y = 1. Try to obtain these
solutions using the two-variable form of Newton’s Method
with starting values (a) xo = yg = 0.1 and

(b) xp = yo =0.9.

How many iterations are required to obtain 6-decimal-place
accuracy for the appropriate solution in each case?

How do you account for the difference in the behaviour of

Newton’s Method for these equations near (0, 0) and (1. 1)?

The calculations involved in finding extreme values of functions of several variables
can be very lengthy even if the number of variables is small. In particular, even
locating critical points of a function of n variables involves solving a system of n
(usually nonlinear) equations in n unknowns. In such situations the effective use of
a computer algebra system like Maple can be very helpful. In this optional section
we present a few examples of how Maple can be used to find and classify critical
points and solve extreme-value problems. '

As observed previously, Maple has many functions for processing vectors and
matrices. Many of these are only available in the linalg package, so we must
remember to include the Maple command with (linalg) : when using these
functions.

! The author is grateful to his colleague, Professor Peter Kiernan, for suggesting the procedures

newtroot and newtcp presented in this section.
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Solving Systems of Equations

In the previous section we considered the 2-variable (and n-variable) versions of
Newton’s Method for approximating solutions of systems of equations. The method
applies to a system of n equations in # unknowns, that is, to an equation of the form

F(xy,x2,...,%x,) =0,

where F is an n-vector-valued function.

Below we investigate a Maple procedure, newtroot, which automates the use
of Newton’s Method to solve such a vector equation, provided a good starting
value can be found. This procedure can be found in the file newton.def, which is
available on the website www . pearsoned.ca/text/adams_calc. The file
can be read into a Maple session with the command

> read "newton.def";

The file also loads the linalg package, parts of which are needed by newtroot
and its companion procedure newtcp.

The procedure newtroot searches for a solution of F = 0 using v as an initial
approximation. Here, F is an n-vector function of n real variables, and v is a list
of starting values of those variables. However, if n = 1, then F should just be a
scalar function and v should be a number. The procedure requires four arguments:
the name of the function F, the starting value or list v, the maximum number m of
iterations to allow before declaring failure to find a root, and the maximum tolerated
norm, tol, of the difference between two consecutive approximations for success.
(The norm of a vector is the maximum of the absolute values of its components.)
At each iteration the procedure outputs a line with the iteration number, the current
approximation, the value of F there, and the error (the norm of the difference of the
last two approximations). When the error is less than the tolerance, the procedure
exits, returning the final approximation to the root as its output. If the error continues
to exceed the tolerance, the procedure exits after m iterations, declaring failure and
returning the most recent approximation to the root as its output.

A listing of “newtroot” can be found in Appendix V.

m Solve the system
x2+ y4 =1

z=x3y
e =2y —z.

Solution Assuming that the above procedure has been read into a Maple session
as described above, we proceed to define a vector-valued function of 3 variables:
> F := (X,¥,2) -» vector ([x"2+y"4-1,

>  z-X"3%y, exp(x)-2*y+zl);

This is the procedure we will feed to newtroot. But what should our starting
value v be? The first equation cannot be satisfied by any points outside the square
-1 <x <1, -1 <y <1,so we need only consider starting values for x and y
inside this square. The second equation then forces z to lie between —1 and 1 also.
We could just try many starting points that satisfy these conditions and see what we
get using newtroot. Alternatively, we can make several implicit plots of the three
equations for fixed values of z between —1 and 1, looking for cases where the three
curves come close to having a common intersection point:
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> with(plots):

> for z from -1 by .2 to 1 do print(‘z =’ z);

> implicitplot ({x"2+y"4-1, z-xX"3*y, exp(x)-2*y+z},
> x=-1.5 .. 1.5, y=-1.5 .. 1.5) od;

These commands produce 11 graphs of the three equations, considered as depend-
ing on x and y for z values ranging from —1 to 1 in steps of 0.2. Two of them
are shown in Figure 13.25 and Figure 13.26. They correspond to z = —0.2 and
z = 0.2 and indicate that the three equations likely have solutions near (—1, 0.2, —0.2)
and (0.5,0.9,0.2). We run newtroot with these starting values, allowing up to
10 iterations to try and achieve zero values for the components of F' to within a
tolerance of 0.000005. To limit the output, we set the Maple variable Digits to 6:

