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Appendix I

Complex Numbers

Many of the problems to which mathematics is applied involve the solution o7
equations. Over the centuries the number system had to be expanded many times
to provide solutions for more and more kinds of equations. The natural numbers
N={1,2,3,4,..}
are inadequate for the solutions of equations of the form
x +n=nm, (m, n e N).
Zero and negative numbers can be added to create the integers
Z={..,-3-2,-1,0,1,2 3, ..}
in which that equation has the solution x = m — n even if m < n. (Historically,
this extension of the number system came much later than some of those mentioned
below.) Some equations of the form

nx =m, m,neZ, n#0)

cannot be solved in the integers. Another extension is made to to include numbers
of the form m/n, thus producing the set of rational numbers

m

(@:[— :m,n €z, n#O}.

n

Every linear equation

ax =b, (a,beQ, a0
has a solution x = b/a in (), but the quadratic equation

x2=2
has no solution in {, as was shown in Section P.1. Another extension enriches the
rational numbers to the real numbers R in which some equations like x> = 2 have
solutions. However, other quadratic equations, for instance,

x?=—1
do not have solutions, even in the real numbers, so the extension process is not
complete. In order to be able to solve any quadratic equation, we need to extend
the real number system to a larger set, which we call the complex number system.

In this appendix we will define complex numbers and develop some of their basic
properties.
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APPENDIXI:

COMPLEX NUMBERS

Definition of Complex Numbers

We begin by defining the symbol 7, called the imaginary unit’, to have the property
2
i =-1.

Thus, we could also call i the square root of —1 and denote it «/—1. Of course, i
is not a real number; no real number has a negative square.

A complex number is an expression of the form
a+bi or a+ib

where a and b are real numbers, and i is the imaginary unit.

For example, 3 + 2i, % - %i, it =0+ im, and =3 = —3 4 0i are all complex
numbers. The last of these examples shows that every real number can be regarded
as a complex number. (We will normally use a + bi unless b is a complicated

expression, in which case we will write a 4 b instead. Either form is acceptable.)

It is often convenient to represent a complex number by a single letter; w and
z are frequently used for this purpose. If a, b, x, and y are real numbers, and

w=a+ bi and 7=x+yi,

then we can refer to the complex numbers w and z. Note that w = z if and only if
a = x and b = y. Of special importance are the complex numbers

0=040i, 1=140i, and i=0+1i.

If z = x 4 yi is a complex number (where x and y are real), we call x the real
part of z and denote it Re (z). We call y the imaginary part of z and denote
it Im (z):

Re (z) = Re (x + yi) = x, Im(z) =Im(x + yi) = y.

Note that both the real and imaginary parts of a complex number are real numbers.
Re(3—-5i)=3 Im(B3-5)=-5
Re (2i) =Re(0+2i)=0 ImQ2i)=ImO0+2i)=2
Re(—=7) =Re(—7+0i) = -7 Im(—7) =Im(—7+0i) = 0.

Graphical Representation of Complex Numbers

Since complex numbers are constructed from pairs of real numbers (their real and
imaginary parts), it is natural to represent complex numbers graphically as points in
a Cartesian plane. We use the point with coordinates (a, ») to represent the complex
number w = a + ib. In particular, the origin (0, 0) represents the complex number
0, the point (1, 0) represents the complex number 1 = 1 + 0i, and the point (0, 1)
represents the pointi = 0 + 1i. (See Figure I.1.)

In some fields, for example, electrical engineering, the imaginary unit is denoted j instead of
i. Like “negative,” “surd,” and “irrational,” the term “imaginary” suggests the distrust that greeted
the new kinds of numbers when they were first introduced.




Figure 1.1 An Argand diagram
representing the complex plane
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Figure 1.2 The modulus and
argument of a complex number
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Such a representation of complex numbers as points in a plane is called an Argand
diagram. Since each complex number is represented by a unique point in the
plane, the set of all complex numbers is often referred to as the complex plane.
The symbol C is used to represent the set of all complex numbers and, equivalently,
the complex plane:

C={x+yi:x,y, € R}.

The points on the x-axis of the complex plane correspond to real numbers (x =
x + 0i), so the x-axis is called the real axis. The points on the y-axis correspond
to pure imaginary numbers (yi = 0 + yi), so the y-axis is called the imaginary
axis.

It can be helpful to use the polar coordinates of a point in the complex plane.

The distance from the origin to the point (a, ) corresponding to the complex
number w = a + bi is called the modulus of w and is denoted by |w| or
la + bil:

lw| = |a + bi| = Va?+ b2.

If the line from the origin to (a, b) makes angle 8 with the positive direction of
the real axis (with positive angles measured counterclockwise), then we call
@ an argument of the complex number w = a + bi and denote it by arg (w)
or arg (a + bi). (See Figure 1.2.)

The modulus of a complex number is always real and nonnegative. It is positive
unless the complex number is 0. Modulus plays a similar role for complex numbers
that absolute value does for real numbers. Indeed, sometimes modulus is called
absolute value.

Arguments of complex numbers are not unique. If w = a + bi # 0, then any
two possible values for arg (w) differ by an integer multiple of 27z. The symbol
arg (w) actually represents not a single number, but a set of numbers. When we
write arg (w) = 8, we are saying that the set arg (w) contains all numbers of the
form 6 + 2k, where k is an integer. Similarly, the statement arg (z) = arg (w)
says that two sets are identical.




A-4 APPENDIX I: COMPLEX NUMBERS

If w = a + bi, where a = Re (w) # 0, then
b

tan arg (w) = tan arg(a + bi) = —.
a

This means that tan 6 = b/a for every @ in the set arg (w).

It is sometimes convenient to restrict 6 = arg (w) to an interval of length 27,
say, the interval 0 < 8 < 27, or — < 6 < m, so that nonzero complex numbers
will have unique arguments. We will call the value of arg (w) in the interval
—m < 6 < 7 the principal argument of w and denote it Arg (w). Every complex
number w except 0 has a unique principal argument Arg (w).

i Y m (Some moduli and principal arguments) Sec Figure 1.3.
L .

2 P 12| =2 Arg(2) =0
I T 11+i|=+2 Arg(1+i)=m/4
VT li|=1 Arg (i) = 7/2
| —2i| =2 Arg(=2i) = —7/2
8, X [—34+i|=2 Arg (—v/3 +1i) =571/6
. 1 —2%) = — —1
Figure 1.3 Some complex numbers |—1-2i]= V5 Arg (=1 —20) 7+ tan™(2).
with their moduli
B

Remark 1If z = x + yi and Re(z) = x > 0, then Arg(z) = tan_l(y/x).
Many computer spreadsheets implement a two-variable arctan function denoted
atan2(x, y) which gives the polar angle of (x, y) in the interval ] — 7, ]. Thus

Arg (x 4 yi) = atan2(x, y).
Given the modulus7 = |w| and any value of the argument 8 = arg (w) of acomplex

number w = a + bi, we have a = r cosf and b = r sin#, so w can be expressed
in terms of its modulus and argument as

The expression on the right side is called the polar representation of w.

