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CHAPTER 4

Some Applications
of Derivatives

Introduction Differential calculus can be used to analyze many kinds of prob-
lems and situations that arise in applied disciplines. Calculus has made and will
continue to make significant contributions to every field of human endeavour that
uses quantitative measurement to further its aims. From economics to physics and
from biology to sociology, problems can be found whose solutions can be aided by
the use of some calculus.

In this chapter we will examine several kinds of problems to which the tech-
niques we have already learned can be applied. These problems arise both outside
and within mathematics. We will deal with the following kinds of problems:

1. Related rates problems, where the rates of change of related quantities are
analyzed.

2. Graphing problems, where derivatives are used to illuminate the behaviour of
functions.

3. Optimization problems, where a quantity is to be maximized or minimized.
4. Root finding methods, where we try to find numerical solutions of equations.

5. Approximation problems, where complicated functions are approximated by
polynomials,

6. Evaluation of limits.

Do not assume that most of the problems we present here are “real-world” problems.
Such problems are usually too complex to be treated in a general calculus course.
However, the problems we consider, while sometimes artificial, do show how
calculus can be applied in concrete situations.

When two or more quantities that change with time are linked by an equation, that

equation can be differentiated with respect to time to produce an equation linking

the rates of change of the quantities. Any one of these rates may then be determined

when the others, and the values of the quantities themselves, are known. We will

600 km/h consider a couple of examples before formulating a list of procedures for dealing
o

¢ with such problems.

IR  An aircraft is flying horizontally at a speed of 600 km/h. How fast
is the distance between the aircraft and a radio beacon increasing 1 minute after the

5k . .
o aircraft passes 5 km directly above the beacon?

Solution A diagram is useful here; see Figure 4.1. Let C be the point on the
aircraft’s path directly above the beacon B. Let A be the position of the aircraft
¢t min after it is at C, and let x and s be the distances CA and BA, respectively.
Figure 4.1 From the right triangle BC A we have
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Figure 4.2 Rectangle with sides
changing

2 =x245%

We differentiate this equation implicitly with respect to ¢ to obtain

We are given that dx /dt = 600 km/h = 10 km/min. Therefore, x = 10 km at time
t = 1 min. At that time s = /102 4 5% = 54/5 km and is increasing at the rate

ds x dx 10 1,200
= = ——=(600) = ——— = 536.7 km/h.

dt s di 53 V5

One minute after the aircraft passes over the beacon, its distance from the beacon
is increasing at about 537 km/h.

m How fast is the area of a rectangle changing if one side is 10 cm
long and is increasing at a rate of 2 cm/s and the other side is 8 cm long and is
decreasing at a rate of 3 cm/s?

Solution Let the lengths of the sides of the rectangle at time ¢ be x cm and y cm,
respectively. Thus the area at time ¢ is A = xy cm?. (See Figure 4.2.) We want
to know the value of dA/dt when x = 10 and y = 8§, given that dx/df = 2 and
dy/dt = —3. (Note the negative sign to indicate that y is decreasing.) Since all the
quantities in the equation A = xy are functions of time, we can differentiate that
equation implicitly with respect to time and obtain

dA dx n dy

—_— = —_ X —

dt w10 dt Y dt
v

= 2(8) + 10(=3) = —14.

x=]

At the time in question, the area of the rectangle is decreasing at a rate of 14 cm?/s.
|

Procedures for Related-Rates Problems

In view of these examples we can formulate a few general procedures for dealing
with related-rates problems.

How to Solve Related-Rates Problems

1. Read the problem very carefully. Try to understand the relationships
among the variable quantities, What is given? What is to be found?

2. Make a sketch if appropriate:

3. Define any symbols you'want to use that are not defined in the state-
ment of the problem. Express given and required quantities and rates
in terms of these symbols.

4. Discover from a careful reading of the problem or consideration of
the sketch one or more equations linking the variable quantities. (You
will need as many equations as quantities or rates to be found in the
problem.)



Figure 4.3
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5. Differentiate the equation(s) implicitly with respect to time, regarding
all variable quantities as functions of time. You can manipulate the
equation(s) algebraically before the differentiation is performed (for
instance, you could solve for the quantities whose rates are:to be
found), but it is usually easier to differentiate the equations as they are
originally obtained and solve for the desired items later.

6. Substitute any givenvalues forthe quantities and their rates, then solve
the resulting equation(s) for the unknown quantities and rates,

7.-Make a concluding statement answering the question asked. Is your
answer “reasonable”? If not, check back through your solution to see
what went wrong.

A lighthouse L is located on a small island 2 km from the nearest
point A on a long, straight shoreline. If the lighthouse lamp rotates at 3 revolutions
per minute, how fast is the illuminated spot P on the shoreline moving along the
shoreline when it is 4 km from A?

Solution Referring to Figure 4.3, let x be the distance A P and let 6 be the angle
LPLA. Thenx = 2tan6 and

dx do
—~ =2sec’d —.
dt Se¢ dt

Now

0
7 = 3 rev/min x 2 radians/rev = 67 radians/min.

When x = 4, we have tan @ = 2 and sec?6 = 1 + tan? 0 = 5. Thus

dx
d_t=2x5x6n:607r%188.5.

The spot of light is moving along the shoreline at a rate of about 188.5 km/min
when it is 4 km from A.

(Note that it was essential to convert the rate of change of 8 from revolutions
per minute to radians per minute. If § were not measured in radians we could not
assert that (d/d@) tanf = sec?6.)

A leaky water tank is in the shape of an inverted right circular cone
with depth 5 m and top radius 2 m. When the water in the tank is 4 m deep it
is leaking out at a rate of 1/12 m>/min. How fast is the water level in the tank
dropping at that time?

Solution Let r and i denote the surface radius and depth of water in the tank at
time ¢ (both measured in metres). Thus, the volume V (in m?) of water in the tank
at time ¢ is
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1
V=-nrh.
3
Using similar triangles in Figure 4.4, we can find a relationship between r and h:
ro 2 2h 1 (2n\*  4n
— == so r="— and V=cn|=—) h=_—_n
TTsom 3" ( 5 ) 75

Differentiating this equation with respect to ¢ we obtain

ﬂ - 4_7.[ 2 d_h
dt 25 dt’

Since dV /dt = —1/12 when h = 4, we have
-1 4 dh dh 25
Ty o o 2
12 25 dt dt 7687w

When the water in the tank is 4 m deep, its level is dropping at a rate of
25/(7687) m/min, or about 1.036 cm/min.

400 km/h

100 km/h >

Figure 4.4 The conical tank of Example 4 Figure 4.5 Aircraft paths in Example 5

m At a certain instant an aircraft flying due east at 400 km/h passes
directly over a car travelling due southeast at 100 km/h on a straight, level road.
If the aircraft is flying at an altitude of 1 km, how fast is the distance between the
aircraft and the car increasing 36 s after the aircraft passes directly over the car?

Solution A good diagram is essential here. See Figure 4.5. Let time ¢ be
measured in hours from the time the aircraft was at position A directly above the car
at position C. Let X and Y be the positions of the aircraft and the car, respectively,
at time ¢. Let x be the distance AX, y be the distance CY, and s the distance
XY, all measured in kilometres. Let Z be the point 1 km above Y. Since angle
X AZ = 45°, the Pythagorean Theorem and Cosine Law yield

s2=14(ZX)* =1+ x>+ y? — 2xycos45°
:1+x2+y2—x/§xy.




Thus,

s ~ 3.5133.
ds 1

dt ~ 2s

ds dx
2s — =2x — +2
S T
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dy dx dy
2 2y 2 =
dt dt Y V2x dt
= 400(2x — +/2y) + 1002y — v/2x),

since dx /dt = 400 and dy/dt = 100. When ¢t = 1/100 (i.e., 36 s after t = 0), we
have x =4 and y = 1. Hence,

S2=1416+1—-4v2=18-4v2

(400(8 — v/2) + 1002 — 4v/2)) ~ 322.86.

The aircraft and the car are separating at a rate of about 323 km/h after 36 s.

(Note that it was necessary to convert 36 s to hours in the solution. In general all
measurements should be in compatible units.)

[Exercises 4.1

1.

Find the rate of change of the area of a square whose side is
8 cm long, if the side length is increasing at 2 cm/min.

. The area of a square is decreasing at 2 ft*/s. How fast is the

side length changing when it is 8 ft?

. A pebble dropped into a pond causes a circular ripple to

expand outward from the point of impact. How fast is the
area enclosed by the ripple increasing when the radius is
20 ¢m and is increasing at a rate of 4 cm/s?

. The area of a circle is decreasing at a rate of 2 cm?/min.

How fast is the radius of the circle changing when the area is
100 cm??

. The area of a circle is increasing at 1/3 km?/h. Express the

rate of change of the radius of the circle as a function of
(a) the radius r and (b) the area A of the circle.

. At a certain instant the length of a rectangle is 16 m and the

width is 12 m. The width is increasing at 3 m/s. How fast is
the length changing if the area of the rectangle is not
changing?

. Air is being pumped into a spherical balloon. The volume of

the balloon is increasing at a rate of 20 cm3/s when the
radius is 30 cm. How fast is the radius increasing at that
time? (The volume of a ball of radius r unitsis V = %nr
cubic units.)

3

. When the diameter of a ball of ice is 6 cm, it is decreasing at

a rate of 0.5 cm/h due to melting of the ice. How fast is the
volume of the ice ball decreasing at that time?

. How fast is the surface area of a cube changing when the

volume of the cube is 64 cm® and is increasing at 2 cm?3/s?

10.

11.

12.

13.

14.

15.

16.

The volume of a right circular cylinder is 60 cm?® and is
increasing at 2 cm?/min at a time when the radius is 5 cm
and is increasing at 1 cm/min. How fast is the height of the
cylinder changing at that time?

How fast is the volume of a rectangular box changing when
the length is 6 cm, the width is 5 cm, and the depth is 4 cm,
if the length and depth are both increasing at a rate of 1 cm/s
and the width is decreasing at a rate of 2 cm/s?

The area of a rectangle is increasing at a rate of 5 m?/s while
the length is increasing at a rate of 10 m/s. If the length is
20 m and the width is 16 m, how fast is the width changing?

A point moves on the curve y = x2. How fast is y changing
when x = —2 and x is decreasing at a rate 37

A point is moving to the right along the first-quadrant
portion of the curve x2y3 = 72. When the point has
coordinates (3, 2), its horizontal velocity is 2 units/s. What
is its vertical velocity?

The point P moves so that at time ¢ it is at the intersection of
the curves xy =1 and y = rx?. How fast is the distance of
P from the origin changing at time ¢t = 2?

(Radar guns) A policeman is standing near a highway using
a radar gun to catch speeders. (See Figure 4.6.) He aims the
gun at a car that has just passed his position and, when the
gun is pointing at an angle of 45° to the direction of the
highway, notes that the distance between the car and the gun
is increasing at a rate of 100 km/h. How fast is the car
travelling?
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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If the radar gun of Exercise 16 is aimed at a car travelling at
90 km/h along a straight road, what will its reading be at an
instant when it is aimed in a direction making an angle of
30° with the road?

The top of a ladder 5 m long rests against a vertical wall. If
the base of the ladder is being pulled away from the base of
the wall at a rate of 1/3 m/s, how fast is the top of the ladder
slipping down the wall when it is 3 m above the base of the

wall?

A man 2 m tall walks toward a lJamppost on level ground at a
rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast
is the length of the man’s shadow decreasing when he is 3 m
from the post? How fast is the shadow of his head moving at
that time?

A woman 6 ft tall is walking at 2 ft/s along a straight path on
level ground. There is a lamppost 5 ft to the side of the path.
A light 15 ft high on the lamppost casts the woman’s shadow
on the ground. How fast is the length of her shadow
changing when the woman is 12 feet from the point on the
path closest to the lamppost?

(Cost of production) It costs a coal mine owner $C each
day to maintain a production of x tons of coal, where

C =10,000 + 3x + x2/8,000. At what rate is the
production increasing when it is 12,000 tons and the daily
cost is increasing at $600 per day?

(Distance between ships) At 1:00 p.m. ship A is 25 km due
north of ship B. If ship A is sailing west at a rate of 16 km/h
and ship B is sailing south at 20 km/h, find the rate at which
the distance between the two ships is changing at 1:30 p.m.

What is the first time after 3:00 p.m. that the hands of the
clock are together?

(Tracking a balloon) A balloon released at point A rises
vertically with a constant speed of 5 m/s. Point B is level
with and 100 m distant from point A. How fast is the angle
of elevation of the balloon at B changing when the balloon
is 200 m above A?

Sawdust is falling onto a pile at a rate of 1/2 m3/min. If the
pile maintains the shape of a right circular cone with height
equal to half the diameter of its base, how fast is the height
of the pile increasing when the pile is 3 m high?

(Conical tank) A water tank is in the shape of an inverted
right circular cone with top radius 10 m and depth 8§ m.

27.

28.

29.

30.

31.

32.

33.

34.

35.

3e6.

Water is flowing in at a rate of 1/10 m>/min. How fast is the
depth of water in the tank increasing when the water is 4 m
deep?

(Leaky tank) Repeat Exercise 26 with the added assumption
that water is leaking out of the bottom of the tank at a rate of
£3 /1,000 m3/min when the depth of water in the tank is

h m. How full can the tank get in this case?

(Another leaky tank) Water is pouring into a leaky tank at a
rate of 10 m>3/h. The tank is a cone with vertex down, 9 m in
depth and 6 m in diameter at the top. The surface of water in
the tank is rising at a rate of 20 cm/h when the depth is 6 m.
How fast is the water leaking out at that time?

(Kite flying) How fast must you let out line if the kite you
are flying is 30 m high, 40 m horizontally away from you,
and moving horizontally away from you at a rate of

10 m/min?

(Ferris wheel) You are riding on a Ferris wheel of diameter
20 m. The wheel is rotating at 1 revolution per minute. How
fast are you rising or falling when you are 6 m horizontally
away from the vertical line passing through the centre of the
wheel?

(Distance between aircraft) An aircraft is 144 km east of
an airport and is travelling west at 200 km/h. At the same
time, a second aircraft at the same altitude is 60 km north of
the airport and travelling north at 150 km/h. How fast is the
distance between the two aircraft changing?

(Production rate) If a truck factory employs x workers and
has daily operating expenses of $y, it can produce

P = (1/3)x%9y94 trucks per year. How fast are the daily
expenses decreasing when they are $10,000 and the number
of workers is 40, if the number of workers is increasing at

1 per day and production is remaining constant?

A lamp is located at point (3, 0) in the xy-plane. An ant is
crawling in the first quadrant of the plane and the lamp casts
its shadow onto the y-axis. How fast is the ant’s shadow
moving along the y-axis when the ant is at position (1, 2)
and moving so that its x-coordinate is increasing at rate

1/3 units/s and its y-coordinate is decreasing at 1/4 units/s?

A straight highway and a straight canal intersect at right
angles, the highway crossing over the canal on a bridge 20 m
above the water. A boat travelling at 20 km/h passes under
the bridge just as a car travelling at 80 km/h passes over it.
How fast are the boat and car separating after one minute?

(Filling a trough) The cross section of a water trough is an
equilateral triangle with top edge horizontal. If the trough is
10 m long and 30 cm deep, and if water is flowing in at a
rate of 1/4 m3/min, how fast is the water level rising when
the water is 20 cm deep at the deepest?

(Draining a pool) A rectangular swimming pool is 8 m
wide and 20 m long. (See Figure 4.7.) Its bottom is a
sloping plane, the depth increasing from 1 m at the shallow
end to 3 m at the deep end. Water is draining out of the pool
at a rate of 1 m3/min. How fast is the surface of the water
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falling when the depth of water at the deep end is (a) 2.5 m?
(b) 1 m?

Figure 4.7

One end of a 10 m long ladder is on the ground and the
ladder is supported partway along its length by resting on
top of a 3 m high fence. (See Figure 4.8.) If the bottom of
the ladder is 4 m from the base of the fence and is being
dragged along the ground away from the fence at a rate of
1/5 m/s, how fast is the free top end of the ladder moving (a)
vertically and (b) horizontally?

1/5 m/s

Figure 4.8

* 38,

39.

40.

41.
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Figure 4.9

Two crates, A and B, are on the floor of a warehouse. The
crates are joined by a rope 15 m long, each crate being
hooked at floor level to an end of the rope. The rope is
stretched tight and pulled over a pulley P that is attached to
a rafter 4 m above a point Q on the floor directly between
the two crates. (See Figure 4.9.) If crate A is 3 m from Q
and is being pulled directly away from Q at a rate of

1/2 m/s, how fast is crate B moving toward Q?

(Tracking a rocket) Shortly after launch, a rocket is 100 km
high and 50 km downrange. If it is travelling at 4 km/s at an
angle of 30° above the horizontal, how fast is its angle of
elevation, as measured at the launch site, changing?

(Shadow of a falling ball) A lamp is 20 m high on a pole.
At time t = 0 a ball is dropped from a point level with the
lamp and 10 m away from it. The ball falls under gravity
(acceleration 9.8 m/s%) until it hits the ground. How fast is
the shadow of the ball moving along the ground (a) 1 s after
it is dropped? (b) just as the ball hits the ground?

(Tracking a rocket) A rocket blasts off at time + = 0 and
climbs vertically with acceleration 10 m/s®. The progress of
the rocket is monitored by a tracking station located 2 km
horizontally away from the launch pad. How fast is the
tracking station antenna rotating upward 10 s after launch?

The first derivative of a function is a source of much useful information about
the behaviour of the function. As we have already seen, the sign of f' tells us
whether f is increasing or decreasing. In this section we use this information
to find maximum and minimum values of functions. In Section 4.5 we will put
the techniques developed here to use in solving problems requiring the finding of
maximum and minimum values.

Maximum and Minimum Values

Recall (from Section 1.4) that a function has a maximum value at xo if f(x) < f(x0)
for all x in the domain of f. The maximum value is f(xp). To be more pre-
cise, we should call such a maximum value an absolute or global maximum
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Figure 4.10

NITION n

Local extreme values

because it is the largest value that f attains anywhere on its entire domain.

Absolute extreme values

Function f has an absolute maximum value f(xg) at the point xq in its
domain if f(x) < f(xp) holds for every x in the domain of f.
Similarly, f has an absolute minimum value f(x) at the point x; in its
domain if f(x) > f(x;) holds for every x in the domain of f.

A function can have at most one absolute maximum or minimum value, although
this value can be assumed at many points. For example, f(x) = sin x has absolute
maximum value 1 occurring at every point of the form x = (71/2) + 2nw where n
is an integer. Of course a function need not have any absolute extreme values. The
function f(x) = 1/x becomes arbitrarily large as x approaches 0 from the right, so
has no finite absolute maximum. (Remember, o0 is not a number, so is not a value
of f.) Even a bounded function may not have an absolute maximum or minimum
value. The function g(x) = x with domain specified to be the open interval 10, 1|
has neither; the range of g is also the interval O, 1[ and there is no largest or smallest
number in this interval. Of course, if the domain of g were extended to be the closed
interval [0, 1], then g would have both a maximum value, 1, and a minimum value,
0.

Maximum and minimum values of a function are collectively referred to as
extreme values. The following theorem is a restatement (and slight generalization)
of Theorem 8 of Section 1.4. It will prove very useful in some circumstances when
we want to find extreme values.