> Digits := 6; newtroot (F,[-1,.2,-.2]1,10,.000005);
1, [—1.00044, .122484, —.122748], [.00111, —.000102, .2 1073], .077516
2,1.999885, .122655, —.122613], [—.4 1075, 0, —.1 10~°], .000555
3,[—.999887, .122654, —.122613], [0, —.1107°,0],.2 107>

[—.999887, .122654, —.122613]
> newtroot(F,[.5,.9,.2]1,10,.000005);

1, [.533423, .920740, .137653], [.00324, —.002097, .000933], .062347
2,[.531838,.920244, .138429], [.00001, —.4 107>, —.1 1073], .001585
3,[.531835,.920242, .138430], [-.5107%, —.1 107>, 0], .3 107>

[.531835,.920242, .138430]

The last line of each output gives the appropriate solution to 6 significant digits.
B

14 14
12 12

yo.8 y08

Y]
04
02 02

1A 12 08 06 04 02 0z 04 06 08 02 04 06 08 12 14
02 x X

-08 06 04 02
02

204
086
08

Figure 13.25 z=-02 Figure 13.26 z=02

Finding and Classifying Critical Points

Finding the critical points of a function of several variables amounts to solving
the system of equations obtained by setting the components of the gradient of
the function to zero. The file newton.def also contains a modification of the
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newtroot procedure, called newtep, that mechanizes this procedure. It searches
for a solution of grad F(x), x,...,x,) = 0 using v as an initial approximation.
Here, F is a scalar-valued function of n real variables, and v is an n-vector, with
the exception that if n = 1, then the routine assumes that v is also a scalar. At each
iteration of Newton’s Method, the procedure prints the number » of the iteration, the
coordinates of the nth approximation to the critical point, the value of the function
at that approximation, and the error (the norm of the difference between the last two
approximations).

The procedure continues iterating until either the error is less than a prescribed
tolerance tol or the number of iterations exceeds a prescribed maximum number
m. In the former case it prints the eigenvalues of the Hessian matrix of F at the
final approximation to the critical point and then exits, returning the critical point
and the value of F there. Recall that having all eigenvalues negative (or positive)
implies that F has a local maximum (or minimum) at the critical point. If some
eigenvalues are positive and some are negative, F has a saddle point there. If the
procedure fails to find a critical point within the prescribed maximum number of
iterations, it reports this failure along with the value of the error at the final step and
returns with the final approximation to the critical point.

A listing of “newtcp” is given in Appendix V.

m Find and classify the critical points of

FO, ) =24+ xy+ 592 +x — y)e D,

Solution Assuming the procedure newtep has been loaded into a Maple session,
say, by reading in the file newton.def, we proceed to define f as a function of x
and y as follows:

> f o= (X,Y) -> (XT2+xX*y+5*y " 2+x-y) *exp(-x"2 -y"2);
Plotting some level curves of F can suggest likely locations for critical points.
> with(plots):

> contourplot(F(xX,y),x=-3..3, v=-3..3, grid=[50,50],
> contours=16);

The contour plot (Figure 13.27) suggests that there are five critical points, three
local extrema near (0.3, 1), (0, —1), and (—0.6, 0.1) and two saddle points near
(1,0) and (—1.6,0.2). We home in on each of these using newtcp. We limit
ourselves to 6 significant digits and set the tolerance to 0.00001.

> Digits := 6; newtcp(£f, [.3,1], 10, .00001);
1,[.275095, 1.00131], 1.57773, .024905
2,[.275058,1.00132], 1.57773, .000037
3,[.275057, 1.00132], 1.57773, .1 107

Eigenvalues, —6.61494, —2.41894

[.275057, 1.00132], 1.57773

The eigenvalues indicate a local maximum value of 1.57773 at the point
(0.275057, 1.00132).
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> newtcp(f, [0,-11, 10, .00001);
1, [.00456621, —.954338], 2.21553, .045662
2, [.00492090, —.955505], 2.21553, .001167
3, [.00492106, —.955505], 2.21553, .16 107°
Eigenvalues, —8.54884, —3.58874
[.00492106, —.955505], 2.21553

The eigenvalues indicate a local maximum value of 2.21553 at the point
(0.00492106, —0.955505). This is, in fact, the absolute maximum.