The conjugate or complex conjugate of a complex number w = a + bi is
another complex number, denoted w, given by

w=a— bi.
m2—3i=2+3i, 3=3, 2i=-2i.
_m
Observe that

Re (0) = Re (w)

Im (W) = —Im (w)

[w] = |w|

arg (w) = —arg (w).



@ w=a-+bi
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Figure 1.4 A complex number and
its conjugate are mirror images of each
other in the real axis

Figure I.5 Complex numbers are
added and subtracted vectorially.
Observe the parallelograms
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In an Argand diagram the point w is the reflection of the point w in the real axis.
(See Figure 1.4.)

Note that w is real (Im(w) = 0) if and only if w = w. Also, w is pure
imaginary (Re (w) = 0) if and only if w = —w. (Here, —w = —a — bi if
w=a-+bi)

Complex Arithmetic

Like real numbers, complex numbers can be added, subtracted, multiplied, and
divided. Two complex numbers are added or subtracted as though they are two-
dimensional vectors whose components are their real and imaginary parts.

The sum and difference of complex numbers

w=ua+biandz = x + yi, where a, b, x, and y are real numbers, then

Wwhz=(a+x)+BEi
S w—z=@-0)+ G-y

In an Argand diagram the points w + z and w — z are the points whose position
vectors are, respectively, the sum and difference of the position vectors of the points
w and z. (See Figure 1.5.) In particular, the complex number a + bi is the sum of
the real number a = a + 0i and the pure imaginary number bi = 0 + bi.

Complex addition obeys the same rules as real addition: if w, w,, and w3 are
three complex numbers, the following are easily verified:

w1 + w2 = wy + wy Addition is commutative.
(wy + wr) + w3 = wy + (w2 + w3) Addition is associative.
lwy £ wa| < |wy| + |wsl the triangle inequality

Note that |w; — wy| is the distance between the two points w; and w; in the complex
plane. Thus, the triangle inequality says that in the triangle with vertices w;, Fuw»
and 0, the length of one side is less than the sum of the other two.

It is also easily verified that the conjugate of a sum (or difference) is the sum
(or difference) of the conjugates:

wH+z=w+2Z.

(@) fw=2+3iand z =4 — 5i, then

w+z=Q+4)+B—5)i=6—2i
w—z=02—4)+@—(=5)i = -2 +8i.

Mb) 3i+0-2)—QR+3i)+5=4-2i.

Multiplication of the complex numbers w = a + bi and 7 = x + yi is carried out
by formally multiplying the binomial expressions and replacing i> by —1:

wz = (a + bi)(x + yi) = ax + ayi + bxi —}—byi2
= (ax — by) + (ay + bx)i.
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The product of complex numbers

If w=a+biandz =x+yi,wherea, b, x, and y are real numbers, then

wz = (ax = by) + (ay + bx)i.

Example 4
@ Q+3)1—-2)=2—4+3i —6i*=8 —1i.

(b) i(5—4i)=5i —4i> =4 +5i.

(¢) (a+ bi)(a — bi) = a® — abi + abi — b%i* = a*> + b2

_u

Part (c) of the example above shows that the square of the modulus of a complex
number is the product of that number with its complex conjugate:

Complex multiplication has many properties in common with real multiplication.
In particular, if w;, w,, and ws are complex numbers, then

Wywy = Wl Multiplication is commutative.
(wywr)ws = wi(waws) Multiplication is associative.
wy (w2 + wi3) = wiwy + wyws Multiplication distributes over addition.

The conjugate of a product is the product of the conjugates:
WI=wWZ.
To see this, let w = a 4+ bi and z = x + yi. Then
wz = (ax — by) + (ay + bx)i
= (ax — by) — (ay + bx)i
=(@a—-biYx—yi)=wz.

It is particularly easy to determine the product of complex numbers expressed in
polar form. If

w =r(cosf +isinf) and 7 = s(cos ¢ + i sin¢),
where r = |w|, 8 = arg (w), s = |z|,and ¢ = arg(z), then
wz = rs(cos O + i sinB)(cos ¢ + i sin ¢)
= rs((cos@ cos ¢ — sin @ sin ¢p) + i (sinf cos ¢ + cos I sin ¢))
= rs(cos(6 + ¢) + i sin(6 + ¢)).

(See Figure 1.6.) Since arguments are only determined up to integer multiples of
27, we have proved that

The modulus and argument of a product

wzl =lwllzl  and  arg(wo) = arg (w) + arg ).

The second of these equations says that the set arg (wz) consists of all numbers
0 + ¢, where 6 belongs to the set arg (w) and ¢ to the set arg (z).



Figure 1.6 The argument of a
product is the sum of the arguments of
the factors

iw

90°

Figure 1.7 Multiplication by i
corresponds to counterclockwise
rotation by 90°
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More generally, if wy, wy, ... w, are complex numbers, then
[wiws - - wy| = [wi||wa] - - - [wy]

arg (wywy - - - wy,) = arg(wy) + arg{wy) +--- + arg (w,).

Muitiplication of a complex number by i has a particularly simple geometric inter-
pretation in an Argand diagram. Since |i| = 1 and arg () = 7/2, multiplication
of w = a + bi by i leaves the modulus of w, unchanged but increases its argument
by 7 /2. (See Figure 1.7.) Thus, multiplication by i rotates the position vector of w
counterclockwise by 90° about the origin.

Let z = cos@ + isinf. Then |z| = 1 and arg(z) = 6. Since the modulus
of a product is the product of the moduli of the factors and the argument of a
product is the sum of the arguments of the factors, we have |z"| = |z|" = 1 and
arg (z") = narg(z) = n. Thus,

7" = cosnb + isinnb,

and we have proved

de Moivre’s Theorem

' (cosd +1i si:ne')" = cosnb +isinng.

Remark The study of complex-valued functions of a complex variable is beyond
the scope of this book. However, we point out that there is a complex version of
the exponential function having the following property: if 7z = x + iy (where x and
y are real), then

& =" = e* e = e* (cosy +isiny).