Existence of extreme values

If the domain of the function f is a closed, finite interval or a union of finitely many
such intervals, and if f is continuous on that domain, then f must have an absolute
maximum value and an absolute minimum value.

a X1 X2 X3 X4 Xs X6 b X
Consider the graph y = f(x) shown in Figure 4.10. Evidently the absolute maxi-
mum value of f is f(x;) and the absolute minimum value is f (x3). In addition to
these extreme values, f has several other “local” maximum and minimum values
corresponding to points on the graph that are higher or lower than neighbouring
points. Observe that f has local maximum values at a, x;, x4, and x¢ and local
minimum values at x, x3, x5, and b. The absolute maximum is the highest of the
local maxima; the absolute minimum is the lowest of the local minima.
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Figure 4.11 A function need not

have extreme values at a critical point
or a singular point
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Local extreme values

Function f has a local maximum value (loc max) f(xo) at the point xq in
its domain provided there exists a number & > 0 such that f(x) < f(xq)
whenever x is in the domain of f and |x — xo| < h.
Similarly, f has a local minimum value (loc min) f(x;) at the point x; in
its domain provided there exists a number 2 > 0 such that f(x) > f(x1)
whenever x is in the domain of f and |x — x;| < h.

Thus, f has alocal maximum (or minimum) value at x if it has an absolute maximum
(or minimum) value at x when its domain is restricted to points sufficiently near
x. Geometrically, the graph of f is at least as high (or low) at x as it is at nearby
points.

Critical Points, Singular Points, and Endpoints

Figure 4.10 suggests that a function f(x) can have local extreme values only at
points x of three special types:

(i) critical points of f (points x in D(f) where f'(x) = 0),
(ii) singular points of f (points x in D(f) where f'(x) is not defined), and

(iii) endpoints of the domain of f (points in D(f) that do not belong to any open
interval contained in D(f)).

In Figure 4.10, x;, x3, x4, and x¢ are critical points, x, and x5 are singular points,
and a and b are endpoints.

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local
minimum) value at point x = x¢ in /, then x¢ must be either a critical point of f, a
singular point of f, or an endpoint of .

PROOF Suppose that f has a local maximum value at x¢ and that x is neither an
endpoint of the domain of f nor a singular point of f. Then for some & > 0, f(x)
is defined on the open interval (xg — %, xo + &) and has an absolute maximum (for
that interval) at xo. Also, f’(xo) exists. By Theorem 14 of Section 2.6, f(x¢) = 0.
The proof for the case where f has a local minimum value at xq is similar.

Although a function cannot have extreme values anywhere other than at endpoints,
critical points, and singular points, it need not have extreme values at such points.
Figure 4.11 shows the graph of a function with a critical point x, and a singular
point x; at neither of which it has an extreme value. It is more difficult to draw the
graph of a function whose domain has an endpoint at which the function fails to
have an extreme value. See Exercise 51 at the end of this section for an example of
such a function.

Finding Absolute Extreme Values

If a function f is defined on a closed interval or a union of finitely many closed
intervals, Theorem 1 assures us that f must have an absolute maximum value and
an absolute minimum value. Theorem 2 tells us how to find them. We need only
check the values of f at any critical points, singular points, and endpoints.
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y=gx)

=x—3x2—9x+2

(2, -20)

Figure 4.12 g has maximum and

minimum values 7 and —20

respectively
y 'S
(=15}
y =h(x)
=3x¥% —2x

1,1

X

Figure 4.13 h has absolute
minimum value O at a singular point

m Find the maximum and minimum values of the function
g(x) =x>—3x?-9x 42

on the interval —2 < x < 2.

Solution Since g is a polynomial, it can have no singular points. For critical
points, we calculate

g(x)=3x—6x—-9=3x>—2x —3)
=3(x+D(x —3)
=0 if x=—-lorx=23.

However, x = 3 is not in the domain of g, so we can ignore it. We need to consider
only the values of g at the critical point x = —1 and at the endpoints x = —2 and
x =2

g(=2) =0, g(=H =1, g(2) = =20.

The maximum value of g(x) on —2 < x < 2is 7, at the critical point x = —1, and
the minimum value is —20, at the endpoint x = 2. See Figure 4.12.

IR Find the maximum and minimum values of 2(x) = 3x** — 2x on
the interval [—1, 1].

Solution The derivative of A is
/ 2 -1/3 —1/3
h(x)=3 3 x —-2=2 - .

Note that x !/? is not defined at the point x = 0 in D(h), so x = 0 is a singular
point of 4. Also, & has a critical point where x~'/3 = 1, that is, at x = 1, which
also happens to be an endpoint of the domain of 4. We must therefore examine the
values of & at the points x = 0 and x = 1, as well as at the other endpoint x = —1.
We have

A=) =5 h(0)=0,  h(l)=L1.

The function 4 has maximum value 5 at the endpoint —1 and minimum value O at
the singular point x = (. See Figure 4.13.

The First Derivative Test

Most functions you will encounter in elementary calculus have nonzero derivatives
everywhere on their domains except possibly at a finite number of critical points,
singular points, and endpoints of their domains. On intervals between these points
the derivative exists and is not zero, so the function is either increasing or decreasing
there. If f is continuous and increases to the left of xy and decreases to the right,
then it must have a local maximum value at xo. The following theorem collects
several results of this type together.
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Figure 4.14
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The graph
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The First Derivative Test

PART 1. Testing interior critical points and singular points.
Suppose that f is continuous at xo, and x is not an endpoint of the domain of f.

(a) If there exists an open interval la, b[ containing x¢ such that f'(x) > 0 on
la, xo[ and f'(x) < 0 on ]xg, b[, then f has a local maximum value at xg.

(b) If there exists an open interval Ja, b[ containing x, such that f'(x) < 0 on
la, xo[ and f'(x) > 0 on Ixg, b[, then f has a local minimum value at xo.

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

(¢) If f'(x) > 0 on some interval ]a, b[, then f has a local minimum value at a.
(d) If f'(x) < 0 on some interval Ja, b[, then f has a local maximum value at a.
Suppose b is a right endpoint of the domain of f and f is left continuous at b.

(e) If f'(x) > 0 on some interval ]a, b[, then f has a local maximum value at b.
(f) If f'(x) < 0 on some interval ]a, b[, then f has a local minimum value at b.

il

Remark 1f f'is positive (or negative) on both sides of a critical or singular point,
then f has neither a maximum nor a minimum value at that point.

IETEEN Find the local and absolute extreme values of f(x) = x* —2x% -3
on the interval [—2, 2]. Sketch the graph of f.

Solution We begin by calculating and factoring the derivative f'(x):
flx)=4x —4x =4x (x> = 1) =4x(x — D(x + D).

The critical points are 0, —1, and 1. The corresponding values are f(0) = —3,
f(=1) = f(1) = —4. There are no singular points. The values of f at the
endpoints —2 and 2 are f(—2) = f(2) = 5. The factored form of f'(x) is also
convenient for determining the sign of f’(x) on intervals between these endpoints
and critical points. Where an odd number of the factors of f’(x) are negative, f'(x)
will itself be negative; where an even number of factors are negative, f/(x) will be
positive. We summarize the positive/negative properties of f'(x) and the implied
increasing/decreasing behaviour of f(x) in chart form:

EP cp cp cp EP
) -1 0 1 2
7 - 0 + 0 - 0 +
max N\, min A max N\, min 7 max

Note how the sloping arrows indicate visually the appropriate classification of the
endpoints (EP) and critical points (CP) as determined by the First Derivative Test.
We will make extensive use of such charts in future sections. The graph of f is
shown in Figure 4.14. Since the domain is a closed, finite interval, f must have
absolute maximum and minimum values. These are 5 (at &2) and —4 (at +1).

. |
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y=x—x3

(-1.-2)

Figure 4.15
Example 4

2,2 =2%%

The graph for
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Find and classify the local and absolute extreme values of the
function f(x) = x — x*” with domain [~1, 2]. Sketch the graph of f.

Solution f'(x) =1 — %x‘1/3 = (x1/3 — %) /x1/3. There is a singular point,
x = 0, and a critical point, x = 8/27. The endpoints are x = —1 and x = 2.
The values of f at these points are f(—1) = =2, f(0) = 0, f(8/27) = —4/27,
and f(2) =2 — 2% ~ 0.4126 (see Figure 4.15). Another interesting point on the
graph is the x-intercept at x = 1. Information from f’ is summarized in the chart:

EP SP CPp EP
x -1 0 8/27 2
f + undef — 0 +
f min Vi ma;( N rr;m S max B

There are two local minima and two local maxima. The absolute maximum of f is
2 — 22/3 gt x = 2: the absolute minimum is —2 at x = —1.

Functions Not Defined on Closed, Finite Intervals

If the function f is not defined on a closed, finite interval, then Theorem 1 cannot
be used to guarantee the existence of maximum and minimum values for f. Of
course, f may still have such extreme values. In many applied situations we will
want to find extreme values of functions defined on infinite and/or open intervals.
The following theorem adapts Theorem 1 to cover some such situations.

Existence of extreme values on open intervals

If f is continuous on the open interval Ja, b[, and if

lim f(x) =L

x—a+

and lirgl fx)y=M,

then the following conclusions hold:

i) If f(u) > L and f(u) > M for some u in ]Ja, b[, then f has an absolute
maximum value on Ja, b|.

(i) If f(v) < L and f(v) < M for some v in ]a, b[, then f has an absolute
minimum value on la, b[.

In this theorem ¢ may be —oo, in which case lim,_,,, should be replaced with
limy , o, and b may be oo, in which case lim,_,;_ should be replaced with
limy_, . Also, either or both of L and M may be either oo or —oo.

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is
a number u in Ja, b[ such that f(u) > L and f(u) > M. Here, L and M may be
finite numbers or —oo. Since lim,_,,+ f(x) = L, there must exist a number x; in
la, u[ such that

whenever

f(x) < fu) a<x <xp.
Similarly, there must exist a number x; in Ju, b[ such that

whenever x; < x < b.

fx) < f(w)



Figure 4.16
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fy=rf=x+-
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Figure 4.17 f has minimum value 4
atx =2
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(See Figure 4.16.) Thus, f(x) < f(u) at all points of ]a, b[ that are not in the
closed, finite subinterval [x1, x;]. By Theorem 1, the function f, being continuous
on [x1, x2], must have an absolute maximum value on that interval, say at the
point w. Since u belongs to [x1, x2], we must have f(w) > f(u), so f(w) is the
maximum value of f(x) for all of la, b[.

]

S )

Theorem 2 still tells us where to look for extreme values. There are no endpoints
to consider in an open interval, but we must still look at the values of the function
at any critical points or singular points in the interval.

Show that f(x) = x + (4/x) has an absolute minimum value on
the interval ]0, oo[, and find that minimum value.

Solution 'We have
lim f(x) =0 and lim f(x) = occ.
x—>0+ x—> 00
Since f(1) = 5 < oo, Theorem 4 guarantees that £ must have an absolute minimum

value at some point in ]0, co[. To find the minimum value we must check the values
of f at any critical points or singular points in the interval. We have

, 4 x2—4 x-2)x+2)
fx)y=1- x_z = 2 = 2 s
which equals 0 only at x = 2 and x = —2. Since f has domain ]0, co|, it has no

singular points and only one critical point, namely x = 2, where f has the value
f(2) = 4. This must be the minimum value of f on ]0, oo[. (See Figure 4.17.)
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y=xe
=1 =L
2° V2e
Figure 4.18 The graph for
Example 6

| Exercises 4.2

SENENR Let f(x) = x e. Find and classify the critical points of f,
evaluate lim,_, 100 f(x), and use these results to help you sketch the graph of f.

Solution f'(x) = e* (1 — 2x2) = O only if 1 — 2x> = 0 since the exponential
is always positive. Thus the critical points are :I:%. We have f (:l: %) = :I:\/—%.

£ is positive (or negative) when 1 — 2x? is positive (or negative). We summarize
the intervals where f is increasing and decreasing in chart form:

CP CP
x ~1/V2 142
£ — 0 + 0 ~
f N omin 0 oma N\

Note that f(0) = 0 and that f is an odd function (f(—x) = — f(x)) so the graph
is symmetric about the origin. Also,

. _x2 . 1 . x2
lim xe™ ={ lim - lim —-}=0x0=0
x—>Fo0 x—>xoo X x—+too eX

because lim,_, 400 x> e = lim,_, o # e % = 0 by Theorem 5 of Section 3.4. Since
f(x) is positive at x = 1/4/2 and is negative at x = —1/+/2, f must have absolute
maximum and minimum values by Theorem 4. These values can only be the values
+1/+/2e at the two critical points. The graph is shown in Figure 4.18. The x-axis
is an asymptote as x — $o0.

In Exercises 1-17, determine whether the given function has any
local or absolute extreme values, and find those values if

possible.

In Exercises 1842, locate and classify all local extreme values
of the given function. Determine whether any of these extreme
values are absolute. Sketch the graph of the function.

1. fx)=x+2on[—1,1] 2. f(x)=x+2on]-00,0] 18. f(x) =x% 4+ 2x 19. f(x)=x3—3x-2
3. f)=x4+2on[—1,1[ 4 fx)=x>—1 20 f(0) = —4)? 2. f)=x(x—1)?
_ 4 _ .3 2
5 f)=x—1lon[~2,3] 6 f(x)=x*—1lon]2 3 2. fl)=x"+4x 3. fy=x"x -1
7. f(x)=x*+x —4on[a,b] 4. f() =x*(x— 1) 25, f(x) = x(x* — 1)
8. f(x)=x3+x——40n]a,b[ X x2
26. = 27. =
9. f(x) =x+ x> +2x onla. b] Fe x2+1 f ¥ +1
1] 28 f(X) = —— 29, f(x)=xv2—x2
0. /()= — 1. f() = —on]0,1[ Jeir1
30. f(x) =x+sinx 31. f(x) =x —2sinx
12. f(x) = on [2, 3] 13. [x — 1| on [-2,2] |
x—1 32, f(x)=x—2tan” ' x 33. f(x):2x—sin*1x
142 —x = 2lon[-3.3] 15 f() = 7 34, f(x) =/ 35, f(x) =x2"
X
R Inx
16. f(x) = (x +2)¥? 17. f(x) = (x — )3 36. fx) =xTe . fx)=—



38, f(x)=x+ 1 39, f(x)=|x2—1]

40. f(x) = sin|x| 41. f(x) =|sinx|
#42. fOo) =@ — DY — @+ 1

In Exercises 43-48 determine whether the given function has
absolute maximum or absolute minimum values. Justify your
answers. Find the extreme values if you can.

43— Y
V241 x4 +1
xZ
45. xJ4—x2 46.
4 — x2
«47. —— on (0. 7) « 48, 20X
X sinx X

49.

50.

= 51.
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If a function has an absolute maximum value, must it have
any local maximum values? If a function has a local
maximum value, must it have an absolute maximum value?
Give reasons for your answers.

If the function f has an absolute maximum value and
g(x) = | f(x)|, must g have an absolute maximum value?
Justity your answer.

(A function with no max or min at an endpoint) Let
in if 0
f(x)z{xSHl; irx > U,
0 if x = 0.

Show that f is continuous on [0, oo[ and differentiable on
10, oo[ but that it has neither a local maximum nor a local
minimum value at the endpoint x = 0.

Like the first derivative, the second derivative of a function also provides useful
information about the behaviour of the function and the shape of its graph; it
determines whether the graph is bending upward (i.e., has increasing slope) or
bending downward (i.e., has decreasing slope) as we move along the graph toward

the right.

We say that the function f is concave up on an open interval 7 if it is differ-
entiable there and the derivative f’ is an increasing function on /. Similarly,
f is concave down on [ if f’ exists and is decreasing on .

The terms “concave up” and “concave down” are used to describe the graph of the
function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for
those, only on intervals on which their derivatives are not constant. According to the
above definition, a function is neither concave up nor concave down on an interval
where its graph is a straight line segment. We say the function has no concavity on
such an interval. We also say a function has opposite concavity on two intervals if
it is concave up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.19 is concave up on the
interval ]a, b[ and concave down on the interval 15, c[.

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies
above its tangents, and chords joining points on the graph lie above the graph.

(i1) If f is concave down on an interval, then, on that interval, the graph of f lies
below its tangents, and chords to the graph lie below the graph.

(iii) If the graph of f has a tangent at a point, and if the concavity of f is opposite
on opposite sides of that point, then the graph crosses its tangent at that point.
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(This occurs at the point (b, f (b)) in Figure 4.19. Such a point is called an
inflection point of the graph of f.)

r1
Figure 419 £ is concave up on
la, b[ and concave down on b, c[ '
a b c X
TION n Inflection points

We say that the point (xo, f (xo)) is an inflection point of the curve y = f(x)
(or that the function f(x) has an inflection point at x = x) if the following
two conditions are satisfied:

(a) the graph y = f(x) has a tangent line at x(, and
(b) the concavity of f is opposite on opposite sides of xg.

Note that (a) implies that either f is differentiable at x4 or its graph has a vertical
tangent line there, and (b) implies that the graph crosses its tangent line at xo. An
inflection point of a function f is a point on the graph of a function, rather than a
point in its domain like a critical point or a singular point. A function may or may
not have an inflection point at a critical point or singular point. In general, a point P
is an inflection point (or simply an inflection) of a curve C (which is not necessarily
the graph of a function) if C has a tangent at P and arcs of C extending in opposite
directions from P are on opposite sides of that tangent line.

Figures 4.20—4.22 illustrate some situations involving critical and singular points
and inflections.

If afunction f has asecond derivative f”, the sign of that second derivative tells
us whether the first derivative f’ is increasing or decreasing and hence determines
the concavity of f.

Concavity and the second derivative

(a) If f”(x) > Ooninterval I, then f is concave up on I.
(b) If f”(x) < O on interval I, then f is concave down on .

(c) If f has an inflection point at xo and f"(xg) exists, then f”(xgp) = 0.
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y=r ) =x
a x
Figure 4.20 x = 0is a critical point Figure 4.21 The concavity of g is Figure 4.22 This graph of /# has an
of f£(x) = x?, and f has an inflection opposite on opposite sides of g, but its inflection point at the origin even
point there graph has no tangent and therefore no though x = 0 is a singular point of s
¥4 inflection point there

PN

y=fx)=x
PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.6 to the
derivative f’ of f. If f has an inflection point at xg and f”(xo) exists, then f
must be differentiable in an open interval containing xo. Since f’ is increasing on
one side of x¢ and decreasing on the other side, it must have a local maximum or
minimum value at xg. By Theorem 2, f”(xg) = 0.

¥ Theorem 5 tells us that to find (the x-coordinates of) inflection points of a twice

Figure 4.23 f7(0) =0,but f does  differentiable function f we need only look at points where f”(x) = 0. However,

not have an inflection point at 0 not every such point has to be an inflection point. For example, f(x) = x*, whose
graph is shown in Figure 4.23, does not have an inflection point at x = 0 even
though f”(0) = 12x?%|,—o = 0. In fact, x* is concave up on every interval.

m Determine the intervals of concavity of f(x) = x® — 10x* and the
v inflection points of its graph.

y=fx Solution We have

f/(x) = 6x° — 40x3,
7 (x) = 30x* — 120x? = 30x%(x — 2)(x + 2).

Having factored f”(x) in this manner, we can see that it vanishes only at x = —2,
x = 0, and x = 2. On the intervals ]—oo, —2[ and 12, oo[, f"(x) > O so f is
concave up. On ]-2,0[ and 10,2[, f”(x) < 0 so f is concave down. f'(x)
changes sign as we pass through —2 and 2. Since f(+2) = —96, the graph of f
has inflection points at (£2, —96). However, f”(x) does not change sign at x = 0,
since x> > 0 for both positive and negative x. Thus there is no inflection point at 0.
Figure 424  The graph As was the case for the first derivative, information about the sign of f”(x) and the
y=fx)=x%—10x7 consequent concavity of f can be conveniently conveyed in a chart:
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y=x*-23+1
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X -2 0 2

—_
r + 0 - 0 - 0 +
f - il —~ —~ il —

The graph of f is sketched in Figure 4.24.