> newtcp(f, [-.6,.11, 10, .00001);
1,[—.341894, .139437], —.274764, .258106
2, [—.417293, .133079], —.283308, .075399
3, [—.421350, .132976], —.283327, .004057
4,[—.421366, .132977], —.283328, .000016
5, [—.421365, .132977], —.283328, .1 1073
Figenvalues,2.32435, 8.90196
[—.421365, .132977], —.283328

The eigenvalues indicate a local minimum value of —0.283328 at the point
(—0.421365, 0.132977). This is, in fact, the absolute minimum.

> newtcp(f, [1,0], 10, .00001);
1,[.837838, .0270270270], .762222, .162162
2,1.858275, .0210235], .762817, .020437
3, [.858435, .0207853], .762810, .0002382
4,[.858433, .0207854], .762809, .2 10>
Eigenvalues, —2.84681, 3.28635

[.858433, .0207854], .76280945
The eigenvalues indicate a saddle point at (0.858433, 0.0207854).
> newtcp(f, [-1.6, .2], 10, .00001);

1, [—1.60684, .291329], .0444636, .091329
2, [—1.57946, .292991], .0445837, .02738
3,[—1.58082, .292688], .0445834, .00136
4,[—1.58082, .292686], .0445843, .2 1073
Eigenvalues, —.407585, .673366

[—1.58082, .292686], .0445843
The eigenvalues indicate a saddle point at (—1.58082, 0.292686).
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Figure 13.27 Contours of f(x, y).

Remark The hardest part of using Newton’s Method for large systems is deter-
mining suitable starting values for the roots or critical points. Graphical means are
really only suitable for small systems (one, two, or three equations), and even then
it is important to analyze the equations or functions involved for clues on where the
roots or critical points may be. Here are some possibilities to consider:

1. Sometimes some of the equations will be simple enough that they can be solved
for some variables and thus used to reduce the size of the system. We could have
used the second equation in Example 1 to eliminate z from the first and third
equations and, hence, reduced the system to two equations in two unknowns.

2. The system might result from adding a small extra term to a simpler system,
the location of whose roots is known. In this case you can use those known
roots as starting points.

3. Always be alert for equations limiting the possible values of some variables.
For instance, in Example 1 the equation x> + y* = 1 limited x and y to the
interval [—1, 1].

| Exercises 13.7

In Exercises 3-6, use newtcp to calculate the requested results.
In each case, use a tolerance of 0.00001, and quote the results to
5 significant digits.

In Exercises 1-2, solve the given systems of equations using

newtonroots. Quote the roots to 5 significant figures and use

a tolerance of 0.00001. Be alert for simple substitutions that can

reduce the number of equations that must be fed to newtroot. B 3. Find the maximum and minimum values and their locations

for f(x,y) = (xy —x = 2y)/((1 +x* + ¥*)). Usea
24 y2 L2o Ay y2 v cor.1tour plot to help you determiile suitjble stéz:rting pOiIIItS.

; L ) — in 4, Evidently f(x,y,2) =1 — 10x" — 8y* — 77" has maximum
YT O R value 1 at (0, 0, 0). Find the absolute maximum value of

6xz =1 i+ +t=x+y g(x,y,2) = f(x,y,2) + yz — xyz — x — 2y 4+ z by starting

at various points near (0, 0, 0).
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5. Find the minimum value of 6. Find the maximum and minimum values of

fley,y,20)= x> 4 y2 477
4+ 02xy —0.3xz +4x — y.

x+y—z+.1

T o= e

Key Ideas

e What is meant by the following terms?

<
<&
<
<
<&
<&

a critical point of f(x, y) © a singular point of f(x, y)
an absolute maximum value of f(x, y)

a local minimum value of f(x, y)

a saddle point of f(x, y) ¢ a quadratic form
a constraint ¢ linear programming

an envelope of a family of curves

¢ State the second derivative test for a critical point of f(x, y).
¢ Describe the method of Lagrange multipliers.

o Describe the method of least squares.

¢ Describe Newton’s Method for two equations.

Review Exercises

In Exercises 1—4, find and classify all the critical points of the
given functions.

1. xve <Y 2. x%y — 2xy% + 2xy

1 4

: 9
3o— 4+
X v

—_ 4. x2y(2—~x—y)
4—x—vy

5. Let f(x,y,2) = x>+ y2 + 22 + 1/(x> + y? 4 z). Does
f have a minimum value? If so, what is it and where is it
assumed?

6. Show that x2 + y2 + 72 — xy — xz — yz has a local minimum
value at (0, 0, ). Is the minimum value assumed anywhere
clse?