Thus the modulus of % is eR€ @ and Im (z) is a value of arg (e?). In this context,
de Moivre’s Theorem just says

(eie)n — einO.
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ICERTIEEN Express (1 +i)° in the form a + bi

Solution Since |(1+i)°| = |1 —|—i|5

= (v2)’ =42, and
arg (14i)°) =5arg(1 +i) =

4 , we have

5 5
(1+i)5=4«/§<c0s%+isin id

R

N

de Moivre’s Theorem can be used to generate trigonometric identities for multiples
of an angle. For example, for n = 2 we have

c0s26 +isin26 = (cos +isin6))2 = cos? 6 — sin® 6 + 2i cos O sin

Thus, cos 20 = cos? 9 — sin? 6, and sin 20 = 2 siné cos 6

The reciprocal of the nonzero complex number w = a + bi can be calculated
by multiplying the numerator and denominator of the reciprocal expression by the
conjugate of w:

1
w = =

B a — bi
w  a+bi

@+t biYa—bi)
|w|, and arg (w) =

Since |w| =

—arg (w), we have

1 |w] 1 1
= and arg | — ) = —arg(w).
w| o (wl> jwl w

The queotient z/w of two complex numbers z = x + yi and w = a + bi is the
product of z and 1/w, so

z 2w (x+yi)a—bi) xa+yb+i(ya—xb)
w o w2 a? 4+ b? - a?+ b?
We have

The modulus aiid argumént ofa quotient
l—-i L and

M

arg (5)—) = arg(z) — arg (w):

The set arg (z/w) consists of all numbers 6 — ¢ where 0 belongs to the set arg (z)
and ¢ to the set arg (w).

Example 6

243
mm@(m:f

and (b) ———.
1+iv/3
Solution
(@ 2+3i_(2+3i)(4+i)_8—3+(2+12)i_ 5 14 .
A—i @G-D@+i)

2112 RNV
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i i(1—i/3) VB4 3T

14+i3  (+i/D0—i3) 1243 4 4
T
Alternatively, since |1 +iv/3| = 2 and arg (1 +i+/3) = tan~' /3 = 3 the

(®)

L 1 T T 7
quotient in (b) has modulus 2 and argument "3 % Thus

Roots of Complex Numbers

If a is a positive real number, there are two distinct real numbers whose square is
a. These are usually denoted

Ja (the positive square root of a  and)
—a (the negative square root of a).

Every nonzero complex number z = x 4+ yi (where x> + y? > 0) also has two

square roots; if w; is a complex number such that w% = z, then wy = —w,; also
satisfies w% = z. Again, we would like to single out one of these roots and call it
Vz-

Letr = |z|,so thatr > 0. Let & = Arg(z). Thus —m < 6 < 7. Since
z:r(cos@+isin9),

the complex number

0 0
w=ﬁ<cos§+i sinz)

clearly satisfies w? = z. We call this w the principal square root of z and denote
it /Z. The two solutions of the equation w? = z are, thus, w = /z and w = —/Z.

Observe that the real part of /7 is always nonnegative since cos(6/2) > 0 for
—n/2 < 6 < m/2. In this interval sin(8/2) = 0 only if & = 0 in which case /7 is
real and positive.

(a) V4 = /4(cos0+isin0) = 2.
T 1 1

(b) \/f:\/1<cos%+isin%)=cos%+isinz=$+ﬁi.

(© " = ¢4 [eos (=3 ) +isin (=2)] = 2[cos (-2 +75in (-T)]

=2 —i2.

[ 1 3 2 2 1 3
(d) —5+i%—=\/cos7n+isin?n=cos%+isin%=§+\/7_i.
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Given a nonzero complex number z we can find # distinct complex numbers w
that satisfy w" = z. These n numbers are called nth roots of z. For example, if
7z = 1.= cos 0.+ i sin 0, then each of the numbers

n n

T o=l 6m 61

h——»——» wq = COS — —+ I sin —
wy= 1 v@i;
? 2m—Dx . 2(n-Dx
w, = C0§ ———— +isin —————
n
Figure 1.8 The cube roots of unity satisfies w” = 1 so is an nth root of 1. (These numbers are usually called the nth

roots of unity.) Figure 1.8 shows the three cube roots of 1. Observe that they are at
the three vertices of an equilateral triangle with centre at the origin and one vertex
at 1. In general, the n nth roots of unity lie on a circle of radius 1 centred at the
origin, at the vertices of a regular n-sided polygon with one vertex at 1.

If z is any nonzero complex number, and 8 is the principal argument of z
(—m < 6 < ), then the number

\n 6 .. 0
w; = 7| CcoS — + i sin —
n n

is called the principal nth root of 7. All the nth roots of z are on the circle of radius
|z|'/" centred at the origin and are at the vertices of a regular n-sided polygon with
one vertex at wi. (See Figure 1.9.) The other nth roots are

1 6+2n . 04+2n
wy = |z|7" | cos + i sin
n

0+4 0+4
ws = |z|"/" (cos + T +isin + ﬂ)
n n

04+2n—1 0+2n—1
w, = lzll/n (COS—_‘_&_‘)_]T"“lSin __.__(n_._)z[_) .
n n

Figure.9  The five 5throots of z We can obtain all n of the nth roots of z by multiplying the principal nth root by the
nth roots of unity.

Y D ETTE W Find the 4th roots of —4. Sketch them in an Argand diagram.

wrm L4 w=1+i | Solution Since | —4|'/* = /2 and arg (—4) = 7, the principal 4th root of —4 is

wlzﬁ(cos%+isin%>=l+i.

’
)

The other three 4th roots are at the vertices of a square with centre at the origin and
wy=—1-i ws=1-i | one vertex at 1 + i. (See Figure 1.10.) Thus the other roots are

wy =—1+41, wy =—1—1, wyg =1—1.

Figure 1.10 The four 4th roots of —4




] Exercises
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In Exercises 1-4, find the real and imaginary parts (Re (z) and

Im (2)) of the given complex numbers z, and sketch the position

of each number in the complex plane (i.e., in an Argand

diagram).
Lo:=-542 2. z=4—1§

4 7=-6

In Exercises 5-15, find the modulus r = |z| and the principal
argument = Arg (z) of each given complex number z, and
cxpress z in terms of r and 6.

3. o =—mi

5.:=—-1+4i 6. z=-2

7. :=3i 8. z=-5i

9. :=1+4+2i 10. z = -2+
11, : =-3—-4i 12. z=3-4i
13. - =+v3—i 4. z=-v3-3i

4 4
1. :=3cos%+3isin?n

16. If Arg(z) = 37 /4 and Arg(w) = 7/2, find Arg (zw).
17. If Arg(z) = —57/6 and Arg(w) = 7 /4, find Arg(z/w).

In Exercises 18-23, express in the form z = x + yi the complex

number z whose modulus and argument are given.

18. |z| =2, arg(z)=m 19. |z] =5,

3w bid
20. |z| =1, arg(z) = T 21 |zl =7, arg(z) = 3

1
23. |z| = 3

In Exercises 24-27, find the complex conjugates of the given
complex numbers.

24. 54 3i
26. 4i

22, |z]=0, arg(z)=1

3

25. -3 -5i
27. 2 —i

Describe geometrically (or make a sketch of) the set of points z

in the complex plane satisfying the given equations or
inequalities in Exercises 28-33.