Figure 4.25
Example 2

4

The function of

~—~

(Y™
1

=

=N |

IEZENEN  Determine the intervals of increase and decrease, the local extreme
values, and the concavity of f(x) = x* — 2x* + 1. Use the information to sketch
the graph of f.

Solution

fl(x) =4x3 —6x* =2x?(2x —=3) =0 atx =0andx =3/2,
f'x)=12x>—12x = 12x(x = 1) =0 atx =0andx = 1.

The behaviour of f is summarized in the following chart:

CP CP

X 0 1 3/2
f - 0 -~ —~ 0 +
1 + 0 - 0 + o +
f \ N \u min V4
~ infl — infl ~ —

Note that f has an inflection at the critical point x = 0. We calculate the values of
f at the “interesting values of x” in the charts:

foO=1, fm=0  f(3=-§
The graph of f is sketched in Figure 4.25.

The Second Derivative Test

A function f will have a local maximum (or minimum}) value at a critical point if its
graph is concave downward (or upward) in an interval containing that point. In fact,
we can often use the value of the second derivative at the critical point to determine
whether the function has a local maximum or a local minimum value there.

The Second Derivative Test

(a) If f/(xo) =0and f”(xp) < 0O, then f has a local maximum value at xg.
(b) If f'(xp) =0and f”(xo) > 0, then f has a local minimum value at xo.

() If f'(xp) = 0and f”(xg) = 0, no conclusion can be drawn; f may have a local
maximum at xp or a local minimum, or it may have an inflection point instead.



Figure 4.26

‘I

fx) =x%e™™

| Exercises 4.3

The critical points of
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PROOF Suppose that f’(xo) = 0 and f"(xp) < 0. Since

i Lot m) 1o+ ) — f(xo)
im ——= = lim

E—0 h h—0 h =[x <0,

itfollows that f'(xo+%) < O for all sufficiently small positive &, and f'(xo+4) > 0
for all sufficiently small negative 4. By the first derivative test (Theorem 3), f must
have a local maximum value at xy. The proof of the local minimum case is similar.

The functions f(x) = x* (Figure 4.23), f(x) = —x* and f(x) = x°
(Figure 4.20) all satisfy f'(0) = 0 and f”(0) = 0. But x* has a minimum value
at x = 0, —x* has a maximum value at x = 0, and x* has neither a maximum nor
a minimum value at x = 0 but has an inflection there. Therefore, we cannot make
any conclusion about the nature of a critical point based on knowing that f”(x) =0
there.

m Find and classify the critical points of f(x) = x2e™*.

Solution

) =02x —xHe " =xQ2—x)e *=0 atx =0andx =2,
) = Q2 —4x +x%)e™™
f//(O) =2>0, f”(Z) = —2e_2 < 0.

Thus, f has a local minimum value at x = 0 and a local maximum value at x = 2.
See Figure 4.26.

For many functions the second derivative is more complicated to calculate than the
first derivative, so the First Derivative Test is likely to be of more use in classifying
critical points than is the Second Derivative Test. Also note that the First Derivative
Test can classify local extreme values that occur at endpoints and singular points as
well as at critical points.

It is possible to generalize the Second Derivative Test to obtain a higher deriva-
tive test to deal with some situations where the second derivative is zero at a critical
point. (See Exercise 40 at the end of this section.)

In Exercises 1-22, determine the intervals of constant concavity 13. f(x) = x +sin2x 14. f(x) =x —2sinx
of the given function and locate any inflection points. .
— - — X
L fO0) = Va 2. F(r) = 2x 2 15. f(x) =tan™ " x 16. f(x)=xe
. 2 _. .3 1 2
. f)=x"4+2x+3 4, f(x)=x—x 1. f(x):e_xz 18. f(x) = n(x<)
5. f(x) =10x% — 347 6. f(x)=10x> +3x° *
7. fx) = (3 —xH? 8. f(0) = 2+ 2x —x)? 19. f(x) = In(1 +x°) 20. /() = (Inx)®
X 3 2
9. f(x)=@x2—4) 10. f(x) = —— 21 f(x) = % —4x% 4+ 12x — ?5

11,

f(x) =sinx

x2 43

. f(x) =cos3x 2. f=E-DV 4+ +D'3



252

23.

CHAPTER 4 Some Applications of Derivatives

Discuss the concavity of the linear function
f(x) = ax + b. Doag it have any inflections?

Classify the critical points of the functions in Exercises 24-35
using the Second Derivative Test whenever possible.

24,

26.

28.

30.
32.

34.
36.

* 37.

* 38,

39.

* 40,

f) =33 —36x -3 25 f(x)=x(x -2 +1

4 ; 1
fx)y=x+ - 27. f(x)=x"+—
X X

X
fo = 29. f(x)=1+—x2
flx) = xe® 3L f(x)=xInx

f =@ -4 B ) =" -4

F(x) = (6% = 3)e" 35, f(x) =x2e

Let f(x) =xZifx > Oand f(x) = —x2ifx <0.Is0a
critical point of f? Does f have an inflection point there? Is
f7(0) = 07 If a function has a nonvertical tangent line at an

inflection point, does the second derivative of the function
necessarily vanish at that point?

Verify that if f is concave up on an interval, then its graph
lies above its tangent lines on that interval. Hint: suppose f
is concave up on an open interval containing xg. Let

h(x) = f(x) — f(xg) — f'(x0)(x — x0). Show that & has a
local minimum value at xg and hence that 2(x) > 0 on the
interval. Show that 2(x) > 0if x # xp.

Verify that the graph y = f(x) crosses its tangent line at an
inflection point. Hint: consider separately the cases where
the tangent line is vertical and nonvertical.

Let fu(x) =x" and g, (x) = —x", (n =2,3,4,...).
Determine whether each function has a local maximum, a
local minimum, or an inflection point at x = 0.

(Higher derivative test) Use your conclusions from the
previous exercise to suggest a generalization of the second
derivative test that applies when

fxo) = f'xo)=...= f4 D) =0, fFPx) #0,

=41,

* 42,

for some k > 2.

This problem shows that no test based solely on the signs of
derivatives at xg can determine whether every function with

a critical point at x has a local maximum or minimum or an
inflection point there. Let

if x %0,

_ o1/
7 { 0 if x =0.

Prove the following:

(a) imy_ox " f(x) =0forn=0,1,2,3,....

(b) limy—¢ P(1/x)f(x) = O for every polynomial P.

(¢) Forx #0, f®(x) = P(1/x) f(x)k = 1,2,3,..),
where Py is a polynomial.

(d) f(k) (0) exists and equals O for k = 1,2,3, ...

(e) f has alocal minimum at x = 0; — f has a local
maximum at x = 0.

(f) If g(x) = xf(x), then g(k) (0) = O for every positive
integer k and g has an inflection point at x = 0.

A function may have neither a local maximum nor a local

minimum nor an inflection at a critical point. Show this by
considering the following function:

ifx #0

.1
f(x) = {x2 sm;
0 ifx=0

Show that f/(0) = f(0) = 0, so the x-axis is tangent to the
graph of f at x = 0; but f’(x) is not continuous at x = 0, so
F”(0) does not exist. Show that the concavity of f is not
constant on any interval with endpoint 0.

When sketching the graph y = f(x) of a function f, we have three sources of

useful information:

(i) the function f itself, from which we determine the coordinates of some points
on the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, ', from which we determine the intervals of increase and
decrease and the location of any local extreme values; and

(iii) the second derivative, f”, from which we determine the concavity and inflec-
tion points, and sometimes extreme values.

Items (ii) and (iii) have been explored in the previous two sections. In this section
we consider what we can learn from the function itself about the shape of its graph,
and then we illustrate the entire sketching procedure with several examples using
all three sources of information.
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We could sketch a graph by plotting the coordinates of many points on it and
joining them by a suitably smooth curve. This is what computer software and
graphics calculators computer software do. When carried out by hand (without
a computer or calculator), this simplistic approach is at best tedious and at worst
can fail to reveal the most interesting aspects of the graph (singular points, extreme
values, and so on). We could also compute the slope at each of the plotted points and,
by drawing short line segments through these points with the appropriate slopes,
ensure that the sketched graph passes through each plotted point with the correct
slope. A more efficient procedure is to obtain the coordinates of only a few points
and use qualitative information from the function and its first and second derivatives
to determine the shape of the graph between these points.

Besides critical and singular points and inflections, a graph may have other
“interesting” points. The intercepts (points at which the graph intersects the
coordinate axes) are usually among these. When sketching any graph it is wise
to try to find all such intercepts, that is, all points with coordinates (x, 0) and
(0, y) that lie on the graph. Of course, not every graph will have such points, and
even when they do exist it may not always be possible to compute them exactly.
Whenever a graph is made up of several disconnected pieces (called components),
the coordinates of at least one point on each component must be obtained. It can
sometimes be useful to determine the slopes at those points too. Vertical asymptotes
(discussed below) usually break the graph of a function into components.

Realizing that a given function possesses some symmetry can aid greatly in
obtaining a good sketch of its graph. In Section P.4 we discussed odd and even
functions and observed that odd functions have graphs that are symmetric about
the origin, while even functions have graphs that are symmetric about the y-axis,
as shown in Figure 4.27. These are the symmetries you are most likely to notice,
but functions can have other symmetries. For example, the graph of 2 + (x — 1)?
will certainly be symmetric about the line x = 1, and the graph of 2 + (x — 3)* is
symmetric about the point (3, 2).

Asymptotes

Some of the curves we have sketched in previous sections have had asymptotes,
that is, straight lines to which the curve draws arbitrarily near as it recedes to infinite
distance from the origin. Asymptotes are of three types: vertical, horizontal, and
oblique.

Y y=f) Y

Figure 4.27

(a) The graph of an even function is
symmetric about the y-axis

(b) The graph of an odd function is
symmetric about the origin

3
=@--2

(a) ) (b)
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NITION E The graph of y = f(x) has a vertical asymptote at x = a if

either lim f(x) = %00 or lim+ f(x) = %00, or both.
xr—=>a— x—>a

This situation tends to arise when f(x) is a quotient of two expressions and the
denominator is zero at x = a.

1
m Find the vertical asymptotes of f(x) = — . How does the
x*—x

graph approach these asymptotes?

Solution The denominator x> — x = x(x — 1) approaches 0 as x approaches 0 or
1, so f has vertical asymptotes at x = 0 and x = 1 (Figure 4.28). Since x(x — 1)
is positive on ]—oo, Of and on ]1, oo[ and is negative on 10, 1[, we have

. 1 .

lim =0 lim = -0
x—0— xz—x x—1-x2 — x

. . 1

lim = —00 lim = 0.
=0+ x2 — x =1+ x2 —x

The graph of y = f(x) has a horizontal asymptote y = L if

either lim f(x)=1L or lim f(x)=1L, or both.
X—>00 X——00

m Find the horizontal asymptotes of
1

x4+ x?
(@) f(x) = and (b) g(x) = Al

x2 —

Solution
(a) The function f has horizontal asymptote y = 0 (Figure 4.28) since
1/x2 0

x—>too x2 — x x—>doo ] — (]/x) 1

(b) The function g(x) has horizontal asymptote y = 1 (Figure 4.29) since

lim x* +x2 . 1+ (l/xz) 1 |
1 _— —_— = - = .

x—=Foo x4 41 x—>too | + (1/x%) 1

Observe that the graph of g crosses its asymptote twice. (There is a popular
misconception among students that curves cannot cross their asymptotes. Ex-
ercise 41 below gives an example of a curve that crosses its asymptote infinitely

often.)
I
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) 1
y = y y
—x 1 3 x4 22 z 1
Y T e
X —/\ /\ :
y=tan 'x

x=1 y=1 —
X

b4

2

X
Figure 4.28 Figure 4.29 Figure 4.30

The horizontal asymptotes of both functions f and g in Example 2 are two-sided,
which means that the graphs approach the asymptotes as x approaches both infinity
and negative infinity. The function tan ! x has two one-sided asymptotes, y = /2
(asx — oo)and y = —(7/2) (as x — —o0). See Figure 4.30.

It can also happen that the graph of a function f (x) approaches a nonhorizontal
straight line as x approaches oo or —oo (or both). Such a line is called an obligue
asymptote of the graph.

The straight line y = ax + b (where a # 0), is an oblique asymptote of the
graphof y = f(x)if

either xEr_rloo(f(x)—(ax—i—b)):O or xlirglo(f(x)—(ax+b))=o,

or both.

m Consider the function

xI41
x

fx) =

=_x+—,
X

whose graph is shown in Figure 4.31(a). The straight line y = x is a two-sided
oblique asymptote of the graph of f because

. 1
M (0 —x) = lim = =0

X

- is shown in Figure 4.31(b). It has a

I  The graph of y = 1xe

e
horizontal asymptote y = 0 at the left and an oblique asymptote y = x at the right:
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Figure 4.31

(a) y = f(x) has a two-sided oblique
asymptote, y = x

(b) This graph has a horizontal
asymptote at the left and an
oblique asymptote at the right (a) b)

Recall that a rational function is a function of the form f(x) = P(x)/Q(x), where

P and Q are polynomials. It is possible to be quite specific about the asymptotes
of a rational function.

Asymptotes of a rational function
b m (x)

Suppose that f(x) = s where P, and O, are polynomials of degree

m and n, respectiv'ely.‘ nSuppose also that P, and O, have no common
linear factors. Then

(a) ‘The graph of f has-a vertical asymptote at every position x such that
0:(x) =0.
(b) The graph of f has atwo-sided horizontal asymptote y = Oif m < n.

{c) The graph of f has a two-sided horizontal asymptote y = L, (L #0)
if m = n. L is the quotient of the coefficients of the highest degree
terms in P, and O,

(d) The graphof f has atwo-sided oblique asymptote if m = n + 1. This
asymptote can be found by dividing @, into P, to obtain a linear
quotient, ax + b, and remainder, R, a polynomial of degree at most
n—1.Thatis;

R(x)
On(x) :
The oblique asymptote is y = ax + b.
(e) The graph of f has no horizontal or oblique asymptotes if m > n 1.

fx)=ax+ b+

53

x24+x+1

Solution We can either obtain the quotient by long division:

Find the oblique asymptote of y =
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x
—1 - 0 = -1 4 —
al x24+x+1 * x24+x+1
24 x+1(x°
o4 x? +x
2
—x" —x
—x*—x-1
1
or we can obtain the same result by “short division™:
x3 B+l +x—x—x—-1+1 1
= =x—14—= "
x2+x+1 x2+x+1 x2+x+1

In any event, we see that the oblique asymptote has equation y = x — 1.

Examples of Formal Curve Sketching

Here is a checklist of things to consider when you are asked to make a careful sketch
of the graph y = f(x). It will, of course, not always be possible to obtain every
item of information mentioned in the list.

Checklist for curve sketching
1. Calculate f/(x)-and f”(x), and express the results in factored form.
2. Examine f (x) to determing its domain and the following items:
(a) any vertical asymptotes. (Look for zeros of denominators.)
(b) anyhorizontal or oblique asymptotes. (Considerlim,_, 1o f(x).)
(c) any obvious symmetry. (Is f even or odd?)
(d) any easily calculated intercepts (points with coordinates (x, 0) or
(0, v))'or endpoints or other “obvious” points. You will add to
this list when you know any critical points, singular points, and

inflection points.  Eventually you should make sure you know the
coordinates of at least one point on every component of the graph.

3. Examine f'(x) for the following:
(a) -any critical points:
(b) any points where f’-is not defined. (These will include singular
points, endpoints of the domain of f, and vertical asymptotes.)

(¢) ‘intervals on which f" is positive or negative. It’s a good idea to
convey this information in the form of a chart such as those used
in the examples, Conclusions about where f is increasing and
decreasing and classification of some critical and singular points
as-local'maxima and minima can also be indicated on the chart.

4. Examine f”(x) for the following:

(a) points where f”(x) = 0.

(b) points where f”(x) is undefined. (These will include singular
points, endpoints, vertical asymptotes, and possibly other points
as well, where f’ is defined but f" isn’t.)

(c)- intervals where f” is positive or negative and where f is therefore
concave up or down. Use a chart.

(d) any inflection points.
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When you have obtained as much of this information as possible, make a careful
sketch that reflects everything you have learned about the function. Consider where
best to place the axes and what scale to use on each so the “interesting features”
of the graph show up most clearly. Be alert for seeming inconsistencies in the
information—that is a strong suggestion you may have made an error somewhere.
For example, if you have determined that f(x) — oo as x approaches the vertical
asymptote x = a from the right, and also that f is decreasing and concave down
on the interval (a, b), then you have very likely made an error. (Try to sketch such

a situation to see why.)

x4 2x+4

SEL N Sketch the graph of y = 5
X

Solution It is useful to rewrite the function y in the form

X

y=2

2
+145,
X

since this form not only shows clearly that y = (x/2) + 1 is an oblique asymptote,
but also makes it easier to calculate the derivatives

, 1 2_x2—4
Yo TR

From y: Domain: all x except 0. Vertical asymptote: x = 0,
Obl; y=12 a 2

ique asymptote: y = 3 +1, y-— (5 + 1) =— — 0asx — *oo.
X

Symmetry: none obvious (y is neither odd nor even).
Intercepts: none. x> 4+2x+4=(x+1)2+3>3forall x, and y is not
defined at x = 0. ’
From y’: Critical points: x = £2; points (—2, —1) and (2, 3).
y’ not defined at x = 0 (vertical asymptote).
From y”: y” = 0 nowhere; y” undefined at x = 0.

CP ASY CP
x -2 0 2
i + 0 — undef — 0 +
v’ - - undef 4+ +
y e max O\ undef N\ min

The graph is shown in Figure 4.32.
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\ Y1
:x = —-2
385 /
! *1_/'1
Figure 4.32 Figure 4.33

x2—1

m Sketch the graph of f (x) = 5—.
x*—4

Solution We have

—6x 6(3x% +4)
4 —_— ee—_—_— " = — .
fO=mmgr W ="5
From f: Domain: all x except £2. Vertical asymptotes: x = —2 and x = 2.

Horizontal asymptote: y = 1 (as x — +00).
Symmetry: about the y-axis (y is even).
Intercepts: (0, 1/4), (—1,0), and (1, 0).
Other points: (—3, 8/5), (3,8/5). (The two vertical asymptotes divide
the graph into three components; we need points on each. The outer
components require points with |x| > 2.)

From f’: Critical point: x = 0; f' notdefinedatx =2 orx = —2.

From f”: f"(x) = 0 nowhere; f” not defined at x =2 or x = —2.

ASY CP ASY
x -2 0 2
f 4+  undef + 0 —  undef —
7f"w + unde% - — 7undef + 7
f /S undef ; max O\ undgf 7 1‘7

The graph is shown in Figure 4.33.
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LUK Sketch the graph of y = xe /2,

Solution Wehave y' = (1 — xD)e 12, y' = x(x? - 3)e=*12,
From y: Domain: all x.
Horizontal asymptote: y = 0. Note that if # = x/2, then
lxe /2| = /21 e~ — Oast — oo (hence as x — £00).
Symmetry: about the origin (y is odd). Intercepts: (0, 0).
From y’: Critical points: x = #1; points (1, £1//e) ~ (1, £0.61).
From y”: y” =0atx = 0and x = £+/3;
points (0, 0), (£+/3, £+/3e73/2) & (£1.73, £0.39).

CP Ccp
X -3 -1 0 I V3
y' - - 0 + + 0 - -
oI - 0o o+ 1 0 - - 0+
ol N N min Joma N N
—~ infl — — infl ~ — infl  —
The graph is shown in Figure 4.34.
=

y=@&>—1"
(1,e1/2)

(v3,43¢73/%)

(—V/3,—3e73/%)

(—1,—e71/%)

Figure 4.34

oy

(—/3.2%3) (v3,22/%

Figure 4.35

(A ETUTIERER  Sketch the graph of f(x) = (x — 1)%/3. (See Figure 4.35.)