7. Find the absolute rznaximum and minimum values of
Fx, v) = xye™ =% Justify your answer.

8. Let f(x,y) = (4x2 — yDye—x'+¥",

(a) Find the maximum and minimum values of f(x, y) on
the xy-plane.

(b) Find the maximum and minimum values of f(x, y) on
the wedge-shaped region 0 < y < 3x.

9. A wire of length L cm is cut into at most three pieces, and

cach piece is bent into a square. What is the (a) minimum
and (b) maximum of the sum of the areas of the squares?

10. A delivery service will accept parcels in the shape of rect-
angular boxes the sum of whose girth and height is at most
120 inches. (The girth is the perimeter of a horizontal cross-
section.) What is the largest possible volume of such a box?

11. Find the area of the smallest ellipse (x Ja)? +(y/b)? = 1 that
contains the rectangle —1 < x <1, -2 <y <2.

12. Find the volume of the smallest ellipsoid
2 2 2
X y =
o) + o) + = 1

that contains the rectangular box —1 <x <1, -2 <y <2,
-3<z=<3.

13. Find the volume of the smallest region of the form

X2 y2

thatcontainsthebox —1 <x <1,-2<y <2,0<z <2

X
Figure 13.28

14. A window has the shape of a rectangle surmounted by an
isosceles triangle. What are the dimensions x, y, and 7 of the
window (see Figure 13.28) if its perimeter is L and its area is
maximum?

15. A widget manufacturer determines that if she manufactures
x thousands of widgets per month and sells the widgets for y
dollars each, then her monthly profit (in thousands of dollars)
willbe P = xy — 717x2y3 — x. If her factory is capable of
producing at most 3,000 widgets per month, and government
regulations prevent her from charging more than $2 per wid-
get, how many should she manufacture, and how much should
she charge for each, to maximize her monthly profit?

16. Find the envelope of the curves y = (x — c)3 + 3c.




17. Find an approximate solution y(x, €) of the equation

v + exe¥ = —2x having terms up to second degree in €.
* tan~! (xy)
18. (a) Calculate G'(y) if G(y) = / — 7 dx.
0 X

* tan"1(wx) —tan~lx . -
(b) Evaluate dx. Hint: this inte-
0 x
gralis G(w) — G(1).
Challenging Problems
1. (Fourier series)
Show that the constants ai, (k = 0,1,2,...,n), and by,
(k = 1,2, ..., n), which minimize the integral

g

2
T n
ap .
I, = /; |:f(x) -5~ Z(ak coskx + by smkx):| dx,

k=0

are given by

CHIES

] T
ap = —/ fx)ycoskxdx, by =
0 F(s

Note that these numbers, called the Fourier coefficients of
f on [—m, 7], do not depend on n. If they can be calculated

for all positive integers k, then the series

|8

Nk

+ (uk cos kx -+ by sin kx)

k

1l
=}

is called the (full-range) Fourier series of f on [-, 7].

/ f(x)sinkx dx.
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2. This is a continuation of Problem 1. Find the (full range)

Fourier coefficients a; and by of

f—7<x<0
if0<x<m.

f@=1{"

What is the minimum value of J,, in this case? How does it
behave as n — 00?

1412

“n(rx +1
3. Evaluate / x4 D),
0

4. (Steiner’s problem) The problem of finding a point in the

plane (or a higher-dimensional space) that minimizes the sum
of its distances from n given points is very difficult. The case
n = 3 is known as Steiner’s problem. If Py P, P; is a triangle
whose largest angle is less than 120°, there is a point Q inside
the triangle so that the lines Q Py, Q P, and Q P3 make equal
120° angles with one another. Show that the sum of the
distances from the vertices of the triangle to a point P is
minimum when P = Q. Hint: first show that if P = (x, y)
and P; = (x;, yi), then

d|PP; d|PP;
M =coséf; and —l—" = siné;,
dx dy

where 6; is the angle between ﬁ and the positive direction
of the x-axis. Hence, show that the minimal point P satisfies
two trigonometric equations involving 61, 6;, and 63. Then
try to show that any two of those angles differ by +2x/3.
Where should P be taken if the triangle has an angle of 120°
or greater?