28. 2] =2
30. | —2i| <3

29. |z] <2
31 Jz—344i| <5

W

arg (z) = tan~!

T
arg(z) = —

b4
32. ==
arg z 3

1T
33 7 <arg(z) < e

Simplify the expressions in Exercises 34—43.

4. 2+50)+3—1) 35. i —(3—2i)+ (7 —3i)
36. (4+i)(4—i) 37. (140)(2 —3i)
38. (a + bi)(2a — bi) 39. 2+i)°
40, 271 a1, L3
24+ 2—i
" 1+i (14202 —3)
T2+ 30) Q-G +2i)
44, Provethat z + w =7 + w.

45.

46.

47.

49,

50.

Prove that (5) = -i“
w w

Express each of the complex numbers z = 3 + i+/3 and

w=-1+ i\/§ in polar form (i.e., in terms of its modulus

and argument). Use these expressions to calculate zw and

Z/w.

Repeat the previous exercise for z = —1 +/ and w = 3i.

. Use de Moivre’s Theorem to find a trigonometric identity for
cos 36 in terms of cos 6 and one for sin 36 in terms of sin 9.

Describe the solutions, if any, of the equations (a) 7 = 2/z
and (b) 7 = —2/z.

For positive real numbers a and b it is always true that
vab = \/L_I\/I_J Does a similar identity hold for ./zw,
where z and w are complex numbers? Hint: consider
z=w=-—1.

51. Find the three cube roots of —1.
52. Find the three cube roots of —8i.
53. Find the three cube roots of —1 4.

54.
55.

56.

* 57,

Find all the fourth roots of 4.

Find all complex solutions of the equation
#+1-iv3=0.

Find all solutions of z°> + ¢ = 0, where a is a positive real
number.

Show that the sum of the n ath roots of unity is zero. Hint:
show that these roots are all powers of the principal root.
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Appendix 1l

Continuous Functions

The development of calculus depends in an essential way on the concept of limit
of a function and thereby on properties of the real number system. In Chapter 1
we presented these notions in an intuitive way and did not attempt to prove them
except in Section 1.5, where the formal definition of limit was given and used to
verify some elementary limits and prove some simple properties of limits.

Many of the results on limits and continuity of functions stated in Chapter 1
may seem quite obvious; most students and users of calculus are not bothered by
applying them without proof. Nevertheless, mathematics is a highly logical and
rigorous discipline, and any statement, however obvious, that cannot be proved by
strictly logical arguments from acceptable assumptions must be considered suspect.
In this appendix we build upon the formal definition of limit given in Section 1.5,
and combine it with the notion of completeness of the real number system first
encountered in Section P.1 to give formal proofs of the very important results
about continuous functions stated in Theorems 8 and 9 of Section 1.4, the Max-
Min Theorem and the Intermediate-Value Theorem. Most of our development of
calculus in this book depends essentially on these two theorems.

The branch of mathematics that deals with proofs such as these is called math-
ematical analysis. This subject is usually not pursued by students in introductory
calculus courses but is postponed to higher years and studied by students in majors
or honours programs in mathematics. It is hoped that some of this material will
be of value to honours-level calculus courses and individual students with a deeper
interest in understanding calculus.

Limits of Functions

At the heart of mathematical analysis is the formal definition of limit, Definition 9
in Section 1.5, which we restate as follows:

The formal definition of limit

We séy that lim,,, f(x) = Liffor every positive number ¢ there exists a
positive number 8, depending on € (i.e., 8 = 8(¢)), such that

Gelviniel v U ke

Section 1.5 was marked “optional” because understanding the material presented
there was not essential for learning calculus. However, that material is an essential
prerequisite for this appendix. It is highly recommended that you go back to
Section 1.5 and read it carefully, paying special attention to Examples 2 and 4, and
attempt at least Exercises 31-36. These exercises provide proofs for the standard
laws of limits stated in Section 1.2.
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Continuous Functions

Consider the following definitions of continuity, which are equivalent to those given
in Section 1.4.

Continuity of a function at a point

A function f, defined on an open interval containing the point a, is said to be
continuous at the point a if

lim f(x) = /(a).

that is, if for every € > 0 there exists § > 0 such that if |[x — a| < §, then

|f(x) = fla)l <e.

Continuity of a function on an interval

A function f is continuous on an interval if it is continuous at every point of
that interval. In the case of an endpoint of a closed interval, f need only be
continuous on one side. Thus, f is continuous on the interval [a, b] if

lim f (1) = f(x)
t—>x
for each x satisfyinga < x < b, and

Jim f() = f(a) and  lim f(t) = f(b).

These concepts are illustrated in Figure II.1.
y Ar

o
=y

Figure 1.1 f is continuous on the a b c d
intervals [a, b], 1b, ¢[, [c, d], and ]d, e]

Some important results about continuous functions are collected in Theorems 6 and
7 of Section 1.4, which we restate here:

REM G Combining continuous functions

(a) If f and g are continuous at the point a, then so are f + g, f — g, fg, and, if
8a) #0, f/g.

(b) If f is continuous at the point L and if lim,_,, g(x) = L, then we have

lim f(g(0) = f(L) = f(lim g(x)).
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In particular, if g is continuous at the point a (so that L = g(a)), then
lim,,, f(g(x)) = f(g(@)), thatis, f o g(x) = f(g(x)) is continuous at
X =a.
(c) The functions f(x) = C (constant) and g(x) = x are continuous on the whole
example, .

lim f(0)g(x) = (lim f()(lim g(x)) = f(@)g(@).

Part (b) can be proved as follows. Let € > 0 be given. Since f is continuous at
L, there exists k£ > 0 such that ]f(g(x)) — f(L)| < € whenever |g(x) — L| < k.
Since lim,_,, g(x) = L, there exists § > 0 such that if 0 < |x — a| < &, then
|g(x) — L] < k. Hence, if 0 < |x —a] < §, then |f(g(x)) — f(L)| < €, and
lim, ., f(g(x)) = f(L).

The proofs of (c) and (d) are left to the student in Exercises 3-9 at the end of
this appendix.

e

Completeness and Sequential Limits

A real number u is said to be an upper bound for a nonempty set S of real
numbers if x < u for every x in S.

The number u* is called the least upper bound of S if «* is an upper bound
for § and u* < u for every upper bound u of S.

Similarly, £ is a lower bound for S if £ < x for every x in S. The number £*
is the greatest lower bound of § if £* is a lower bound and £ < £* for every
lower bound £ of S.

Set S; = [2,3] and S» =]2, oo[. Any number # > 3 is an upper
bound for §;. S has no upper bound; we say that it is not bounded above. The
least upper bound of S; is 3. Any real number £ < 2 is a lower bound for both S,
and S;. £* = 2 is the greatest lower bound for each set. Note that the least upper

bound and greatest lower bound of a set may or may not belong to that set.
|

We now recall the completeness axiom for the real number system, which we
discussed briefly in Section P.1.