, , 4 x . 4 x*-3

Solution f'(x) = ERTE I Ty ffx)= S I DA

From f: Domain: all x.
Asymptotes: none. (f (x) grows like x*/? as x — +00.)
Symmetry: about the y-axis (f is an even function).
Intercepts: (1, 0), (0, 1).

From f’: Critical points: x = 0; singular points: x = 1.

From f”: f”(x) = 0 at x = £+/3; points (£+/3, 2/%) ~ (£1.73, 1.59);
f”(x) not defined at x = +£1.
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SP CP SP

x -3 —1 0 1 V3
f — —  undef + 0 — undef + +
" + 0 ~ undef — — undef — 0+
N N omin 0 max N\ min /
— infl —~ —~ — ~ infl —

_m

Remark Using a Graphing Utility The techniques for curve sketching developed
above are useful only for graphs of functions that are simple enough to allow you
to calculate and analyze their derivatives. In practice you will likely want to use
a graphing calculator or a computer to produce the graph quickly and painlessly.
To make effective use of such a utility, you have to decide on a viewing window
and what horizontal and vertical scales to use. An inappropriate choice of viewing
window can cause you to miss significant features of the graph. Here is a Maple
command for viewing the graph of the function from Example 6, together with its
oblique asymptote; we ask Maple to plot both (x? 4 2x +4)/(2x) and 1 + (x/2).
> plot ({(x"2+2%x+4) /(2*%x), 1+(x/2)}, x=-6..6, -7..7);
Getting Maple to plot the curve in Example 9 is a bit trickier. Because Maple
doesn’t want to deal with fractional powers of negative numbers, even when they
have positive real values, we must actually plot |x? — 1}?/3 or else the part of the
graph between —1 and 1 will be missing.

> plot((abs(x"2-1))7(2/3), x=-4..4, -1..5);

1. Figure 4.36 shows the graphs of a function f, its two

inspecting the graph (e.g., symmetry, asymptotes, intercepts,

derivatives f’ and f”, and another function g. Which graph intervals of increase and decrease, critical and singular
corresponds to each function? points, local maxima and minima, intervals of constant
(@ Y, (b) Y, concavity, inflection points).
3
@ v ) Y
3¢ 3
-5 —4 —3—27171 | 4 x 24 2
-27 1 I 1
-3t 1 . = .
—41 —41 —5—4 =3 -2 — 1 2 3 4x —5-4-3-2- 1 T x
sl s 11 1
21 2
© A @ % 3 3
3r 3 —4 4
24 2
\ ! 1 (©) y ()] y
—\ W . — 3 3
54 4-2&/ 23 4x =5 4. N2l 1 2 3 4x N )
- 1 \ r_
-3
_4{ -5 —4 -3 -2 -1 s 432 /)1 23 4
-5 14 4
Figure 4.36 o -
3 -3
2. List, for each function graphed in Figure 4.36, such —4 —4

information that you can determine (approximately) by Figure 4.37
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3. Figure 4.37 shows the graphs of four functions:

) = — W=

X)) = X) =

T 1—x2 & 1 — x4
3 x3

X7 —X
hy) = ——— k(x) = ——
Jxe 1 lx4 — 1)

Which graph corresponds to each function?
4. Repeat Exercise 2 for the graphs in Figure 4.37.

In Exerciscs 5-6, sketch the graph of a function that has the
given properties. Identify any critical points, singular points,
local maxima and minima, and inflection points. Assume that f
is continuous and its derivatives exist everywhere unless the
contrary is implied or explicitly stated.

5. /() =1, f(£1) =0, f(2) = 1, limy» 0 f(x) =2,
limy_s 00 f(x) = —1, f'(x) > 0 on]—o0, O] and on
11, o0[, f'(x) <0on 0, 1[, f”(x) > 0 on ]—o0, O] and on
10, 2[, and f”(x) < 0on ]2, oo[.

6. f(-1)=0,fO)=2f)=1fD=0 B3 =1
limy oo (f (x) + 1 —x) =0, f'(x) > 0on]—o0, —1[,
1—1,0[ and ]2, oo[, f'(x) < 0on]0,2[,

lim_ _1 f(x) =00, f”(x) > 0 on]—o0, —1[ and on

11, 3[, and f”(x) < Oon]—1, 1[ and on ]3, ool[.
In Exercises 7-39, sketch the graphs of the given functions,
making use of any suitable information you can obtain from the
function and its first and second derivatives.

7.y =2 —1)3 8 y=ax(x>—1)?
9. y = 2°* 10, y= 21

’ X x+1
o= " 12 y= 1

’ I +x 44 x2
13. y = T—l’x_z 14. y = x2x—1

15.

17.

19.

21.

23.

25.

27.

29.
31.

33.

35.

37.

39.
* 40,

41.

2 3
x X
= 16- =
Y x2 -1 Y x2 -1
3 2
x X
=— 18. y =
Y X241 Y X241
2
x-—4 x-—2
=— 20. y =
Y x+1 Y x2 -1
3 2
x° —4x x-—1
=— 22. y =
YE Y x2
5 2
x 2—x)
= 24, y= ———
y (x2 _ 1)2 Y x3
1 X
== 26, y= ———
Y x3 —4x Y x24x-2
3 -3 2 1
y=x———)3c—+ 28. y =x +sinx
x
y=x 4 2sinx 30. y:e_’62
y = xe* 32. y=¢ "sinx, (x >0)
y= x2e™ 3.y =x%~
Inx Inx
y=7,(x>0) 36.y=x—2,(x>0)
1 X
y=— 38. y=—
V4 —x2 NEZES
y=@& -
What is limy_ 04 x Inx? limy_,¢ x In|x]|? If f(x) = xIn|x|

for x # 0, is it possible to define f(0) in such a way that f is

continuous on the whole real line? Sketch the graph of f.
sinx

?

1+ x2

What straight line is an asymptote of the curve y =

At what points does the curve cross this asymptote?

In this section we solve various word problems that, when translated into mathe-
matical terms, require the finding of a maximum or minimum value of a function of
one variable. Such problems can range from simple to very complex and difficult;
they can be phrased in terminology appropriate to some other discipline or they can
be already partially translated into a more mathematical context. We have already
encountered a few such problems in earlier chapters.

Let us consider a couple of examples before attempting to formulate any general
principles for dealing with such problems.




Figure 4.38

Figure 4.39
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m A rectangular animal enclosure is to be constructed having one side
along an existing long wall and the other three sides fenced. If 100 m of fence are
available, what is the largest possible area for the enclosure?

Solution This problem, like many others, is essentially a geometric one. A sketch
should be made at the outset, as we have done in Figure 4.38. Let the length and
width of the enclosure be x and y m, respectively, and let its area be A m>. Thus
A = xy. Since the total length of the fence is 100 m, we must have x + 2y = 100.
A appears to be a function of two variables, x and y, but these variables are not
independent; they are related by the constraint x + 2y = 100. This constraint
equation can be solved for one variable in terms of the other, and A can therefore
be written as a function of only one variable:

x = 100 — 2y,
A= A(y) = (100 — 2y)y = 100y — 2y>.

Evidently we require y > 0 and y < 50 (i.e., x > 0), in order that the area make
sense. (It would otherwise be negative.) Thus, we must maximize the function A(y)
on the interval [0, 50]. Being continuous on this closed, finite interval, A must have
a maximum value, by Theorem 1. Clearly, A(0) = A(50) = O and A(y) > O for
0 < y < 50. Hence, the maximum cannot occur at an endpoint. Since A has no
singular points, the maximum must occur at a critical point. To find any critical
points, we set

0= A'(y) = 100 — 4y.

Therefore y = 25. Since A must have a maximum value and there is only one
possible point where it can be, the maximum must occur at y = 25. The greatest
possible area for the enclosure is therefore A(25) = 1,250 m?.

m A lighthouse L is located on a small island 5 km north of a point
A on a straight east-west shoreline. A cable is to be laid from L to point B on the
shoreline 10 km east of A. The cable will be laid through the water in a straight
line from L to a point C on the shoreline between A and B, and from there to B
along the shoreline. (See Figure 4.39.) The part of the cable lying in the water costs
$5,000/km and the part along the shoreline costs $3,000/km.

(a) Where should C be chosen to minimize the total cost of the cable?

(b) Where should C be chosen if B is only 3 km from A?

Solution

(a) Let C be x km from A toward B. Thus 0 < x < 10. The length of LC is
+/25 + x? km, and the length of C B is 10 — x km, as illustrated in Figure 4.39.
Hence, the total cost of the cable is $7°, where

T = T(x) = 5,000y25 + x2 +3,000(10 — x), O <x<10).
T is continuous on the closed, finite interval [0, 10], so it has'a minimum value

that may occur at one of the endpoints x = 0 or x = 10 or at a critical point in
the interval 10, 10[. (T has no singular points.)
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To find any critical points, we set

00

0= dT _ 5000« _ 3,000.
dx 25+ x?

Thus  5,000x = 3,000v/25 + x2

25x2 = 9(25 + x?)

16x% = 225
, 225 15°
16 = 42°

The critical points are x = £15/4. Only one critical point, x = 15/4 = 3.75, lies
in the interval 10, 10[. Since T'(0) = 55,000, T(15/4) = 50,000, and T (10) =~
55,902, the critical point evidently provides the minimum value for 7T'(x). For
minimal cost, C should be 3.75 km from A.

(b) If B is 3 km from A, the corresponding total cost function is

T(x) = 5,000v/25 + x2 4+ 3,000(3 — x), (0 <x <3),

which differs from the total cost function 7 (x) of part (a) only in the added
constant (9,000 rather than 30,000). It therefore has the same critical points,
x = *£15/4, neither of which lie in the interval (0, 3). Since 7 (0) = 34,000
and 7'(3) =~ 29,155, in this case we should choose x = 3. To minimize the
total cost, the cable should go straight from L to B.

Procedure for Solving Extreme-Value Problems

Based on our experience with the examples above we can formulate a checklist of
steps involved in solving optimization problems.

Solving extreme-value problems

1. Read the problem very carefully, perhaps more than once. You must
understand clearly what is given and what must be found.

2. Make a diagram if appropriate. Many problems have a geometric
component, and a good diagram can often be an essential part of the
solution process.

3. Define any symbols-you wish to use that are not already specified in
the statement of the problem.

4. Express the quantity Q to be maximized or minimized as a function
of one or more variables.

5. If Q depends on n variables, where n > 1, find n — 1 équations
(constraints) linking these variables. (If this cannot be done, the
problem cannot be solved by single-variable techniques.)

6. Use the constraints to eliminate variables and hence express Q as a
function of only one variable. Determine the interval(s) in which this
variable must lie for the problem to make sense. Alternatively, regard
the constraints as implicitly defining » — 1 of the variables, and hence
0, as functions of the remaining variable. (It is usually better to avoid
this implicit method in an extreme-value problem if you can.)
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7. Find the required extreme value of the function Q using the techniques
of Section 4.2. Remember to consider any-critical points, singular
points, and endpoints. Make sure to give a convincing argument that
your extreme value is the one being sought; for example, if you are
looking for a maximum, the value you have found should not be a
minimum: :

8. Make a concluding statemerit answering the question asked. Is your
answer for the question ‘reasonable”? If not, check back through the
solution to see what went wrong.

IEZTEN Find the length of the shortest ladder that can extend from a vertical
wall, over a fence 2 m high located 1 m away from the wall, to a point on the ground
outside the fence.

Solution Let 6 be the angle of inclination of the ladder, as shown in Figure 4.40.
Using the two right-angled triangles in the figure, we obtain the length L of the
ladder as a function of §:

1 2

L=L®) = ,
© cos@  sinf

where 0 < 8 < m/2. Since

lim L{@E)=o00 and lim L({#) = oo,
0—(m/2)— 00+

L(#) must have a minimum value on 0, 7 /2[, occurring at a critical point. (L has
no singular points in ]0, 7 /2[.) To find any critical points, we set

sinf  2cosf  sin’6 — 2cos’ 0

0=L"©0) = — =
© cos2 0 sin2 cos? 9 sin? @

Any critical point satisfies sin> 6 = 2 cos® 4, or, equivalently, tan® § = 2. We don’t
need to solve this equation for § = tan~'(2!/3) since it is really the corresponding
value of L(#) that we want. Observe that

sec’ =1 +1tan’6 = 1 + 2%/3.
It follows that

] . 2]/3
cosf = W and sinf =tan6cosbf = (—1+ZT3)1/2

Therefore the minimal value of L(0) is

: + i = (1+2¥3)2 19 (1 4 223172

A A — 2/3\3/2
cos sin 6 2173 = (1 +2 ) ~ 4.16.

The shortest ladder that can extend from the wall over the fence to the ground
outside is about 4.16 m long.
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Figure 4.41

[ETEY- M Find the most economical shape of a cylindrical tin can.

Solution This problem is stated in a rather vague way. We must consider what
is meant by “most economical” and even “shape.” Without further information, we
can take one of two points of view:

(i) the volume of the tin can is to be regarded as given and we must choose the
dimensions to minimize the total surface area, or

(ii) the total surface area is given (we can use just so much metal) and we must
choose the dimensions to maximize the volume.

We will discuss other possible interpretations later. Since a cylinder is determined by
its radius and height (Figure 4.41), its shape is determined by the ratio radius/height.
Let 7, h, S, and V denote, respectively, the radius, height, total surface area, and
volume of the can. The volume of a cylinder is the base area times the height:

V = nr’h.

The surface of the can is made up of the cylindrical wall and circular disks for the
top and bottom. The disks each have area 772, and the cylindrical wall is really
just a rolled-up rectangle with base 2777 (the circumference of the can) and height
h. Therefore, the total surface area of the can is

S =2mrh+2nr2.

Let us use interpretation (i); V is a given constant, and S is to be minimized. We
can use the equation for V to eliminate one of the two variables r and / on which
S depends. Say we solve for h = V/(7rr?) and substitute into the equation for S to
obtain § as a function of r alone:

\%4 2v
S=S(r)=27'rr—2-i—27'rr2:——}—271r2 0 < r < o).
Tr r

Evidently, lim,_,o+ S(r) = oo and lim,_, , S(r) = oo. Being differentiable and
therefore continuous on ]0, oo[, S(r) must have a minimum value, and it must occur
at a critical point. To find any critical points,

A%
0= S/(r) =——3 —+—47rr,
r

2V 1 1
3 2 2
r’'=—=_—nr"h= -r°h.
ar 2w P2
Thus h = 2r at the critical point of S. Under interpretation (i), the most economical
can is shaped so that its height equals the diameter of its base. You are encouraged

to show that interpretation (ii) leads to the same conclusion.
|

Remark There is another way to solve Example 4 that shows directly that inter-
pretations (i) and (ii) must give the same solution. Again, we start from the two
equations

V =nr’h and S =2mrh +2nr>.



Square Packing:
each disk uses up a square

2%,

Hexagonal Packing:
each disk uses up a hexagon

Figure 4.42 Square and hexagonal
packing of disks in a plane
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If we regard £ as a function of r and differentiate implicitly, we obtain

dv dh

— =2nrh 2=,

dr Tkt dr

ds dh

il 2nh + 2nr I + 4nr.

Under interpretation (i), V is constant and we want a critical point of §; under
interpretation (ii), S is constant and we want a critical point of V. In either case,
dV /dr = 0 and dS/dr = 0. Hence both interpretations yield

dh dh
nrh+7r*— =0 and  2mh+4nr +27r — =0.
dr dr

If we divide the first equation by 7772 and the second equation by 277 and subtract
to eliminate dh/dr, we again get h = 2r.

Remark Modifying Example 4 Given the sparse information provided in the
statement of the problem in Example 4, interpretations (i) and (ii) are the best we
can do. The problem could be made more meaningful economically (from the point
of view, say, of a tin can manufacturer) if more elements were brought into it. For
example:

(a)

(b)

(©)

Most cans use thicker material for the cylindrical wall than for the top and
bottom disks. If the cylindrical wall material costs $A per unit area and the
material for the top and bottom costs $B per unit area, we might prefer to
minimize the total cost for materials for a can of given volume. What is the
optimal shape if A = 2B?

Large numbers of cans are to be manufactured. The material is probably being
cut out of sheets of metal. The cylindrical walls are made by bending up
rectangles, and rectangles can be cut from the sheet with little or no waste.
There will, however, always be a proportion of material wasted when the disks
are cut out. The exact proportion will depend on how the disks are arranged;
two possible arrangements are shown in Figure 4.42. What is the optimal shape
of the can if a square packing of disks is used? a hexagonal packing? Any such
modification of the original problem will alter the optimal shape to some extent.
In “real-world” problems, many factors may have to be taken into account to
come up with a “best” strategy.

The problem makes no provision for costs of manufacturing the can other than
the cost of sheet metal. There may also be costs for joining the opposite edges
of the rectangle to make the cylinder, and for joining the top and bottom disks
to the cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above the maximum or minimum value being sought
occurred at a critical point. Our final example is one where this is not the case.




268

CHAPTER 4 Some Applications of Derivatives

A man can run twice as fast as he can swim. He is standing at point
A on the edge of a circular swimming pool 40 m in diameter, and he wishes to get
to the diametrically opposite point B as quickly as possible. He can run around the

edge to point C, then swim directly from C to B. Where should C be chosen to
minimize the total time taken to get from A to B?

Solution Itis convenient to describe the position of C in terms of the angle AOC,
where O is the centre of the pool. (See Figure 4.43.) Let @ denote this angle. Clearly
0 <8 <mx. (If6 =0, the man swims the whole way; if 8 = 7, he runs the whole
way.) The radius of the pool is 20m, soarc AC = 206. Sinceangle BOC =7 — o,
we have angle BOL = (7 — 6)/2 and chord BC = 2BL = 40 sin((zr — 8)/2).
Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/s. If 7 is
the total time he takes to get from A to B, then

t = t(#) = time running + time swimming
200 N 40 7 -6
ok TE T

(We are assuming that no time is wasted in jumping into the water at C.) The
domain of ¢ is [0, 7] and ¢ has no singular points. Since ¢ is continuous on a closed,
finite interval, it must have a minimum value, and that value must occur at a critical
point or an endpoint. For critical points,

0=t’(9)—7—?cos 5
Thus,
T —6 1 w—0 T T
cos = -, = —, 6= —.
2 2 2 3 3

This is the only critical value of # lying in the interval [0, 7]. We have

my 10w 40 w10 (7 43\ 4511
(5= 57 (5 5)~

3 k 3 k\3 + 2 k
We must also look at the endpoints 6 = 0 and 6 = 7:
40
t(0)=?, tm) = —n~ ——,

Evidently #(r7) is the least of these three times. To get from A to B as quickly as
possible, the man should run the entire distance.

Remark This problem shows how important it is to check every candidate point
to see whether it gives a maximum or minimum. Here, the critical point 8 = /3
yielded the worst possible strategy: running one-third of the way around and then
swimming the remainder would take the greatest time, not the least.



Figure 4.43

Running and

swimming to get from A to B

| Exercises 4.5
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1.

10.

11.

12.

Two positive numbers have sum 7. What is the largest
possible value for their product?

. Two positive numbers have product 8. What is the smallest

possible value for their sum?

. Two nonnegative numbers have sum 60. What are the

numbers if the product of one of them and the square of the
other is maximal?

. Two numbers have sum 16. What are the numbers if the

product of the cube of one and the fifth power of the other is
as large as possible?

. The sum of two nonnegative numbers is 10. What is the

smallest value of the sum of the cube of one number and the
square of the other?

. Two nonnegative numbers have sum n. What is the smallest

possible value for the sum of their squares?

. Among all rectangles of given area, show that the square has

the least perimeter.