The completeness axiom for the real numbers

A nonempty set of real numbers that has an upper bound must have a least
upper bound.

Equivalently, a nonempty set of real numbers having a lower bound must
have a greatest lower bound.
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We stress that this is an axiom to be assumed without proof. It cannot be deduced
from the more elementary algebraic and order properties of the real numbers. These
other properties are shared by the rational numbers, a set that is not complete. The
completeness axiom is essential for the proof of the most important results about
continuous functions, in particular, for the Max-Min Theorem and the Intermediate-
Value Theorem. Before attempting these proofs, however, we must develop a little
more machinery.

In Section 9.1 we stated a version of the completeness axiom that pertains to
sequences of real numbers; specifically, that an increasing sequence that is bounded
above converges to a limit. We begin by verifying that this follows from the version
stated above. (Both statements are, in fact, equivalent.) As noted in Section 9.1,
the sequence

{xa} = {x1, x2, x3, ...}

is a function on the positive integers, that is, x, = x(n). We say that the sequence
converges to the limit L, and we write limx,, = L, if the corresponding function
x(t) satisfies lim,, o, x(f) = L as defined above. More formally,

Limit of a sequence

We say that lim x,, = L if for every positive number ¢ there exists a positive
number N = N(¢) such that |x, — L] < € holds whenever n > N.

If {x,} is an increasing sequence that is bounded above, that is,
Xptl = Xp and x < K forn=1,2,3, ...,

then limx, = L exists. (Equivalently, if {x,} is decreasing and bounded below,
then lim x,, exists.)

PROOF Let {x,} be increasing and bounded above. The set S of real numbers x,
has an upper bound, K, and so has a least upper bound, say L. Thus x, < L for
every n, and if € > 0, then there exists a positive integer N such that xy > L — €.
(Otherwise, L — € would be an upper bound for § that is lower than the least upper
bound.) If n > N, thenwe have L — ¢ < xy < x, < L,s0 |x, — L| < €. Thus
limx, = L. The proof for a decreasing sequence that is bounded below: is similar.

Ifa <x, <bforeachn,andiflimx, = L,thena < L <b.

PROOF Suppose that L > b. Lete = L — b. Since limx, = L, there exists
nsuch that |x, — L] < €. Thusx, > L —e¢ =L — (L —b) = b, whichis a
contradiction since we are given that x, < b. Thus L < b. A similar argument
shows that L > a.

If f is continuous on [a, b], if a < x, < b for each n, and if limx, = L, then

lim f (xp) = f(L).

The proof is similar to that of Theorem 1(b), and is left as Exercise 15 at the end of
this appendix.
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Continuous Functions on a Closed, Finite Interval

We are now in a position to prove the main results about continuous functions on
closed, finite intervals.

The Boundedness Theorem

If f is continuous on [a, b]; then f is bounded there; that is, there exists a constant
K suchthat |f(x)| < Kifa <x <b.

PROOF We show that f is bounded above; a similar proof shows that f is bounded
below. For each positive integer n let S, be the set of points x in [a, b] such that

fx) > n:
Ss={x:a<x<b and f(x)>n}.

We would like to show that S, is empty for some n. It would then follow that
f(x) < nforall x in [a, b]; that is, n would be an upper bound for f on [a, b].

Suppose, to the contrary, that S, is nonempty for every n. We will show that
this leads to a contradiction. Since S, is bounded below (a is a lower bound), by
completeness S, has a greatest lower bound; call it x,,. (See Figure I1.2.) Evidently
a < x,. Since f(x) > n at some point of [a, b] and f is continuous at that point,
f{x) > n on some interval contained in [a, b]. Hence x, < b. It follows that
f(xp) = n. (If f(x,) < n, then by continuity f(x) < nr for some distance to the
right of x,,, and x,, could not be the greatest lower bound of S,,.)

/\ m £

B

=y

For each n we have S,+1 C S,. Therefore, x,.1 > x, and {x,} is an increasing
sequence. Being bounded above (b is an upper bound) this sequence converges, by
Theorem 2. Let limx, = L. By Theorem 3, a < L < b. Since f is continuous at
L,lim f(x,) = f(L) exists by Theorem 4. But since f(x,) > n, lim f(x,) cannot
exist. This contradiction completes the proof.

-»

The Max-Min Theorem

If f is continuous on [a, b], then there are points v and « in [a, b] such that for any
x in [a, b] we have

f) < flx) < fu);

that is, f assumes maximum and minimum values on [a, b].
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PROOF By Theorem 5 we know that the set S = {f(x) : a < x < b} has an
upper bound and, therefore, by the completeness axiom, a least upper bound. Call
this least upper bound M. Suppose that there exists no point u in [a, b] such that
f(u) = M. Then by Theorem 1(a), 1/(M — f(x)) is continuous on [a, b]. By-
Theorem 5, there exists a constant K such that 1/(M — f(x)) < K for all x in
[a, b]. Thus f(x) < M — 1/K, which contradicts the fact that M is the least upper
bound for the values of f. Hence, there must exist some point # in [a, b] such
that f(u) = M. Since M is an upper bound for the values of f on [a, b], we have
f(x) < f(u) = M forall x in [a, b].

The proof that there must exist a point v in [a, b] such that f(x) > f(v) for
all x in [a, b] is similar.

The Intermediate-Value Theorem

If f is continuous on [a, b] and s is a real number lying between the numbers f(a)
and f(b), then there exists a point ¢ in [a, b] such that f(c) = s.

PROOF To be specific, we assume that f(a) < s < f(b). (The proof for the
case f(a) > s > f(b)is similar) Let § = {x : ¢ < x < band f(x) < s}.
S is nonempty (a belongs to §) and bounded above (4 is an upper bound), so by
completeness S has a least upper bound; call it c.

Suppose that f(c) > s. Then ¢ # a and, by continuity, f(x) > s on some
interval J¢ — &, c¢] where § > 0. But this says ¢ — § is an upper bound for § lower
than the least upper bound, which is impossible. Thus f(c) < s.

Suppose f(c) < s. Then ¢ # b and, by continuity, f(x) < s on some interval
of the form [c, ¢ + §[ for some § > 0. But this says that [¢, ¢ + §[C S, which
contradicts the fact that ¢ is an upper bound for S. Hence we cannot have f(c) < s.
Therefore, f(c) = s.

e

For more discussion of these theorems, and some applications, see Section 1.4.

1. Leta < b < ¢ and suppose that f(x) < g(x) fora < x <c. 5. Every polynomial is continuous on the whole real line.

If limy,p f(x) = L and lim,_ 5 g(x) = M, prove that
L < M. Hint: assume that L > M and deduce that
J{x) > g(x) for all x sufficiently near b. This contradicts
the condition that f(x) < g(x) fora < x < b.