. Among all rectangles of given perimeter, show that the

square has the greatest area.

. Among all isosceles triangles of given perimeter, show that

the equilateral triangle has the greatest area.
Find the largest possible area for an isosceles triangle if the
the length of each of its two equal sides is 10 m.

Find the area of the largest rectangle that can be inscribed in
a semicircle of radius R if one side of the rectangle lies
along the diameter of the semicircle.

Find the largest possible perimeter of a rectangle inscribed
in a semicircle of radius R if one side of the rectangle lies

13.

14.

15.

16.

17.

along the diameter of the semicircle. (It is interesting that
the rectangle with the largest perimeter has a different shape
than the one with the largest area, obtained in Exercise 11.)

A rectangle with sides parallel to the coordinate axes is
inscribed in the ellipse

Find the largest possible area for this rectangle.

Let ABC be a triangle right-angled at C and having area S.
Find the maximum area of a rectangle inscribed in the
triangle if (a) one corner of the rectangle lies at C, or
(b) one side of the rectangle lies along the hypotenuse, AB.

(Designing a billboard) A billboard is to be made with
100 m? of printed area and with margins of 2 m at the top
and bottom and 4 m on each side. Find the outside
dimensions of the billboard if its total area is to be a
minimum.

(Designing a box) A box is to be made from a rectangular
sheet of cardboard 70 cm by 150 cm by cutting equal
squares out of the four corners and bending up the resulting
four flaps to make the sides of the box. (The box has no
top.) What is the largest possible volume of the box?

(Using rebates to maximize profit) An automobile
manufacturer sells 2,000 cars per month, at an average profit
of $1,000 per car. Market research indicates that for each
$50 of factory rebate the manufacturer offers to buyers it can
expect to sell 200 more cars each month. How much of a
rebate should it offer to maximize its monthly profit?
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

CHAPTER 4 Some Applications of Derivatives

(Maximizing rental profit) All 80 rooms in a motel will be
rented each night if the manager charges $40 or less per
room. If he charges $(40 + x) per room, then 2x rooms will
remain vacant. If each rented room costs the manager $10
per day and each unrented room $2 per day in overhead,
how much should the manager charge per room to maximize
his daily profit?

(Minimizing travel time) You are in a dune buggy in the
desert 12 km due south of the nearest point A on a straight
east-west road. You wish to get to point B on the road

10 km east of A. If your dune buggy can average 15 km/h
travelling over the desert and 39 km/h travelling on the road,
toward what point on the road should you head in order to
minimize your travel time to B?

Repeat Exercise 19, but assume that B is only 4 km from A.

A one-metre length of stiff wire is cut into two pieces. One
piece is bent into a circle, the other piece into a square. Find
the length of the part used for the square if the sum of the
areas of the circle and the square is (a) maximum and

(b) minimum.

Find the area of the largest rectangle that can be drawn so
that each of its sides passes through a different vertex of a
rectangle having sides a and b.

What is the length of the shortest line segment having one
end on the x-axis, the other end on the y-axis, and passing
through the point (9, +/3)?

(Getting around a corner) Find the length of the longest
beam that can be carried horizontally around the corner from
a hallway of width a m to a hallway of width » m. (See
Figure 4.44; assume the beam has no width.)

IS

«— b m—>|

Figure 4.44

If the height of both hallways in Exercise 24 is ¢ m, and if
the beam need not be carried horizontally, how long can it be
and still get around the corner? Hint: you can use the result
of the previous exercise to do this one easily.

The fence in Example 3 is demolished and a new fence is
built 2 m away from the wall. How high can the fence be if a
6 m ladder must be able to extend from the wall, over the
fence, to the ground outside?

Find the shortest distance from the origin to the curve

Xyt =1

28.

29.

30.

31.

32.

33.

34.

35.

Find the shortest distance from the point (8, 1) to the curve
y=1+x%2

Find the dimensions of the largest right-circular cylinder that
can be inscribed in a sphere of radius R.

Find the dimensions of the circular cylinder of greatest
volume that can be inscribed in a cone of base radius R and
height H if the base of the cylinder lies in the base of the
cone.

A box with square base and no top has a volume of 4 m>.
Find the dimensions of the most economical box.

2ft

Figure 4.45

(Folding a pyramid) A pyramid with a square base and four
faces, each in the shape of an isosceles triangle, is made by
cutting away four triangles from a 2 ft square piece of
cardboard (as shown in Figure 4.45) and bending up the
resulting triangles to form the walls of the pyramid. What is
the largest volume the pyramid can have? Hint: the volume
of a pyramid having base area A and height # measured
perpendicular to the baseis V = %Ah.

(Getting the most light) A window has perimeter 10 m and
is in the shape of a rectangle with the top edge replaced by a
semicircle. Find the dimensions of the rectangle if the
window admits the greatest amount of light.

(Fuel tank design) A fuel tank is made of a cylindrical part
capped by hemispheres at each end. If the hemispheres are
twice as expensive per unit area as the cylindrical wall, and
if the volume of the tank is V, find the radius and height of
the cylindrical part to minimize the total cost. The surface

area of a sphere of radius r is 47 r2; its volume is %‘ rd.

(Reflection of light) Light travels in such a way that it
requires the minimum possible time to get from one point to
another. A ray of light from C reflects off a plane mirror AB
at X and then passes through D. (See Figure 4.46.) Show
that the rays CX and X D make equal angles with the



normal to AB at X. (Remark: you may wish to give a proof
based on elementary geometry without using any calculus,
or you can minimize the travel time on CX D.)

C

A X B
Figure 4.46

+36. (Snell’s Law) If light travels with speed vy in one medium
and speed v in a second medium, and if the two media are
separated by a plane interface, show that a ray of light
passing from point A in one medium to point B in the other
is bent at the interface in such a way that
sini vl

sinr vy

where i and r are the angles of incidence and refraction, as is
shown in Figure 4.47. This is known as Snell’s Law. Deduce
it from the least-time principle stated in Exercise 35.

A

4

speed v;
speed v,

Figure 4.47

37. (Cutting the stiffest beam) The stiffness of a wooden beam
of rectangular cross section is proportional to the product of
the width and the cube of the depth of the cross section.
Find the width and depth of the stiffest beam that can be cut
out of a circular log of radius R.

38. Find the equation of the straight line of maximum slope

tangent to the curve y = 1 4 2x — x3.

39. A quantity Q grows according to the differential equation

dQ 3 5

— =kQ'(L — ,

7 o(L—-0)
where k and L are positive constants. How large is Q when
it is growing most rapidly?

+ 40. Find the smallest possible volume of a right-circular cone

that can contain a sphere of radius R. (The volume of a cone
of base radius r and height £ is % nr2hl)

* 41. (The best view of a mural) How far back from a mural
should one stand to view it best if the mural is 10 ft high and
the bottom of it is 2 ft above eye level? (See Figure 4.48.)

* 42,

43,
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10 ft
2:@:::22::::::::H:g:;;;\;
x K
Figure 4.48

(Improving the enclosure of Example 1) An enclosure is
to be constructed having part of its boundary along an
existing straight wall. The other part of the boundary is to be
fenced in the shape of an arc of a circle. If 100 m of fencing
is available, what is the area of the largest possible
enclosure? Into what fraction of a circle is the fence bent?

(Designing a Dixie cup) A sector is cut out of a circular disk
of radius R, and the remaining part of the disk is bent up so
that the two edges join and a cone is formed (Figure 4.49).
What is the largest possible volume for the cone?

\ =8

Figure 4.49

* 44. (Minimize the fold) One corner of a strip of paper a cm

wide is folded up so that it lies along the opposite edge
(Figure 4.50). Find the least possible length for the fold line.

Figure 4.50
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Finding solutions (roots) of equations is an important mathematical problem to
which calculus can make significant contributions. There are only a few general
classes of equations of the form f(x) = 0 that we can solve exactly. These include
linear equations:

b
ax+b=10 = Xo=

and quadratic equations:

; G e

a_x2+bx+‘c;;0 - ;} me.
Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but
the formulas are very complicated. We usually solve these and most other equations
approximately by using numerical methods, often with the aid of a calculator or
computer.

In Section 1.4 we discussed the Bisection Method for approximating a root
of an equation f(x) = 0. That method uses the Intermediate-Value Theorem and
depends only on the continuity of f and our ability to find an interval [x1, x,] that
must contain the root because f(x;) and f(x,) have opposite signs. The method
is rather slow; it requires between three and four iterations to gain one significant
figure of precision in the root being approximated.

If we know that f is more than just continuous, we can devise better (i.c.,
faster) methods for finding roots of f(x) = 0. We study two such methods in this
section:

(a) Newton’s Method, which requires that f be differentiable and which is usually
very efficient, and

(b) Fixed-Point Iteration, which is concerned with equations of a different form:
F&x) =x.

Like the Bisection Method, both of these methods require that we have at the

outset a rough idea of where a root can be found, and they generate sequences of

approximations that get closer and closer to the root.

Newton's Method

We want to find a reot of the equation f(x) = 0, that is, a number r such that
S(r) = 0. Such a number is also called a zero of the function f. If f is
differentiable near the root, then tangent lines can be used to produce a sequence
of approximations to the root that approaches the root quite quickly. The idea is as
follows. (See Figure 4.51.) Make an initial guess at the root, say x = xy. Draw the
tangent line to y = f(x) at (xo, f(x0)), and find x, the x-intercept of this tangent
line. Under certain circumstances x; will be closer to the root than xg was. The
process can be repeated over and over to get numbers x2, X3, ..., getting closer
and closer to the root r. The number x,.; is the x-intercept of the tangent line to

y = f(x)at (xn, f(xn)).



Figure 4.51
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The tangent line to y = f(x) at x = x¢ has equation

y = fxo) + f'(x0)(x — xp).

Since the point (x, 0) lies on this line, we have 0 = f(xg) + f'(xo)(x1 — Xo).
Hence

Similar formulas produce x; from x;, then x3 from x;, and so on. The formula
producing x4 from x, is

i fxn)
f’(xn)

Xntl = Xp

and is known as the Newton’s Method formula. We usually use a calculator or
computer to calculate the successive approximations xi, x», X3, ..., and observe
whether these numbers appear to converge to a limit. If lim,_, o, x, = r exists, and
if f/f' is continuous near r, then r must be a root of f because

r = Tim xpy; = lim x, — lim 20, _ J©O
n—00 n—00 n—oo f'(xy) f'(r)
from which it follows that f (r) = 0. This method is known as Newton’s Method
or The Newton-Raphson Method.

Use Newton’s Method to find the only real root of the equation

x3 —x — 1 = 0 correct to 10 decimal places.

Solution Wehave f(x) = x> —x—1and f'(x) = 3x%>—1. Since f is continuous
and since f(1) = —1 and f(2) = 5, the equation has a root in the interval [1, 2].
Let us make the initial guess xo = 1.5. The Newton’s Method formula here is
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Figure 4.52

Solving x3 = cos x

Xp+1

xg—xn—1_2x3+1

=xﬂ_

-1 -1
so that, for example, the approximation x; is given by
21523 + 1
= ———— ~1.347826....
=352 -1
Using a scientific calculator, we calculated the values in Table 1:
Table 1.
n Xn f(xn)
0 1.5 0.875 000 000 000 - - -
1 1.347 826 086 96 - - - 0.100682 173091 - - -
2 1.325200 39895 - .. 0.002 058 361917 - - -
3 1.324718 17400 - - - 0.000 000 924 378 - - -
4 1.324 717 957 24 - . - 0.000 000 000 000 - - -
5 1.32471795724 - -

Evidently r = 1.3247179572 correctly rounded to 10 decimal places.
|

Observe the behaviour of the numbers x,. By the third iteration, x3, we have
apparently achieved a precision of 6 decimal places, and by x4 over 10 decimal
places. Itis characteristic of Newton’s Method that when you begin to getclose to the
root the convergence can be very rapid. Compare these results with those obtained
for the same equation by the Bisection Method in Example 12 of Section 1.4; there
we achieved only 3 decimal place precision after 11 iterations.

IEINTIEEA  Solve the equation x> = cosx to 11 decimal places.

Solution We are looking for the x-coordinate r of the intersection of the curves
y = x3 and y = cos x. From Figure 4.52 it appears that the curves intersect slightly
to the left of x = 1. Let us start with the guess xo = 0.8. If f(x) = x3 — cosx,
then f'(x) = 3x% + sinx. The Newton’s Method formuia for this function is

x3 —COSXp 2x3 + x, sin x,, + cos x,

Xp+1 = Xp — - = N
3x2 4 sinx, 3x2 + sinx,
n n

The approximations xi, x», . .. are given in Table 2:

Table 2.

n Xn f(xn)

0 038 —0.184706 709 347 . - .
1 0.870034 801 135-.. 0.013782078 762 - - -
2 0.865494102425--- 0.000 006 038 051 - - -
3 0.865474033493--. 0.000 000001 176 - - -
4 0.865474033102-.. 0.000 000 000 000 - -
5 0.865474033102---

The two curves intersect at x = 0.86547403310, rounded to 11 decimal places. -

Remark Example 2 shows how useful a sketch can be for determining an initial
guess xo. Even a rough sketch of the graph of y = f(x) can show you how many

ool I AT 0 O 0 PO Whet Ty arc U



Here the Newton’s
Method iterations do not converge to

Figure 4.53

the root
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closer the initial approximation is to the actual root, the smaller the number of
iterations needed to achieve the desired precision. Similarly, for an equation of
the form g(x) = hA(x), making a sketch of the graphs of g and % (on the same set
of axes) can suggest starting approximations for any intersection points. In either
case, you can then apply Newton’s Method to improve the approximations.

Remark When using Newton’s Method to solve an equation that is of the form
g(x) = h(x) (such as the one in Example 2), we must rewrite the equation in
the form f(x) = 0, and apply Newton’s Method to f. Usually we just use
f(x) = g(x) — h(x), although f(x) = (g(x)/h(x)) — 1is also a possibility.

Remark If your calculator is programmable, you should learn how to program
the Newton’s Method formula for a given equation so that generating new iterations

requires pressing only a

few buttons. If your calculator has graphing capabilities,

you can use them to locate a good initial guess.

Newton’s Method

Joes not always work as well as it does in the preceding

examples. If the first derivative f' is very small near the root, or if the second

derivative f” is very larg
from quite close to the r
(Also see Exercises 15 4

The following theot

ye near the root, a single iteration of the formula can take us
hot to quite far away. Figure 4.53 illustrates this possibility.
nd 16 at the end of this section.)

rem gives sufficient conditions for the Newton approxima-

tions to converge to a root r of the equation f(x) = O if the initial guess xg is

sufficiently close to that

root.

Error bounds for Newton’s Method

Suppose that f, f', and

f” are continuous on an interval / containing x,, x, |, and

aroot x = r of f(x) = 0. Suppose also that there exist constants K and L > 0
such that for all x in  we have

@) 1f"(x)| < K and

@) |f'(x)] > L.
Then

K

@ |xpqp1 —r] < Ez|xn+1 — x,|” and
K

(®) 1o =1l = 5l —r?

Conditions (i) and (ii) a
size and does not chang
converges quickly to r 0|

The proof of Theor
give it since the theorem

ssert that near r the slope of y = f(x) is not too small in
e too rapidly. If K/(2L) < 1, the theorem shows that x,
nce n becomes large enough that |x,, — 7| < 1.

em 7 depends on the Mean-Value Theorem. We will not
s of little practical use. In practice, we calculate successive

approximations using Newton’s formula and observe whether they seem to converge
to a limit. If they do, and if the values of f at these approximations approach 0, we

can be confident that we

Fixed-Point Iterat

have located a root.

on

A number r satisfying the equation f(r) = r is called a fixed point of the function

f because f leaves that

number unchanged. For certain kinds of functions, fixed

points can be found by starting with an initial “guess” x¢ and calculating successive
approximations x; = f(xo), x2 = f(x1), . ... In general,
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Xnt1 = Fxn), forn=0,1,2,....

Let us begin by investigating a simple example:

Find a root of the equation cos x = 3x.

. . . . I .
Solution This equation is of the form f(x) = x, where f(x) = s cosx. Since
cos x is close to 1 for x near 0, we see that %cosx will be close to % when x = %
This suggests that a reasonable first guess at the fixed point is xo = % = 0.2. The

X C X0), X COS{(X1), X PRI

are presented in Table 3. The root is 0.19616428 to eight decimal places.
]

Table 3.

n Xn

0 0.2

1 0.196 013 32
2 0.196 170 16
3 0.196 164 05
4 0.196 164 29
5 0.196 164 28
6 0.196 164 28

Figure 4.54 Iterations of

Xn4+1 = f(xp) “spiral” toward the fixed

point

Why did the method used in Example 3 work? Will it work for any function f? In
order to answer these questions, examine the polygonal line in Figure 4.54. Starting
at xo it goes vertically to the curve y = f(x), the height there being x;. Then it
goes horizontally to the line y = x, meeting that line at a point whose x-coordinate
must therefore also be x;. Then the process repeats; the line goes vertically to the
curve y = f(x) and horizontally to y = x, arriving at x = x;. The line continues in
this way, “spiralling” closer and closer to the intersection of y = f(x) and y = x.
Each value of x, is closer to the fixed point » than the previous value.

Now consider the function f whose graph appears in Figure 4.55(a). If we try
the same method there, starting with x,, the polygonal line spirals outward, away
from the root, and the resulting values x, will not “converge” to the root as they did
in

y=fx

X1 X3 X2 Xp x

N - — - — — — - ——



Figure 4.55

(a) A function f for which the
iterations x,4+1 = f(x,) do not

converge

(b) “Staircase” convergence to the

fixed point
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y=fx)

X1 X3 X

(a) (b)

Example 3. To see why the method works for the function in Figure 4.54 but not for
the function in Figure 4.55(a), observe the slopes of the two graphs y = f(x), near
the fixed point r. Both slopes are negative, but in Figure 4.54 the absolute value of
the slope is less than 1 while the absolute value of the slope of f in Figure 4.55(a)
is greater than 1. Close consideration of the graphs should convince you that it is
this fact that caused the points x, to get closer to r in Figure 4.54 and farther from
r in Figure 4.55(a).

A third example, Figure 4.55(b), shows that the method can be expected to work
for functions whose graphs have positive slope near the fixed point r, provided that
the slope is less than 1. In this case the polygonal line forms a “staircase” rather
than a “spiral” and the successive approximations x, increase toward the root if
xo < r and decrease toward it if xg > r.

The following theorem guarantees that the method of fixed-point iteration will
work for a particular class of functions.

A fixed-point theorem

Suppose that f is defined on an interval I = [a, b] and satisfies the following two
conditions:

(i) f(x) belongsto I whenever x belongs to I and
(ii) there exists a constant K with 0 < K < 1 such that for every u and v in [,

|f) — f) < Klu—v].

Then f has a fixed point r in I, thatis, f(r) = r, and starting with any number xg
in 7, the iterates

x1 = f(x0), x2= f(x1),

convergetor.

You are invited to prove this theorem by a method outlined in Exercises 24 and 25
at the end of this section.
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“Solve” Routines
Many of the more advanced models of scientific calculators and most compgter-
ines for solving general equations

based mathematics software have built-in routr C | . ‘
numerically or, in a few cases, syrnbolically. These. Solve” routines a§surrklle
continuity of the left and right sides of the given equations and of.te.n.requlrt? the
user to specify an interval in which to search for the root or an initial guess at
the value of the root, or both. Typically the calculator or computer sqftware also
has graphing capabilities, and you are expected to use them to get an .1dea (?f h;)}:v
many roots the equation has and roughly where th.ey are located before 1nV10km% he
solving routines. It may also be possible to specify a tqlerance on the value 0 the
left side — the right side of the equation. For instance, if we want a solution tlo the
equation f(x) = 0, it may be more important to us to be sure that an app.r07.(1mate
solution % satisfies | f(£)| < 0.0001 than it is to be sure that X is within any
particular distance of the actual root.