2. If f(x) < K on the intervals [a, ) and (b, c], and if
limyp f(x) = L, prove that L < K.

3. Use the formal definition of limit to prove that
lim,_ 0+ x" = O for any positive, rational number r.

Prove the assertions in Exercises 4-9.

4. f(x) = C (constant) and g(x) = x are both continuous on 10
the whole real line.

6. A rational function (quotient of polynomials) is continuous
everywhere except where the denominator is 0.

7. If n is a positive integer and @ > 0, then f(x) = x'/" is
continuous at x = a.

8. If r = m/n is a rational number, then g(x) = x” is
continuous at every point a > 0.

9. If r = m/n, where m and n are integers and » is odd, show
that g(x) = x” is continuous at every point a < Q. If r > 0,
show that g is continuous at 0 also.

. Prove that f(x) = |x| is continuous on the real line.
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Use the definitions from Chapter 3 for the functions in 16. Suppose that every function that is continuous and bounded
Exercises 11-14 to show that these functions are continuous on [a, b] must assume a maximum value and a minimum
on their respective domains. value on that interval. Without using Theorem 5, prove that
. every function f that is continuous on [a, b] must be

11. sinx 12. cosx . - _

bounded on that interval. Hint: show that g(¢) = ¢/(1 + |¢])
13. Inx 14. ¢* is continuous and increasing on the real line. Then consider
15. Prove Theorem 4. g(f).

Appendix Il

The Riemann Integral

In Section 5.3 we defined the definite integral fab f{x)dx of a function f that is
continuous on the finite, closed interval [a, b]. The integral was defined as a kind
of “limit” of Riemann sums formed by partitioning the interval [a, b] into small
subintervals. In this appendix we will reformulate the definition of the integral so
that it can be used for functions that are not necessarily continuous; in the following
discussion we assume only that f is bounded on [a, »]. Later we will prove
Theorem 2 of Section 5.3, which asserts that any continuous function is integrable.

Recall that a partition P of [a,b] is a finite, ordered set of points
P = {xo, x1, X2,..., Xp},wWherea = xp < X1 < xp < --- < Xy_1 < X, = b. Such
a partition subdivides [a, b] into n subintervals [xp, x11, [x1, x2], ..., [Xn—1. Xnl,
where n = n(P) depends on the partition. The length of the jth subinterval
[)Cj_l, Xj] is A)Cj =Xj — Xj-1.

Suppose that the function f is bounded on [a, b]. Given any partition P, the n
sets S; = {f(x) : xj—1 < x < x;} have least upper bounds M; and greatest lower
bounds m;, (1 < j < n), so that

m; < f(x) < M; on [xj-1, x;51.

We define upper and lower Riemann sums for f corresponding to the partition P
to be

n(P)

U(f,P)=)_ MjAx;  and
j=1
n(P)

L(f, P) =) _mjAx;.
j=1

(See Figure II1.1.) Note that if f is continuous on [a, b], then m; and M; are, in
fact, the minimum and maximum values of f over [x;_;, x;] (by Theorem 6 of
Appendix IT); that is, m; = f(I;) and M; = f(u;), where f(};) < f(x) < f(u;)
for Xj—1 = x < Xxj.
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Upper and lower sums

corresponding to the partition

P = {xg, x1, x2, x3}

Figure ill.2
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y=f)

L(f. P)

X0 X1 X2 X3

x X0 X1 X2 X3

If P is any partition of [a, b] and we create a new partition P* by adding new
subdivision points to those of P, thus subdividing the subintervals of P into smaller
ones, then we call P* a refinement of P.

If P* is a refinement of P, then L(f, P*) > L(f, P) and U(f, P*) < U(f, P).
/

PROOF If S and T are sets of real numbers, and S C T, then any lower bound (or
upper bound) of T is also a lower bound (or upper bound) of S. Hence, the greatest
lower bound of § is at least as large as that of 7', and the least upper bound of § is
no greater than that of 7.

Let P be a given partition of [@, b] and form a new partition P’ by adding one
subdivision point to those of P, say the point k dividing the jth subinterval [x;_;, x;]
of P into two subintervals [x;_y, k] and [k, x;]. (See Figure I11.2.) Let m;, m;.,
and m;.’ be the greatest lower bounds of the sets of values of f(x) on the intervals
[xj1,x;], [xj—1, k], and [k, x;], respectively. Then m; < m; and m; < m}’. Thus
mi(x; —xj-1) < m}(k — Xj_1) +m}’(xj —k),so L(f, P) < L(f, P").

If P* is arefinement of P, it can be obtained by adding one point at a time to
those of P and thus L(f, P) < L(f, P*). We can prove that U(f, P) > U(f, P*)

in a similar manner.

If P and P’ are any two partitions of [a, b], then L(f, P) < U(f, P').

PROOF  Combine the subdivision points of P and P’ to form a new partition P*,
which is a refinement of both P and P’. Then by Theorem 1,

L(f, P) S L(f, P*) SU(f, P*) <U(f, P)).

No lower sum can exceed any upper sum.
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Figure 111.3

Theorem 2 shows that the set of values of L(f, P) for fixed f and various partitions
P of [a, b] is a bounded set; any upper sum is an upper bound for this set. By
completeness, the set has a least upper bound, which we shall denote /.. Thus,
L(f, P) < I, for any partition P. Similarly, there exists a greatest lower bound [*
for the set of values of U(f, P) corresponding to different partitions P. It follows
that I, < I'*. (See Exercise 4 at the end of this appendix.)

The Riemann integral

If f is bounded on [a, ] and I, = I*, then we say that f is Riemann
integrable, or simply integrable on {a, b], and denote by

b
/ fx)dx=1,=1"

the (Riemann) integral of f on [a, b].

The following theorem provides a convenient test for determining whether a given
bounded function is integrable:

The bounded function f is integrable on [a, b] if and only if for every positive
number € there exists a partition P of [a, b] such that U(f, P) — L(f, P) < e.

PROOF Suppose that for every € > 0 there exists a partition P of [a, b] such that
U(f, P) = L(f, P) <€, then

I"<U(f,P) <L(f,P)+e<I +e.

Since I* < I, + € must hold for every € > 0, it follows that I* < I,. Since we
already know that I* > I, we have I* = [, and f is integrable on [a, b].
Conversely, if I* = I, and € > 0 are given, we can find a partition P’ such
that L(f, P’) > I. —€/2, and another partition P” such that U(f, P") < I'* +¢/2.
If P is a common refinement of P’ and P”, then by Theorem 1 we have that
U(f, P)— L(f, P) <U(f, P")— L(f, P') < (€/2) + (¢/2) = ¢, as required.

m Letf(x):[? ggi7;<10rl<x§2

Show that f is integrable on [0, 2] and find [’ f(x) dx.