The methods used by the solve routines vary from one calculator or software
package to another and are frequently very sophisticated, making use of numerical
differentiation and other techniques to find roots very quickly, even when the search
interval is large.

If you have an advanced scientific calculator and/or computer software with
similar capabilities, it is well worth your while to read the manuals that describe
how to make effective use of your hardware/software for solving equations. Appli-
cations of mathematics to solving “real-world” problems frequently require finding
approximate solutions of equations that are intractable by exact methods.

J Exercises 4.6

In Exercises 1-10, use Newton’s Method to solve the given 12. in_x_ 13. Lo8Y
equations to the precision permitted by your calculator. L4 x? 42
1. Find V2 by solving 2_2=o. 14. Let f(x) = x2. The equation f(x) = 0 clearly has solution
x = 0. Find the Newton’s Method iterations x{, x2, and x
. ' ) ' : > X2, 3
2. Find +/3 by solving x — 3 = 0. starting with xg = 1.
3. Find the root of x> + 2x — 1 = 0 between 0 and 1. (a) Whatis x,,?
4. Find the root of x> + 2x2 — 2 = 0 between 0 and 1. (b) How many iterations are needed to find the root with
) error less th: .0 i ?
5. Find the two roots of x* — 8x2 — x + 16 = 0in [1, 3]. e .an ) . 001 in absolute value?
. , , (c) How many iterations are needed to get an
6. Find the three roots of x3 +3x2 — 1 =0in[-3, 1]. approximation x, for which | f(x,)| < 0.0001?
7. Solve sinx = 1 — x. Make a sketch to help you make a first (d) Why do the Newton’s Method iterations converge more
guess Xg. slowly here than in the examples done in this section?
8. Solve cosx = x2. How many roots are there? 15. (Oscillation) Apply Newton’s Method to
9. How many roots does the equation tan x = x have? Find the
one between /2 and 37 /2. VX, x=z0,
flx)= =
V=x, x <0,

1
. Solve T /X by rewriting it in the form
(I +x2)x—1=0. starting with the initial guess xo = a > 0. Calculate x; and
x2. What happens? (Make a sketch.) If you ever observed
this behaviour when you were using Newton’s Method to
find a root of an equation, what would you do next?

. If your calculator has a built-in Solve routine, or if you use
computer software with such a routine, use it to solve the

equations in the previous 10 exercises.
16. (Divergent oscillations) Apply Newton’s Method to

fx) = x173 with xp = 1. Calculate x|, x3, x3, and x4.
What is happening? Find a formula for x,,.

Find the maximum and minimum values of the functions in
Exercises 12—13.
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17. (Convergent oscillations) Apply Newton’s Method to find Show that r is a root of f(x) = 0 if and only if r is a fixed
flx)= x2/3 with xg = 1. Calculate x1, x2, x3, and x4. point of N(x). What are the successive approximations
What is happening? Find a formula for x,,. Xn+1 = N(x,) starting from x¢ in this case?

Use fixed-point iteration to solve the equations in Exercises Exercises 24-25 constitute a proof of Theorem 8.

18-22. Obtain 5 decimal place precision. «24. Condition (ii) of Theorem 8 implies that f is continuous on

I = [a, b]. Use condition (i) to show that f has a fixed point
r on I. Hint: apply the Intermediate-Value Theorem to

1 g(x) = f(x) —xonla,b].

=X * 25, Use condition (ii) of Theorem 8 and mathematical induction
to show that

18. 1+ % sinx = x 19. cos;—c =x

L+ =y 3 21.

2+ x?
. Solve x3 + 10x — 10 = 0 by rewriting it in the form
3

1 _
1- [pX =X .
23. Let £(x) be a differentiable function whose derivative f'(x) [, —rl < K*|xo —r|.
is never zero. Let

Since 0 < K < 1, we know that K" — (0 as n — oo. This
shows that limy,,_, o0 X, = 7.

NGy = x — fx)

Flxe’

Many problems in applied mathematics are too difficult to be solved exactly—all
we can hope to do is find approximate solutions that are correct to within some
acceptably small tolerance. In this section we will examine how knowledge of the
values of a function and its first derivative at a point can help us find approximate
values for the function at nearby points.

The tangent to the graph y = f(x) at x = a describes the behaviour of that
graph near the point P = (a, f(a)) better than any other straight line through P,
because it goes through P in the same direction as the curve y = f(x). (See
Figure 4.56.) We exploit this fact by using the height to the tangent line to calculate
approximate values of f(x) for values of x near a. The tangent line has equation
y = f(a) + f'(a)(x — a). We call the right side of this equation the linearization
of f aboutx = a.

The linearization, or linear approximation, of the function f aboutx = a
is the function L(x) defined by

Lx) = f(@)+ f(@)(x —a).

v m Find the linearizations for (a) f(x) = +/1 + x about x = 0 and
(b) g(x) = 1/x about x = 1/2.

Solution

F) (a) Since f'(x) = 1/(24/1+x), we have f(0) = 1 and f'(0) = 1/2. The
linearization of f(x) aboutx = 0is

P =(a, f(a))

1 X
L =14+-(x-0=14 —.
(x) +2(x ) +2

Figure 4.56 The linearization of
f(x)aboutx =a
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(b) Since g’(x) = —1/x2, we have g(1/2) = 2 and g'(1/2) = —4. The lineariza-
tion of g(x) aboutx = 1/2is

L(x)=2—4<x—%)=4—4x.

Approximating Values of Functions

We have already made use of linearization in Section 2.7, where it was disguised as

the formula
dy
Ay ~ — Ax
Y dx

and used to approximate a small change Ay = f(a + Ax) — f(a) in the values of
function f corresponding to the small change in the argument of the function from
a to a + Ax. This is just the linear approximation

fla+Ax)~ f(a)+ f(@Ax.
A ball of ice melts so that its radius decreases from 5 cm to 4.92 cm.
By approximately how much does the volume of the ball decrease?
4
Solution The volume V of a ball of radius r is given by V = gnr3, S0

4
AV = 37 GBrA) Ar = 4xr? Ar.

For r = 5 and Ar = —0.08, we have
AV = 47(5%)(—0.08) = —87 ~ —25.13.

The volume of the ball decreases by about 25 cm?.

The following example illustrates the use of linearization to find an approximate
value of a function near a point where the values of the function and its derivative
are known.

Use the linearization for ./x about x = 25 to find an approximate
value for +/26.

Solution If f(x) = /x,then f'(x) = 1/(2./x). Since we know that f(25) =5
and f'(25) = 1/10, the linearization of f(x) about x = 25 is

1
L(x) = —(x — .
x)y=5+ 10(x 25)
Putting x = 26, we get

V26 = f(26) ~ L(26) = 5 + 11—0(26 —25)=5.1.
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If we use the square root function on a calculator we can obtain the “true value”
of +/26 (actually, just another approximation, although presumably a rather better
one): V26 = 5.0990195 .. ., but if we have such a calculator we don’t need the
approximation in the first place. Approximations are useful when there is no easy
way to obtain the true value. However, if we don’t know the true value, we would
at least like to have some way of determining how good the approximation must be;
that is, we want an estimate for the error. After all, any number is an approximation
to +/26, but the error may be unacceptably large. For instance, the size of the error
in the approximation +/26 &~ 1,000,000 is greater than 999,994

Error Analysis
In any approximation, the error is defined by

error = true value — approximate value.

If the linearization of f(x) about x = a is used to approximate f (x) near a, that is,
f&x) = L(x)= f(a + f'@@)(x —a),

then the error E (x) in this approximation is
Ex)=f(x) - L(x) = f(x) — f(a) - f@)(x — a).

It is the vertical distance at x between the graph of f and the tangent line to that
graph at x = a, as shown in Figure 4.57. Observe that if x is “near” a, then E(x)
is small compared to the horizontal distance between x and a.

The following theorem and its corollaries gives us a way to estimate this error
if we know bounds for the second derivative of f.

An error formula for linearization

If f”(r) exists for all ¢ in an interval containing a and x, then there exists some
point X between a and x such that the error E(x) = f(x) — L(x) in the linear
approximation f(x) & L(x) = f(a) + f'(a)(x — a) satisfies

E(x)=

ff/(X) _ 2
———~——2 (x=a).

PROOF Let us assume that x > a. (The proof for x < q is similar.) Since
E@) = f@t) - f(a) = fla)t — a),

we have E'(t) = f'(t) — f'(a). We apply the Generalized Mean-Value Theorem
(Theorem 16 of Section 2.6) to the two functions E(¢) and (t —a)? on [a, x]. Noting
that E(a) = 0, we obtain a number ¢ in (a, x) such that
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Figure 4.57 f(x)and its
linearization L(x) about x = a. E(x) is
the error in the approximation

fx) ~ L(x)

Ex) = E@-E@ _ E@© _fOo-f@ _1

(x—a)? (x—aR—(@—a)? 2c—a)  20c—-a) 2

for some X in (a, ¢); the latter expression is a consequence of applying the Mean-
Value Theorem again, this time to f'(¢) on [a, c]. Thus,

f// (X)
2

0

E(x) = (x — a)?

as claimed.

The following three corollaries are immediate consequences of Theorem 9.

Corollary A. If f”(z) has constant sign (i.e., is always positive or always negative)
between a and x, then the error E (x) in the linear approximation f(x) &~ L(x) has
that same sign. If f”(¢#) > O between @ and x, then f(x) > L(x); if f'(t) <0
between a and x, then f(x) < L(x).

Corollary B.If | f”(z)| < K forallt between a and x, then |E(x)| < (K /2)(x —a)?.

Corollary C. If f7(¢) satisfies M < f”(t) < N for all ¢ between a and x (where
M and N are constants), then

L(x) + %(x —a)? < f(x) < L(x)+%(x —a)’.

If M and N have the same sign, a better approximation to f(x) is given by the
midpoint of this interval containing f(x):

Fo~ L+ 2N e

For this approximation the error is less than half the length of the interval:

|Error| < x— a)z.
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3 ETGTIEN M Determine the sign and estimate the size of the error in the approx-
imation +/26 &~ 5.1 obtained in Example 3. Use these to give an interval that you
can be sure contains +/26.

Solution For f(t) = t'/2, we have
f/(t) — _1_t71/2 and f//(t) — _1 t73/2
2 4 )

For 25 < t < 26, we have f"(t) < 0, so /26 = f(26) < L(26) = 5.1. Also,
132 > 2532 = 125,50 | f"(t)| < (1/4)(1/125) = 1/500 and

11 1
EQ — x — X (26 —25)2 = —— = 0.001.
[E@O) < 5 x 550 * )= 1000

Therefore, f(26) > L(26)—0.001 = 5.099, and +/26 is in the interval ]5.099, 5.1[.
___

Remark We can use Corollary C of Theorem 9 and the fact that ~/26 < 5.1 to
find a better (i.e., smaller) interval containing +/26 as follows. If 25 < ¢ < 26, then
125 = 25%? < 3% < 26%? < 5.13. Thus

1 1
M=- "ty < ————==N
ax1s T O <"
M+N 1 1 1
V26 ~ L(26 —51—- ~ 5.0990288
(26) + 4<4x125+4x5.13)

iBrror] < XM _ 1 L, 1 0.0000288
ITOT| < = — _ _— ~ (. .
1 16\ 5.13 ' 125

Thus /26 lies in the interval ]5.09900, 5.09906].

Use a suitable linearization to find an approximate value for
cos(36°) = cos(x/5). Is the true value greater than or less than your approxi-
mation? Estimate the size of the error and give an interval that you can be sure
contains cos(36°).

Solution Let f(t) = cost, so that f'(t) = —sinz and f”(t) = —cost. The
value of a nearest to 36° for which we know cosa is @ = 30° = /6, so we use the
linearization at that point:

L@ = cos T —sin ( _g)zg_;(x_g).

Since (7/5) — (7 /6) = 7/30, our approximation is

c0s(36°) = cos% ~L (%) = ? - % (;’—O) ~ 0.81367.

If (m/6) < t < (7/5),then f”(t) < Oand |f"(t)| < cos(m/6) = v/3/2. Therefore,
c0s8(36°) < 0.81367 and
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V3

7T \2
o < X2 (X 00475.
EG6)] < (30) <0.00

Thus, 0.81367 — 0.00475 < cos(36°) < 0.81367, so cos(36°) lies in the interval

.81367[.
10.80892, 0.81367( o

Remark The error in the linearization of f(x) about x = a can be interpreted in
terms of differentials (see Section 2.2) as follows. If x —a = Ax = dx, then the
change in f(x) as we pass fromx = atox =a +Ax is fla+ Ax) — f(a) = Ay,
and the corresponding change in the linearization L(x) is f'(a)(x —a) = f(@) dx,
which is just the value at x = a of the differential dy = f(x) dx. Thus

E(x) = Ay —dy.

The error E(x) is small compared with Ax as Ax approaches 0, as seen in
Figure 4.57. In fact,

Ay dy

Ax  dx

If | £"(£)| < K (constant) near ¢ = a, a stronger assertion can be made:

_dy dy

lim T dx  dx

Ay —dy
(Ax)?

_ E(x)

K
= &0 <

)

K 2
$0 |Ay —dy| < E(Ax) .

|Exercises 4.7

where g & 32 ft/s? is the acceleration at the surface of the
earth, and R =~ 3960 miles is the radius of the earth. By
about what percentage will a decrease if & increases from 0
to 10 miles?

In Exercises 1-10, find the linearization of the given function at
the given point.

1 x?atx =3 2. x 3atx =2

3 Va-xatx=0 4 V3t+atatx =1 In Exercises 15-22, use a suitable linearization to approximate

5.1/ + ratx=2 6. 1//xatx =4 the indicated value. Determine the sign of the error and estimate

7. sinxatx =7 8. cos(2x) at x = 7/3 its size. Use this information to specify an interval you can be
sure contains the value.

9. sin’x atx =m/6 10. tanx at x = /4

. By approximately how much does the area of a square
increase if its side length increases from 10 cm to 10.4 cm?

. By about how much must the edge length of a cube decrease
from 20 cm to reduce the volume of the cube by 12 cm3?

13. A spacecraft orbits the earth at a distance of 4,100 miles
from the centre of the earth. By about how much will the
circumference of its orbit decrease if the radius decreases by

10 miles?

14. (Acceleration of gravity) The acceleration g of gravity at an

altitude of ~ miles above the surface of the earth is given by

R

2
(i)’

15. /50 16. /47
i
17. V85 18. ——
2.003
19. cos46° 20. sin%
21. sin(3.14) 22. sin33°

Use Corollary C of Theorem 9 in the manner suggested in the
remark following Example 4 to find better intervals and better
approximations to the values in Exercises 23-26.

23. /50 as first approximated in Exercise 15.
24. /47 as first approximated in Exercise 16.



25.
26.
27.

cos 36° as first approximated in Example 5.
sin33° as first approximated in Exercise 22.
If f(2) =4, f'(2) =—1,and 0 < f”(x) < 1/x for all

x > 0, find the smallest interval you can that contains f(3).

30.
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x > 0, find the best approximation you can for g(1.8). How
large can the error be?

Show that the linearization of sin@ about 8 = 0is L(0) = 6.
What is the percentage error in the approximation sin 8 ~ 0

if |0 is less than 17°7?

31. A spherical balloon is inflated so that its radius increases
from 20.00 cm to 20.20 cm in 1 min. By approximately how
much has its volume increased in that minute?

28. If £(2) =4, f/(2) =

1 " 1
—1l,and — < f"(x) < — for
2x

2 < x < 3, find the best approximation you can for f(3).
29. Ifg(2)=1,g'(2) =2,and |g"(x)] < 1 4+ (x — 2)2 for all

The linearization of a function f(x) about x = a, namely the linear function

Pi(x) = L(x) = f(a) + f'(a)(x — a),

describes the behaviour of f(x) near x = a better than any other polynomial of

degree 1 because both P; and f have the same value and the same derivative at

x=a:
Pi@) = f(@ and P = f'(a).

(We are now using the symbol P; instead of L to stress the fact that the linearization

is a polynomial of degree 1.)

We can obtain even better approximationsto f(x) by using quadratic or higher-
degree polynomials and matching more derivatives at x = a. For example, if f is
twice differentiable near x = a, then the quadratic polynomial

Py(x) = f(@) #+ F/@) —a) + %‘2 x —a)?

satisfies P>(a) = f(a), Py(a) = f'(a), and P)'(a) = f"(a) and describes the
behaviour of f(x) near x = a better than any other polynomial of degree 2.

In general, if £ (x) exists in an open interval containing x = a, then the

polynomial
rw =@+ L2604+ L6 o
f;, D —ay o4 Do gy
matches f and its first n derivatives at x = a,
Pu(@) = f(@), P@=f, ..., PP = "),

and so describes f(x) near x = a better than any other polynomial of degree n. P,
is called the Taylor polynomial of degree »n for f(x) about x = a. (If a = 0,
the Taylor polynomials are sometimes called Maclaurin polynomials.) The Taylor
polynomial of degree 0 is just the constant function Py(x) = f(a).
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6 y = P B(X) ',’

51 y= er ,I',"{

44 4

3 ")’=P2 &

AT «y'= Pi(x)
_____________ : y = Po(x)
Figure 4.58 Taylor polynomials for

e* about x =0
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m Find the following Taylor polynomials:

(a) Py(x)for f(x) = /x aboutx = 1.

(b) P3(x) for g(x) = sinx about x = 0.

(¢) P,(x) for h(x) = e* aboutx = a.

Solution (a) f'(x) = (1/2)x~'72, f"(x) = —(1/4)x~>/2. Thus,

"
2!

:1+%(x—1)—%(x—1)2.

Px)=f)+ fDHx—-D+ —1)?

(x

(b) g'(x) = cosx, g’'(x) = —sinx, g”"(x) = —cosx. Thus,

g'© ,, 8O
Py(x) = g(0) + g'(Ox + =5 =2 + ==
1
=X — 6x3.

(c) Evidently 2™ (x) = e* for every positive integer n, so

a e et 2 € n
Px)=e'"+—(x—a)+ —x—-—a)+-- -+ —=x—a)'.
1! 21 n!

m Use Taylor polynomials for ¢* about x = 0 to find successive
approximations to e = ¢!. Stop when you think you have 3 decimal places correct.
Solution Since every derivative of ¢* is ¢* and so is 1 at x = 0, the Taylor
polynomials for e* about x = 0 are

2 x3 n

P _1 X x
w(x) = +i—!+i+§+---+n—!_
Thus, we have for x = 1, adding one more term at each step:
Po(1) =1
1
P(1)=1+ = 2
P (1) = P(1) + T Pi(1) + 5= 2.5

1 1
Py(1) = Po(1) + 7 = Pa(1) + £ = 2.6666
1 1
Py(1) = Ps(1) + — = P3(1) + — = 2.
«(1) = Ps(1) + 5 = Py(1) + 7 = 2.7083

1 1
Ps(1) = P4(1 — = Py(1 — =2.7166
5(1) 4()+5! 4()+120 2.716

1 1
Ps(1) = Ps(1 — = Ps(1 — =271
(1) s ( )+6! s ( )+720 80
1 1
P:(1) = Ps(1 — = Pg(1 - =271%82
7(1) 6()+7! 6()+5040 18
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It appears that ¢ &~ 2.718 to 3 decimal places. We will verify in Example 4 below
that P7(1) does indeed give this much precision. The graphs of ¢* and its first four

Taylor polynomials are shown in Figure 4.58.
|

Taylor’s Formula

The following theorem provides a formula for the error in a Taylor approximation
f(x) &~ P,(x) similar to that provided for linear approximation by Theorem 9.