Solution Lete > Obegiven. Let P = {0, 1 —¢/3, 1+€/3, 2}. Then L(f, P) =
0 since f(x) = 0 at points of each of these subintervals into which P subdivides
[0, 2]. (See Figure I11.3.) Since f(1) = 1, we have

U(f,P):O(1—§)+1(23—€>+0(2—<1+§))=23—E.

Hence, U(f, P) — L(f, P) < € and f is integrable on [0, 2]. Since L(f, P) =0
for every partition, f02 f@)dx=1,=0.
|
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ISR Let f(x) be defined on [0, 1] by

if x is rational
if x 1is irrational.

ro={g

Show that f is not integrable on [0, 1].

PROOF Every subinterval of [0, 1] having positive length contains both rational
and irrational numbers. Hence, for any partition P of [0, 1] we have L(f, P) =0
andU(f, P) = 1. Thus I, =0and I* = 1, so f is not integrable on [0, 1].

Uniform Continuity

When we assert that a function f is continuous on the interval [a, b], we imply
that for every x in that interval and every ¢ > 0, we can find a positive number §
(depending on both x and €) such that | f(y) — f(x)| < € whenever |y — x] < 8
and y lies in [a, b]. In fact, however, it is possible to find a number & depending
only on € such that | f (y) — f(x)| < € holds whenever x and y belong to [a, b] and
satisfy |y — x| < 8. We describe this phenomenon by saying that f is uniformly
continuous on the interval [a, b].

If f is continuous on the closed, finite interval [a, b], then f is uniformly continuous
on that interval.

PROOF Lete > 0 be given. Define numbers x, in [a, b] and subsets S, of [a, b]
as follows:

Xy =a

S = {x2x1 <x<band |f(x) = f(x)| > g}

If S; is empty, stop; otherwise, let

x2 = the greatest lower bound of S

Sy = {x tx2<x <band |f(x)— f(x)| = %}
If §; is empty, stop; otherwise, proceed to define x3 and S5 analogously. We proceed
in this way as long as we can; if x, and S, have been defined and S, is not empty,
we define

Xxp+1 = the greatest lower bound of S,

€
Sps1 = {x CXnrt <X <band |f(x) — f(a)| = 5} .

At any stage where S, is not empty, the continuity of f at x, assures us that
Xnt1 > Xp and | f(xp41) — f(xa)| = €/3.

We must consider two possibilities for the above procedure: either S, is empty
for some n, or S, is nonempty for every n.

Suppose S, is nonempty for every n. Then we have constructed an infinite,
increasing sequence {x,} in [a, b] that, being bounded above (by b), must have
a limit by completeness (Theorem 2 of Appendix II). Let limx, = x*. We
have a < x* < b. Since f is continuous at x*, there exists § > O such that
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[f(x)—f(x*)| < €/8 whenever |[x —x*| < § and x liesin [a, b]. Sincelim x, = x*,
there exists a positive integer N such that |x, — x*| < § whenevern > N. For such
n we have

T = 1 Cnet) = £l = 1 Gonst) = FO) + &) = £
< 1 ) = FGON+1f G) = ()

€ € ¢
< =4 =

88 4

which is clearly impossible. Thus S, must, in fact, be empty for some n.

Suppose that Sy is empty. Thus, S,, is nonempty for n < N, and the procedure
for defining x,, stops with xy. Since Sy_; is not empty, xy < b. In this case define
Xny4+1 = b and let

8 =min{x; — x1, X3 — X2, ..., XN4+1 — XN}

The minimum of a finite set of positive numbers is a positive number, so § > 0. If
x lies in [a, b], then x lies in one of the intervals [xy, x»], [x2, x3], .. ., [xn, Xy+1]-
Suppose x lies in [xg, xg41]. If y isin [a, b] and |y — x| < §, then y lies in either
the same subinterval as x or in an adjacent one; that is, y lies in [x;, x;41], where
j=k—1,k,ork+ 1. Thus,

IfO) = FOOI =170 = fO) + ) — flx) + flx) — fx)]
SO = FOPI 1) = ol 4 | f () — f (0]

e+e+e
<_ —_ u—
3 3 3

:E’

which was to be proved.

We are now in a position to prove that a continuous function is integrable.

If f is continuous on [a, b], then f is integrable on [a, b].

PROOF By Theorem4, f is uniformly continuous on [a, b]. Let € > 0 be given.
Let § > O be such that | f(x) — f(¥)| < €/(b — a) whenever |x — y| < § and x
and y belong to [a, b]. Choose a partition P = {xg, x1, ..., x,} of [a, b] for which
each subinterval [x;_1, x;] has length Ax; < §. Then the greatest lower bound, m;,
and the least upper bound, M;, of the set of values of f(x) on [x;—1, x;] satisfy
M; —m; < €/(b — a). Accordingly,

e ") €
U(f,P)—L(f,P)<E;ij=b—_;(b—a)=e.

Thus f is integrable on [a, b], as asserted.
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I if0<x <1

L Let flx) = [0 ifl<x<2
on [0, 2] and find the value of f02 fx)dx.

|1 ifx=1/n, n=1,23, ...

2 et Jlx) = [ 0 for all other values of x ’

Show that f is integrable over [0, 1] and find the value of
the integral jol Flx)dx.

3. Let f(x) = l/nif x = m/n, where m, n are integers having
no common factors, and let f(x) = 0 if x is an irrational
number. Thus, f(1/2) = 1/2, f(1/3) = f(2/3) = 1/3,
f(1/4) = f(3/4) = 1/4, etc. Show that f is integrable on
[0, 1] and find j;)l f(x)dx. Hint: show that for any € > 0,
only finitely many points of the graph of f over [0, 1] lie
above the line y = €.

Prove that f is integrable

4. Prove that I, and 7* defined in the paragraph following
Theorem 2 satisfy I, < I'* as claimed there.

Appendix IV

. Prove parts (c), (d), (e), (f), (), and (h) of Theorem 3 in

Section 5.4 for the Riemann integral.

. Use the definition of uniform continuity given in the

paragraph preceding Theorem 4 to prove that f(x) = /x is
uniformly continuous on [0, 1]. Do not use Theorem
Theorem 4 itself.

. Show directly from the definition of uniform continuity

(without using Theorem 5 of Appendix II) that a function f
uniformly continuous on a closed, finite interval is
necessarily bounded there.

. If f is bounded and integrable on [a, b], prove that

F(x) = fax f(t)dt is uniformly continuous on [a, b]. (If f
were continuous, we would have a stronger result; F would
be differentiable on (a, b) and F’(x) = f(x) (which is the

Fundamental Theorem of Calculus).)

Differential Equations

Introduction A differential equation (or DE) is an equation that involves one or
more derivatives of an unknown function. Solving the differential equation means
finding a function (or every such function) that satisfies the differential equation.