Taylor’s Theorem

If the (n + 1)st-order derivative, f"*V(t), exists for all ¢ in an interval containing
a and x, and if P,(x) is the Taylor polynomial of degree n for f(x) about x = a,
that is,

Py(x) = f(a) + fl(@)(x —a) + (x —a)”,

” (n)
F@ e Y@
2! n!

then the formula f(x) = P,(x) + E,(x) (called Taylor’s formula) holds where

the error term E, (x) (also called the Lagrange remainder) is given by

f(n+l)(X)

(n e 1)‘ (x = a)n+1’

En(x) =

where X is some number between ¢ and x.

PROOF E,(x) = f(x) — P,(x) is the error in the approximation f(x) = P,(x).
Observe that the case n = 0 of this theorem, namely,

"X
S x) = Po(x) + Eo(x) = fa) + *(X —a),

is just the Mean-Value Theorem

fx) — f(a)
a

X —

= f(X) forsome X between a and x.

Also note that the case n = 1 is just the error formula for linearization given in
Theorem 9.

We will complete the proof for higher » using mathematical induction. Sup-
pose, therefore, that we have proved the case n = k — 1, where k > 2 is an integer.
Thus, we are assuming that if f is any function whose kth derivative exists on an
interval containing a and x, then

f(k)(X)

Er1(x)= 0

(x —a),

where X is some number between a and x. Let us consider the next higher case:

n = k. As in the proof of Theorem 9, we assume x > a (the case x < a is

similar) and apply the Generalized Mean-Value Theorem to the functions Ey(¢) and

(t —a)**! on [a, x]. Since Ei(a) = 0, we obtain a number c in Ja, x[ such’that
Ei(x) Ex(x) — Ex(a) E;(c)

G- x—a}t —@—at  (k+ Dc—ak
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Now
EWﬂ=%(ﬂ0—ﬂw—fﬁdU—m-f;”a—mz
- f(’z!(a) (t —a)k> _
— 1O - F@  Fa@e—a o T e,

This last expression is just E;_(c) for the function f'(z) instead of f(¢). By the
induction assumption it is equal to

7y (k) (k+1)
IO (e S

o o c—ah,

for some X between a and c. Therefore,

f(k+1)(X)

Grn C T ).

Er(x) =
We have shown that the case n = k of Taylor’s Theorem is true if the case n = k — |
is true, and the inductive proof is complete.

&

m Find the degree 2 Taylor approximation to ~/26 based on values of

f(x) = /x and its derivatives at 25. Estimate the size of the error, and specify an
interval that you can be sure contains +/26.

Solution The first three derivatives of f are:
1 1
flx) = zx_l/z, fx) = —Zx‘m, and f"(x)=}x72

The required approximation is

¢T=f@®z&@®=f@$+ﬁeamy4®+ffﬁawﬂﬁz
=5+ ! ! = 5.09900.

10 2x4x125
For 25 < t < 26, we have

3.3
8 x 3125 = 25000

" 3.1 _
O = 3 5555 =

Thus, the error in the approximation satisfies

3 1
E»(26)] < ————(26 — 25)°> = ——— = 0.00002.
1E220)1 = S50 % 6 )= 36000 0

Therefore, 4/26 lies in the interval ]5.09898, 5.09902].
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3'EVL WM Use Taylor’s Theorem to confirm that the Taylor polynomial P;(x)
for e* about x = 0 is sufficient to give e correct to 3 decimal places as claimed in
Example 2.

Solution The error in the approximation ¢* = P, (x) satisfies

X

Eq{x) = e—x”“, for some X between 0 and x.
(n+ 1)!

Ifx=1,then0 < X < 1,50¢X <e <3and0 < E,(1) < 3/(n+ 1)!. To
get an approximation for e = e! correct to 3 decimal places, we need to have
E, (1) < 0.0005. Since 3/(8!) = 3/40320 ~ 0.000074, but 3/(7!) = 3/5040 =~
0.00059, we can be sure n = 7 will do, but we cannot be sure n = 6 will do:

11 1
ex 14142 TRETRTRE

1 1
3N '+—"’27183'\“2718

V+6

to 3 decimal places.

Big-O Notation

We write f(x) = O(u(x)) as x — a (read this “f (x) is big-Oh of u(x) as x
approaches a”) provided that

f )] < Klu(x)]

holds for some constant K on some open interval containing x = a.

Similarly, f(x) = g(x) + O(u(x)) asx — aif f(x) —gx) = O(M(X)) as
x — a, thatis, if

| f(x) —g(x)| < K|u(x)] neara.

For example, sinx = O(x) as x — 0 because | sin x| < |x| near 0.

The following properties of big-O notation follow from the definition:

@ If f(x) = 0(u(x)) as x — a, then Cf(x) = O(u(x)) as x — a for any
constant C.

Gi) If f(x) = O(u(x)) as x — a and g(x) = O(u(x)) as x — a, then
f(x) £g(x) = O(u(x)) asx — a.

(iii) If f(x) = O((x — a)*u(x)) as x — a, then f(x)/(x — a)* = O(u(x)) as
x — a for any constant k.

Taylor’s Theorem says that if £+ (¢) exists on an interval containing a and
x, and if P,(x) is the Taylor polynomial for f(x) about x = a, then, as x — a,

f(x) = Py(x) + O((x — a)"*).

This is a statement about how closely the Taylor polynomial P,(x) approximates
f(x) near x = a. The following theorem shows that only the Taylor polynomial
P, (x) approximates f (x) this closely.




290 CHAPTER4 Some Applications of Derivatives

1)

If f(x) = Qn(x) + O((x —a)"*'} as x — a, where Q, is a polynomial of degree
at most n, then Q,,(x) = P, (x), thatis, Q, is the Taylor polynomial for f(x) about
x =a.

PROOF Let P, be the Taylor polynomial, then properties (i) and (ii) of big-O
imply that R, (x) = Qn(x) — P (x) = O((x — a)"*!) as x — a. We want to show
that R, (x) is identically zero so that Q,(x) = P,(x) for all x. By replacing x with
a + (x — a) and expanding powers, we can write R,(x) in the form

Rix)=co+ci(x —a) +erxlx —a)* + - +eulx —a)".

If R,(x) is not identically zero, then there is a smallest coefficient ¢; (k < n), such
that ¢y #0,but¢c; =0for0 < j <k -1 Thus,

Ry(x) = (¢ —a)*(ci + cra1(x — @) + -+ calx — a)" ™).

Therefore, lim,_,, R, (x)/(x — a)* = ¢ # 0. However, by property (iii) above
we have R,(x)/(x — a)* = O((x —a)""'™*). Since n +1 — k > 0, this says
R,(x)/(x — a)* — 0 as x — a. This contradiction shows that R,(x) must be
identically zero. Therefore Q,(x) = P,(x) for all x.

o

Here is a list of Taylor formulas about x = 0 for some elementary functions, with
error terms expressed using big-O notation. It is worthwhile remembering these.

‘%;=1+x+x2+x3+»-.+xﬂ+o(xn+1)
xz x3 ’l—lxn n+i
In(l-l-X):x——é——t—w:—;—__..._;_(_l) 7,_+0(x )
%2 3 n
ex=1+x+§?+§+...+m+0(xn+1)
cosle—ﬁ_kﬁ_.u_,_(_l)n ” +0(x2n+2)
21 41 @2n)!
sinx:x,a-.j.*..{f._..._i.(_l)n x2 +0(x2n+3)
3t 5! Cn+ 1!
tan'lxzx-—x—3+;x.5._“...+(,,1)n aH +0(x2n+3)
3.5 2n+1

We can obtain Taylor polynomials for new functions from others already known.
As long as the error term is of higher degree than the polynomial obtained, the
polynomial must be the Taylor polynomial by Theorem 11. We illustrate this with

a few cxamples.
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m Find the Taylor polynomial of degree 2n for coshx about x = 0.

Solution Write the Taylor formula for e* with n replaced by 2n + 1, and then
rewrite that with x replaced by —x. We get

2 x3 2n x2n+l

x x
X — 1 > - . + 0 2n+2 ,
e =lixt gttt omt gorm o)
x2 X3 x2n x2n+1
X 1= T - o) 2n+2.
¢ TR TR R ey Rl i Y (™)
Now average these two to get
" +e* x?  x* X2 N
h — — 1 - R - 0 n+2 .
coshx = —— + o ot + ) + O(x**?)

Thus, the Taylor polynomial for coshx about x = 0 is

2 x4 2n

Py =1+ 2+t 2
W =T T enl

NN Obtain the Taylor polynomial of degree 3 for ¢2* about x = 1 from
the Taylor polynomial for e* about x = 0.

Solution Writing x = 1 4+ (x — 1), we have
e2x — €2+2(x—1) — eZeZ(X-l)

2(x—-1?% 22(x-1)»
2! + 3!

= ¢’ [1+2(x—1)+ +0((x—1)4):|.

The Taylor polynomial of degree 3 for e2* about x = 1 must be

4 2
Pi(x) = & +262(x — 1) + 2%(x — 1)2 + %(x 1y

m Find the Taylor polynomial P»(x) for Inx about x = 2.
Solution We replace x with 2 + (x — 2).

lnx:ln(2+(x—2))=1n[2(1+x;2):|:1n2+1n(1+x_;_2>

x—2 1<x—2

2 2\ 2

=In2+

)2 + 0((x —2)%).

1 1
Therefore, P>(x) = In2 + 5(x -2)— g(x -2)%
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|Exercises 4.8

Calculate the indicated Taylor polynomials for the functions in Find the requested Taylor polynomials in Exercises 19-24 by
Exercises 1-6 by using the definition of Taylor polynomial. using known Taylor polynomials and changing variables as in
Examples 6 and 7.

1. for e™ about x = 0, degree 4.
19. P3(x) for ¢ about x = —1.

2. for cos x about x = m /4, degree 3. ,

3. for Inx about x = e, degree 4. 20. Pg(x) fore™ aboutx =0.

4. for sec x about x = 0, degree 3. 21. P4(x) for sin? x about x = Q. Hint: sin” x = l;czﬂ
5. for \/x about x = 4, degree 3. 22. Ps(x) for sinx about x = 7.

6. for 1/(2 4 x) about x = 1, degree n. 23. Pg(x) for 1/(1 + 2x2) about x = 0

In Exercises 7-12, use degree 2 Taylor polynomials for the given 24. Pg(x) for cos(3x — 1) about x = 0.
function near the point specified to approximate the indicated
value. Estimate the error and write the smallest interval you can
be sure contains the value.

25. Find the Taylor polynomial Ps,4(x) for sinhx about x = 0
by suitably combining polynomials for ¢* and e™*.
7. f(x) = x'/? near 8; approximate 9!/3 26. By suitably combining Taylor polynomials for In(1 + x) and
’ ’ ) i In(1 — x) about x = 0, find the Taylor polynomial of degrec
8. f(x) = ./x near 64; approximate /61, | 1+ x
-1 :
1 2n 4 1 about x = O for tanh ™" (x) = = In )
9. f(x) = — near 1; approximate T 2
x .

10. f(x) = tan~! x near 1; approximate tan~' (0.97).

I —x

27. Write Taylor’s formula for f(x) = ¢™* with a = 0 and use
it to calculate 1/e to 5 decimal places. (You may use a

11. f(x) = ¢ near 0; approximate ¢, calculator, but not the ¢* function on it.)
12. f(x) = sinx near 7/4; approximate sin(47°). +28. Write the general form of Taylor’s formula for f(x) = sin x
In Exercises 13-18, write the indicated case of Taylor’s formula about x = 0 with Lagrange remainder. How large need n be
for the given function. What is the Lagrange remainder in each taken to ensure that the corresponding Taylor polynomial
case? approximation will give the sine of 1 radian correct to
13. f(x)=sinx, a=0, n=7 5 decimal places?
14. f(x) =cosx, a=0, n=6 29. What is the best degree 2 approximation to the function
15. £(x) = sinx. a— /4 n—4 fx) = (x = 1)? near x = 07 What is the error in this
: T > T approximation? Now answer the same questions for
16. f(x) = ,a=0,n=6 g(x) = x> 4+ 2x% 4+ 3x + 4. Can the constant 1/6 = 1/31, in
1—x the error formula for the degree 2 approximation, be
17. f(x) =Inx, a=1,n=6 improved (i.e., made smaller)?

18. f(x) =tanx, a =0, n=3

In Section 2.5 we showed that

. sinx

lim — = 1.

-0 Xx
We could not readily see this by substituting x = 0 into the function (sinx)/x
because both sin x and x are zero at x = 0. We call (sinx)/x an indeterminate
form of type [0/0] at x = 0. The limit of such an indeterminate form can be
any number. For instance, each of the quotients kx/x, x/x?, and x3/x2 is an
indeterminate form of type [0/0] at x = 0, but

kx x x?

lim — =k, lim — = o0, lim — =0.
x—>0 x x—=0 x3 x—0 x2

There are other types of indeterminate forms. Table 4 lists them together with an

L0
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Table 4. Types of indeterminate forms

Type Example
. sinx
[0/0] lim ——
x—=0 Xx )
In(1/x
[00/c0] im /X7
x—~0 cot(x?2)
1
[0-o0] lim xIn—
x->0+ X
. 1
[oo — o0] lim (tanx - )
x—>(7/2)— T —2x
[0°] lim x*
x—>0+
[00?] lim (tanx)“®~*
x—>(n/2)—
1 X
[1°°] lim (1 + —)
X—>00 X

Indeterminate forms of type [0/0] are the most common. They can often be
evaluated quite easily by using known Taylor formulas.

2sinx — sin(2
| Example 1 [ETAS T L
x>0 2e* — 2 — 2x — x2
Solution Both the numerator and denominator approach 0 as x — 0. Let us

replace the trigonometric and exponential functions with their degree 3 Maclaurin
polynomials plus error terms written in big-O notation:

2sinx — sin(2x)
x—02e* —2 — 2x — x?

3 3.3
2 (x - % + O(x5)> - (2x — 23—): + 0(x5))

= lim
2 3

%5 (1 z 0 ) —2—2x — x2
+x+5+§T+ x) ) —-2-2x—x

AL S e
—_—— 4+ — X
3 3

= lim 3
T rouh
3
. 1+00(x%
=lim ——~ =
x—0 1

§ + O(x)

=3.

Observe how we used the properties of big-O as listed in the previous section. We
needed to use Maclaurin polynomials of degree at least 3 because all lower degree
terms cancelled out in the numerator and the denominator.

_ =
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. Inx
Evaluate im ——.
x—=>1 X“ — 1

Solution This is also of type {0/0]- We begin by substituting x = 1+ t..N(f)te
that x — 1 corresponds to ¢ — 0. We can use a known Maclaurin polynomial for

In(1 4 t). For this limit even the degree 1 polynomial Py (t) = t with error o)

will do.
. Inx . In(1+1) lim In(1+1)
)lc’f}xZ—l = aFnr-1 =0 2t + 12
t+0@ . 1+00 1
= lim " = lim ———— = 3-
1—0 2t + 12 -0 2+t 2
i
I’'Hopital’s Rules

You can evaluate many indeterminate forms of type [0/0] with simple algebra,
typically by cancelling common factors. Examples can be found in Sections 1.2
and 1.3. Otherwise, you can use the method of Taylor polynomials, if the appropriate
polynomials are known or can be calculated easily. We will now develop a third
method called I’Hopital’s Rule' for evaluating limits of indeterminate forms of the
types [0/0] and [oo/00). The other types of indeterminate forms can usually be
reduced to one of these two by algebraic manipulation and the taking of logarithms.

The first I’Hopital Rule

Suppose the functions f and g are differentiable on the interval Ja, blLbandg'(x) # 0
there. Suppose also that

(1) lim f(x) = lim g(x) =0and
x->a+ x—a+

[

= L (where L is finite or co or —00).

Similar results hold if every occurrence of lim,_, . is replaced by lim,_,,_ or even
lim,_,, where a < ¢ < b. The cases a = —oc¢ and b = o0 are also allowed.

PROOF We prove the case involving lim,_,, for finite a. Define
F(x)={f(x) ?fa<x<b and G(x):[g(x) 'ifa<x<b
0 ifx=a 0 ifx=a

Then F and G are continuous on the interval [a, x] and differentiable on the interval
(a, x) for every x in (a, b). By the Generalized Mean-Value Theorem (Theorem 16
of Section 2.6) there exists a number ¢ in (a, x) such that

f&) _F@) _F®)-F@ _F© _ f©
gx)  Gx) Gx)—G@ G gk’

1 The Marquis de I"Hopital (1661-1704), for whom these rules are named, published the
first textbook on calculus. The circumflex ( ) did not come into use in the French language
until after the French Revolution. The Marquis would have written his name “1’Hospital.”



Note that in applying I"Hopital’s
Rule we calculate the quotient of
the derivatives, not the derivative
of the quotient.
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Since a < ¢ < x,if x = a+, then necessarily ¢ — a4, so we have

fim 29 _ i £
et g(x) | evar g/(0)

The case involving lim,—,— for finite & is proved similarly. The cases where
a = —oo or b = oo follow from the cases already considered via the change of

variable x = 1/1:
@) 6E)

~xioo g(x) _z—1>r(l)l+ 1 _z—1>r(§1+ , 1 —1\ T o g'(x) o
&\ S\ )\

1
Reevaluate lirr} an T (See Example 2.)
x—=1 x4 —
1 0
Solution We have lim _r -
—1x2—1 0
1/x . 1 1

= li —_— =1 —_— = —.
lim S =lm>5=3

This example illustrates how calculations based on 1’Hopital’s Rule are carried out.
Having identified the limit as that of a [0/0] indeterminate form, we replace it by
the limit of the quotient of derivatives; the existence of this latter limit will justify
the equality. It is possible that the limit of the quotient of derivatives may still be
indeterminate, in which case a second application of I'Hopital’s Rule can be made.
Such applications may be strung out until a limit can finally be extracted, which
then justifies all the previous applications of the rule.

Remark The solution above seems easier than that of Example 2, and we might
be tempted to think that I’Hopital’s Rules are easier to use than Taylor polynomials.
It was easier here because we only had to apply I'Hépital’s Rule once. If we try to
redo Example 1 by I’Hopital’s Rule, we will have to use the rule three times (which
corresponds to the fact that degree 3 polynomials were needed in Example 1).

2 sinx — sin(2
[ ETUTICEY  Evaluate lim sinx — sin(2x) _
2 2 _2x —x2

x>0 2eX —
Solution We have (using I’Hopital’s Rule three times)

2 sinx — sin(2x) 0
im —
x>0 2e% — 2 —2x — x2 0
2cosx — 2cos(2x)

= lim cancel the 2’s
x>0  2e* —2—2x

_ iy SOSX —cos@x) [0
=0 e —1—x 0

— lim = sin x + 2 sin(2x) il [9:|
x—0 e —1
. —cosx+4cos(2x) —14+4
= hm = = 3
x—0 e* 1
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_ R X
%_x,_l and (b) lim —

im ’
Evaluate () x_}(n - cos? X a1+ Inx

Solution
i 2x — 7 [9]
(@) xq(lyg/lzy cos? x 0
2

v (x/2)— —28In X COS X

sed to evaluate limy 14 X /(Inx) because this is
aches 0 as x — 14, but the

1, we have, directly,

(b) 1"Hopital’s Rule cannot be u .
not an indeterminate form. The denominator appro

numerator does not approach 0. Since Inx > 0 forx >

x _—
x—1+ Inx |
(Had we tried to apply 1’Hopital’s Rule, we would have been led to the erroneous
answer lim, 14 (1/(1/x)) = L) y

1 1
(3'C1 XM Evaluate lim (— — ——)
x—=>0+ \ X sinx

Solution The indeterminate form here is of type [co — oo] to which I’'Hopital’s
Rule cannot be applied. However, it becomes [0/0] after we combine the fractions
into one fraction.

. 1 1
lim (— — ——) [oo — 0]

x>0+ \x  sinx
. sinx —x 0
= lim ——— —
x>0+ xSinx 0
cosx — 1 0
= lim ———m— _
x—>0+ sinx + x cos x 0
. —sinx -0
= lim —— =—=0.
x—~>0+2¢O0Sx — x Sinx 2

__ N

A version of I’'Hopital’s Rule also holds for indeterminate forms of the type [oc/o¢].

The second I’Hopital Rule

Suppose that f and g are differentiable on the interval (a, b) and that g'(x) # 0
there. Suppose also that

@) Em+g(x) = +o00 and

.. fx) s
() lim = = L (where L is finite, or 0o or —00).
x—at g'(x)
Then
fx)
x—a+ g(x) o
Again, similar results hold for lim,_,,— and for lim,_, ., and the cases a = —oco and

b = oo are allowed.
L]
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The proof of the second I’Hopital Rule is technically rather more difficult than that
of the first Rule and we will not give it here. A sketch of the proof is outlined in
Exercise 35 at the end of this section.

Remark Do not try to use I’Hopital’s Rules to evaluate limits that are not inde-
terminate of type [0/0] or [co/oc]; such attempts will almost always lead to false
conclusions as observed in Example 5(b) above. (Strictly speaking, the second
I’Hopital Rule can be applied to the form [a/oc], but there is no point to doing so
if a is not infinite, since the limit is obviously O in that case.)

Remark No conclusion about lim f(x)/g(x) can be made using either 1’Hopital
Rule if lim f’(x)/g’(x) does not exist. Other techniques might still be used. For ex-
ample, lim,_,  (sinx)/x = O by the Squeeze Theorem even though lim,_, . (cos x) /1
does not exist.

2
€T Il Evaluate (a) lim all and (b) lim x%Inx, wherea > 0.
x—o0 e

x—>0+

Solution Both of these limits are covered by Theorem 5 in Section 3.4. We do
them here by 1’'H6pital’s Rule.

2

(a) lim — [f]

x—>00 gX o0
2x 00
= lim 2% sl [—]
x—>o00 e* o0
= lim — =0.
x—>00 X

Similarly, one can show that lim,_, ., x"/e* = O for any positive integer n by
repeated applications of I’Hopital’s Rule.

(b) lim x*Inx (a > 0) [0 (—o0)]
x—0+

. Inx —00
= lim _
=0+ x4 0
. 1/x .oxt
= lim ————— = lim — =0.
x—>0+ —ax—"—l x—0+ —a

The easiest way to deal with indeterminate forms of types [0°], [0c®], and [1] is
to take logarithms of the expressions involved. The next two examples illustrate the
technique.

D ETNERE Evaluate lim x*.
x>0+

Solution This indeterminate form is of type [0°]. Let y = x*. Then

lim Iny = lim xIlnx =0,
x—0+ x—0+

by Example 7(b). Hence lim x* = lim y = ¢® = 1.
x—>0 x—0+
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3 X
V1T Evaluate lim (1 + sin —) .
x—00 x

lim Iny
X—>00

X—=>00

[0 - 0]

. .- . . - 3\*
Solution This indeterminate form is of type 1°. Lety = (1 + sin —> . Then,
X
taking In of both sides,

3
lim xIn (1 + sin —)
x

(1 i ) B

= lim
X—=>00 O
X
1 ( 3) ( 3
COS — Y
1+ sin — * * 3¢cos —
= lim X = lim X =3
=00 1 xX—=00 .
- 1+ sin —
X X
3 X
Hence lim (1 + sin —) =
xX—=00 X
N |
| Exercises 4.9
Evaluate the limits in Exercises 1-32. 21. lim x(2 tan ! x — ) 22. lim (sect —tant)
X— 00 t—(mr/2)—
. 3x . In(2x = 3)
1. lim 2, lim ———=
x—0 tan4x =2 x2—4 1 i
. 23. lim - — 24. lim xV¥
3 sinax 4 1 —cosax >0\t te* x>0+
" x>0 sinbx " x50 1 —cosbx
. 1
~ sin~lx X3 *25. lim (cscx)smzx *26. lim r
5. lim 6. lim ——— x—0+ >+ \x—1 Inx
x—0 tan~1 x x—1 x2/3 -1
- 3sint — sin 3t inx\ 1/%*
7. lim x cotx 8. lim %% %27 lim LTS 98, lim (in—x)
x—0 x—0 In(1 + x2) t—0 3tant — tan 3¢ X0\ X
c.2 X X
9. tim 2! 10. tim ¥ ¢ 29, lim(cos20) /" 30, lim X
t>rt— 7 x—=0 X =0 x>0+ Inx
cos 3x 1 -1 .
11. lim 12. lim n(?x) *31. lim M %32, lim (1 + tanx)l/"
xor/2 T —2x x=>1  sinmx x—>1— CsCmx x>0
1 X — sinx 33. (A Newton quotient for the second derivative) Evaluate
13. lim x sin — 14. lim . fx+h) —2f)+ fx—h) . .
x—>00 x =0  x3 limy,_, 0 if f is atwice
¥ — sinx 2 _ %2 —2cosx differentiable function.
15, lim ——— 16. lim . . .
x>0 X — tanx X—=0 x4 34. If f has a continuous third derivative, evaluate
. 2 1 . .
17. lim —— 18. Lim —on" (x+3h) -3 M +3/(x—h 3
x—0+ tanx — x r—m/2 COST limfx+ 3G +3[x k) — flx =3
sin t h—0 h3
19. lim 27 20, lim 2ZC%8Y
t=nf2 1 x—>1- x—1




* 35, (Proof of the second I’Hopital Rule) Fill in the details of
the following outline of a proof of the second 1’Hopital Rule
(Theorem 13) for the case where a and L are both finite. Let
a < x <t < b and show that there exists ¢ in (x, ¢) such that

f@—f0 _ f'©
gx)—gt) g’

Now juggle the above equation algebraically into the form

£ £ I @
A L4+ — - )
200 PG RTe) <f ® =80 g'(c))

Chapter Review |

Key Ideas

e What do the following words, phrases, and statements
mean?
¢ critical point of f © singular point of f

¢ inflection point of f

¢/ has absolute maximum value M.

¢ f has alocal minimum value at x = c.

¢ vertical asymptote < horizontal asymptote
oblique asymptote

the linearization of f(x) aboutx =a

the Taylor polynomial of degree n of f(x) about x = a
Taylor’s formula with Lagrange remainder
f@)=0(x—a))asx — a.

arootof f(x) =0 ¢ a fixed point of f(x)

L * R IR I o

an indeterminate form < I’Hopital’s Rules

e Describe how to estimate the error in a linear (tangent line)
approximation to the value of a function.

o Describe how to find a root of an equation f(x) = 0 by using
Newton’s Method. When will this method work well?

Review Exercises

1. If the radius » of a ball is increasing at a rate of 2 percent per
minute, how fast is the volume V of the ball increasing?

2. (Gravitational attraction) The gravitational attraction of the
earth on a mass m at distance r from the centre of the earth is
a continuous function of r for r > 0, given by

mgR?
F = 3 ifr >R
,

mkr if0 <r <R,

where R is the radius of the earth, and g is the acceleration
due to gravity at the surface of the earth.

(a) Find the constant & in terms of g and R.
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It follows that

J@ L’
g(x)
£
—L
g ‘ MRPYES]

<

(lf(t)l + 1g(®)l

f'(©
g'()

Now show that the right side of the above inequality can be
made as small as you wish (say less than a positive number
€) by choosing first ¢ and then x close enough to a.

Remember, you are given that im._, ;¢ ( /g (c)) =L
and limy, 4. |g(x)] = oo,

(b) F decreases as m moves away from the surface of the
earth, either upward or downward. Show that F de-
creases as r increases from R at twice the rate at which
F decreases as r decreases from R.

. (Resistors in parallel) Two variable resistors R; and R» are

connected in parallel so that their combined resistance R is
given by

At an instant when R; == 250 ohms and Ry = 1000 ohms,
Ry is increasing at a rate of 100 ohms/minute. How fast must
R; be changing at that moment (a) to keep R constant? and
(b) to enable R to increase at a rate of 10 ohms/minute?

. (Gas law) The volume V (in m?), pressure P (in kilopascals,

kPa) and temperature 7 (in kelvin K) for a sample of a certain
gas satisfy the equation pV = 5.0T.

(a) How rapidly does the pressure increase if the temperature
is 400 K and increasing at 4 K/min while the gas is kept
confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is
2 m? and increases at 0.05 m3/min while the temperature
is kept constant at 400 K?

. (The size of a print run) It costs a publisher $10,000 to set

up the presses for a print run of a book and $8 to cover the ma-
terial costs for each book printed. In addition, machinery ser-
vicing, labour, and warehousing add another $6.25 x 10~7x2
to the cost of each book if x copies are manufactured during
the printing. How many copies should the publisher print in
order to minimize the average cost per book?

. (Maximizing profit) A bicycle wholesaler must pay the man-

ufacturer $75 for each bicycle. Market research tells the
wholesaler that if she charges her customers $x per bicycle,
she can expect to sell N(x) = 4.5 x 10° /x2 of them. What
price should she charge to maximize her profit, and how many
bicycles should she order from the manufacturer?
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7. Find the largest possible volume of a right-circular cone that

. . . 4
can be inscribed in a sphere of radius R.

. (Minimizing production costs) The cost $C(x) of produc-
tion in a factory varies with the amount x of product manufac-
tured. The cost may rise sharply with x for x small, and more
slowly for larger values of x because of economies of scale.
However, if x becomes too large, the resources of the factory
can be overtaxed, and the cost can begin to rise quickly again.
Figure 4.59 shows the graph of a typical such cost function
C(x).
o

LT (X, Cx))

-

e C(x)
_.~7 slope = —— = average cost
- x
T
Figure 4.59

If x units are manufactured, the average cost per unit is
$C(x)/x, which is the slope of the line from the origin to
the point (x, C(x)) on the graph.

(a) If it is desired to choose x to minimize this average cost
per unit (as would be the case if all units produced could
be sold for the same price), show that x should be chosen
to make the average cost equal to the marginal cost:

@ =C'(x).
x

(b) Interpret the conclusion of (a) geometrically in the figure.

(c) If the average cost equals the marginal cost for some x,
does x necessarily minimize the average cost?

. (Box design) Four squares are cut out of a rectangle of card-
board 50 cm by 80 cm, as shown in Figure 4.60, and the
remaining piece is folded into a closed, rectangular box, with
two extra flaps tucked in. What is the largest possible volume
for such a box?

side flap
T T T Tt T T ) T T Tt
] 1 I
3 I I
I I I
I I I
I I I
side i bottom | side i top 50 cm
!
| | |
i | }
1 i ]
side flap J
80 cm
Figure 4.60

11.

12.

B 15

16.

17.

18.

. (Yield from an orchard) A certain orchard has 60 trees and

produces an average of 800 apples per trae per year. If the
density of trees is increased, the yield per tree drops; for each
additional tree planted the average yield per tree is reduced by
10 apples per year. How many more trees should be planted to
maximize the total annual yield of apples from the orchard?

(Rotation of a tracking antenna) What is the maximum
rate at which the antenna in Exercise 41 of Section 4.1 must
be able to turn in order to track the rocket during its entire
vertical ascent?

An oval table has outer edge in the shape of the curve

x2 4 y* = 1/8, where x and y are measured in metres. What
is the width of the narrowest hallway in which the table can
be turned horizontally through 180°?

. A hollow iron ball whose shell is 2 cm thick weighs half as

much as it would if it were solid iron throughout. What is the
radius of the ball?

. (Range of a cannon fired from a hill) A cannon ball is fired

with a speed of 200 ft/s at an angle of 45° above the horizontal
from the top of a hill whose height at a horizontal distance
x ft from the top is y = 1,000/(1 + (x/500)2) ft above sea
level. How far does the cannon ball travel horizontally before
striking the ground?

(Linear approximation for a pendulum) Because sin 6 ~
for small values of |0}, the nonlinear equation of motion of a
simple pendulum

d%e
dt?

=_ % Gno,
L

which determines the displacement angle 6(r) away from
vertical at time ¢ for a simple pendulum, is frequently ap-
proximated by the simpler linear equation

d’0

=

L

when the maximum displacement of the pendulum is not
large. What is the percentage error in the right side of the
equation if |0| does not exceed 20°?

Find the Taylor polynomial of degree 6 for sin x about x = 0
and use it to help you evaluate

3sin? x — 3x2 + x4

lim
X6

x—0

Use a degree 2 Taylor polynomial for tan~! x about x = 1 to
find an approximate value for tan~!(1.1). Estimate the size
of the error by using Taylor’s formula.

Theline2y = 10x —19istangenttoy = f(x)atx = 2. Ifan
initial approximation xp = 2 is made for a root of f(x) =0 |
and Newton’s Method is applied once, what will be the new
approximation that results?



B 20.

Find all solutions of the equation cosx = (x — 1) to 10
decimal places.

Find the shortest distance from the point (2, 0) to the curve
y=Inx.

. A car is travelling at night along a level, curved road whose

equation is y = . At a certain instant its headlights illumi-
nate a signpost located at the point (1, 1). Where is the car at
that instant?

Challenging Problems

1.

(Growth of a crystal) A single cubical salt crystal is growing
in a beaker of salt solution. The crystal’s volume V increases
at a rate proportional to its surface area and to the amount by
which its volume is less than a limiting volume Vj:

dv
— =kx*(Vp - V),
dt

where x is the edge length of the crystal at time z.

(a) Using V = x3, transform the equation above to one
giving the rate of change dx/dt of the edge length x in
terms of x.

(b) Show that the growth rate of the edge of the crystal
decreases with time but remains positive as long as
X < xp= VO1 / 3.

(c¢) Find the volume of the crystal when its edge length is
growing at half the rate it was initially.

. (A review of calculus!) You are in a tank (the military

variety) moving down the y-axis toward the origin. At time
t = 0 you are 4 km from the origin, and 10 min later you
are 2 km from the origin. Your speed is decreasing; it is
proportional to your distance from the origin. You know that
an enemy tank is waiting somewhere on the positive x-axis,
but there is a high wall along the curve xy = 1 (all distances in
kilometres) preventing you from seeing just where it is. How
fast must your gun turret be capable of turning to maximize
your chances of surviving the encounter?

. (The economics of blood testing) Suppose that itis necessary

to perform a blood test on a large number N of individuals to
detect the presence of a virus. If each test costs $C, then the
total cost of the testing program is $NC. If the proportion
of people in the population who have the virus is not large,
this cost can be greatly reduced by adopting the following
strategy. Divide the N samples of blood into N/x groups
of x samples each. Pool the blood in each group to make a
single sample for that group and test it. If it tests negative, no
further testing is necessary for individuals in that group. If
the group sample tests positive, test all the individuals in that
group.

Suppose that the fraction of individuals in the population
infected with the virus is p, so the fraction uninfected is ¢ =
I — p. The probability that a given individual is unaffected
is g, so the probability that all x individuals in a group are
unaffected is ¢*. Therefore, the probability that a pooled
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sample is infected is 1 — g*. Each group requires one test,
and the infected groups require an extra x tests. Therefore
the expected total number of tests to be performed is

N N 1
T=—+—(1—qx)x:N<—+1—qx>.
X  x x

For example, if p = 0.01, so that ¢ = 0.99 and x = 20,

then the expected number of tests required is 7 = 0.23N,

a reduction of over 75%. But maybe we can do better by

making a different choice for x.

(a) For ¢ = 0.99, find the number x of samples in a group
that minimizes 7 (i.e., solve dT/dx = 0). Show that the
minimizing value of x satisfies

_(0.99)/2
T /—n(0.99)

(b) Use the technique of fixed-point iteration (see Section
4.6) to solve the equation in (a) for x. Start with x = 20,
say.

. (Measuring variations in g) The period P of a pendulum of

length L is given by

P=2rn/L/g,

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase
in g results in approximately a 0.5% decrease in the
period P. (Variations in the period of a pendulum can be
used to detect small variations in g from place to place
on the earth’s surface.)

(b) For fixed g, what percentage change in L will produce a
1% increase in P?

. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank
above the level of the drain: if V (¢) is the volume of liquid in
the tank at time ¢, and y(¢) is the height of the surface of the
liquid above the drain, then dV /dt = —k./y, where k is a
constant depending on the size of the drain. For a cylindrical
tank with constant cross-sectional area A with drain at the
bottom:

(a) Verity that the depth y(¢) of liquid in the tank at time ¢
satisfies dy/dt = —(k/A)/y.

(b) Verify that if the depth of liquid in the tank at ¢ = O s yy,
then the depth at subsequent times during the draining

2
. kt
rocess is y = -——1.
s = (55 £
(c) If the tank drains completely in time T, express the depth
y(¢) at time ¢ in terms of yp and T.

(d) Interms of T, how long does it take for half the liquid in
the tank to drain out?
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. If a conical tank with top radius R and depth H drains ac-

cording to Torricelli’s Law and empties in time T, show that
the depth of liquid in the tank at time ¢ (0 < ¢t < T) is

£\2/5
= 1 - — R
y yO( T)

where yp is the depth at 1 = 0.

. Find the largest possible area of a right-angled triangle whose
perimeter is P.

. Find a tangent to the graph of y = x> + ax? + bx + ¢ that is
not parallel to any other tangent.

. (Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric
current through it is proportional to its length and in-
versely proportional to its cross-sectional area. Thus,
the resistance R of a wire of length L and radius r is
R=kL/ r2, where k is a positive constant.

A long straight wire of length L and radius r; extends
from A to B. A second straight wire of smaller radius 7
is to be connected between a point P on A B and a point
C at distance h from B such that C' B is perpendicular
to AB. (See Figure 4.61.) Find the value of the angle
6 = /B PC that minimizes the total resistance of the path
A PC, that is, the resistance of A P plus the resistance of

PC.
A Ja \ B
2] 1
I
1h
I
I
I
C
Figure 4.61
(b) The resistance of a pipe (e.g., a blood vessel) to the flow

of liquid through it is, by Poiseuille’s Law, proportional to
its length and inversely proportional to the fourth power
of its radius: R = kL/r*. If the situation in part (a)
represents pipes instead of wires, find the value of 6 that
minimizes the total resistance of the path APC. How
does your answer relate to the answer for part (a)? Could
you have predicted this relationship?

*10. (The range of a spurt) A cylindrical water tank sitting on a

horizontal table has a small hole located on its vertical wall
at height /4 above the bottom of the tank. Water escapes from
the tank horizontally through the hole and then curves down
under the influence of gravity to strike the table at a distance
R from the base of the tank, as shown in Figure 4.62. (We

ignore air resistance.) Torricelli’s Law implies that the speed
v at which water escapes through the hole is proportional (o
the square root of the depth of the hole below the surface
of the water: if the depth of water in the tank at time ¢ is
y(¢) > h, then v = k./y — h, where the constant k depends
on the size of the hole.

(a) Find the range R in terms of v and A.

(b) For a given depth y of water in the tank, how high should
the hole be to maximize R?

(c) Suppose that the depth of water in the tank at time t = 0
is yp, that the range R of the spurt is Ry at that time, and
that the water level drops to the height 4 of the hole in
T minutes. Find, as a function of ¢, the range R of the
water that escaped through the hole at time ¢.

Figure 4.62

B 11. (Designing a dustpan) Equal squares are cut out of two

adjacent corners of a square of sheet metal having sides of
length 25 cm. The three resulting flaps are bent up, as shown
in Figure 4.63, to form the sides of a dustpan. Find the
maximum volume of a dustpan made in this way.

! v 125cm

Figure 4.63