Many physical laws and relationships between quantities studied in various
scientific disciplines are expressed mathematically as differential equations. For
example, Newton’s Second Law of Motion (F = ma) states that the position x (¢)
at time ¢ of an object of constant mass m subjected to a force F(¢) must satisfy the
differential equation (equation of motion):

d%x Fa)
m-—:r= .
de?

Similarly, the biomass m(¢) at time ¢ of a bacterial culture growing in a uniformly
supporting medium changes at a rate proportional to the biomass:

dm

Pl km(1),
which is the differential equation of exponential growth (or, if k& < 0, exponential
decay). Because differential equations arise so extensively in the abstract mod-
elling of concrete phenomena, such equations and techniques for solving them are
at the heart of applied mathematics. Indeed, most of the existing mathematical
literature is either directly involved with differential equations or is motivated by
problems arising in the study of such equations. Because of this, various differential
equations, terms for their description, and techniques for their solution are intro-
duced throughout Calculus: A Complete Course. This appendix provides some
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introductory background not covered elsewhere in the book. However, students of
mathematics and its applications usually take one or more full courses on differential
equations, and even then hardly scratch the surface of the subject.

Classifying Differential Equations
Differential equations are classified in several ways. The most significant classifi-
~atinn ie hacad an the number nf variahles with resnect to which derivatives appear

d%u , 3%u

a7 ¢ a2

models the lateral displacement u (x, ¢) at position x at time ¢ of a stretched vibrating
string. We will not discuss partial differential equations in this appendix.

Differential equations are also classified with respect to order. The order
of a differential equation is the order of the highest-order derivative present in
the equation. The one-dimensional wave equation is a second-order PDE. The
following example records the order of two ODEs.

d2
d—); + x3y = sinx has order 2,
x
&>y dy\* _ d%
73 + 4x (E;) =y 2 + e’ has order 3.

Like any equation, a differential equation can be written in the form F = 0, where
F is a function. For an ODE, the function F can depend on the independent variable
(usually called x or ¢), the unknown function (usually y), and any derivatives of the
unknown function up to the order of the equation. For instance, an nth-order ODE
can be written in the form

Fx,y,y,y" ....y™) =0

Linear ODEs

An important special class of differential equations consists of those that are linear.
An nth-order linear ODE has the form

an ()Y (x) + a1 )y (x) + - --
+ & (x)y"(x) + a1 (x)y'(x) + ap(x)y(x) = f(x),

or, more simply,
P,(D)y(x) = f(x),
where P, (D) is the nth-order differential operator

Py(D) = a,(x)D" + ay_1(x)D" ' 4+ - - - 4+ ay(x) D* + a;(x) D + ap(x)
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obtained by substituting the differential operator D = d/dx for the variable r in
the nth-degree polynomial

Po(r) = an(O)r" + an—1 Or"™' + -+ ax(x)r? + a1 (x)r + ao(x),

having coefficients depending on the variable x. It is often useful to write linear
DE:s in terms of differential operators in this way.

Each term in the expression on the left side of the linear DE is the product of
a coefficient that is a function of x and a second factor that is either y or one of the
derivatives of y. The term f(x) on the right does not depend on y; it is called the
nonhomogeneous term.

A linear ODE is said to be homogeneous if all of its terms involve the unknown
function y, that is, if f(x) is identically zero. If f(x) is not identically zero, the
equation is nonhomogeneous.

IR  The first DE in Example 1,

d*y 3 )

—= + x’y = sinx,

dx? Y
is linear and nonhomogeneous. Here, the coefficients are az(x) = 1, a;(x) = 0,
and ag(x) = x3, and the nonhomogeneous term is f(x) = sinx. Although it can

be written in the form

d*y dy\> d%
Lo () -y 2 e =0,
dx? + x(dx) Yaxr ¢

the second equation in Example 1 is not linear (we say it is nonlinear) because
the second term involves the square of a derivative of y, the third term involves the
product of y and one of its derivatives, and the fourth term is not y times a function
of x. The equation

Py . d’y dy
(1+x2)ﬁ+smxw—4d—;+y=0

is a linear equation of order 3. The coefficients are a3 (x) = 1 + x2, a»(x) = sin x,
ai(x) = —4,and ap(x) = 1. Since f(x) = 0, this equation is homogeneous.
|

The following theorem states that any linear combination of solutions of a linear,
homogeneous DE is also a solution. This is an extremely important fact about
linear, homogeneous DEs.

If y = y1(x) and y = y,(x) are two solutions of the linear, homogeneous DE
any” 4+ an_1y" TV 4+t ay + a1y +agy =0,

then so is the linear combination
y = Ayi1(x) + By (x)

for any values of the constants A and B.
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PROOF We are given that

-1
a,,yf") +a,,41yf" )

a,,yé") + an_lyénfl) + -+ ayy +aryy +aoy: =0.

+ -+ @y +ayy+ayr=0  and

Multiplying the first equation by A and the second by B and adding the two gives

an(Ay" + By") + an_1(Ay" Y 4 ByS™ )
+ .- +a2(Ay;/ + Byé’) + a (Ayi =+ Byé) + aO(A,YI 4 Byz) —=0.

Thus, y = Ay;(x) + Bya(x) is also a solution of the equation.

The same kind of proof can be used to verify the following theorem.
If y = y1(x) is a solution of the linear, homogeneous equation
any™ 4+ a1y V4t @y’ +ary +agy =0
and y = y,(x) is a solution of the linear, nonhomogeneous equation
any™ + a0 1y 4+ @y +ary +aoy = f(x),
then vy = y;(x) + y2(x) is also a solution of the same linear, nonhomogeneous

equation.

We made extensive use of these two facts when we discussed second-order linear
equations with constant coefficients in Section 3.7.

First-Order ODEs
We have discussed techniques for solving several kinds of first-order DEs in various

sections of this book:

d
e Equations of the form le = f(x) were discussed in Section 2.10.
X

d
e Equations of the form v _ f(x)g(y) (called separable equations) were
discussed in Section 7.9

d
e Equations of the form d—y— + p(x)y = ¢g(x) (which are linear and non-
x
homogeneous) were also treated in Section 7.9.

Unfortunately, the term homogeneous is used in more than one way in the study of
differential equations. Certain first-order ODEs that are not necessarily linear are
called homogeneous for a different reason than the one applying for linear equations
above. A first-order DE of the form

dy y
dx f (x)

is said to be homogeneous because y/x and, therefore, g(x, y) = f(y/x) are ho-
mogeneous of degree 0 in the sense described in Section 12.5. Such a homogeneous

equation can be transformed into a separable equation (and therefore solved) by
means of a change of dependent variable. If we set

v= =, or, equivalently, y = xv{x),
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then we have

d d
—y=v+x v

dx dx’
and the original differential equation transforms into

dv _ f@)—v

dx X

which is separable.

m Solve the equation

dy x*4xy
dx ~ xy+y?

Solution The equation is homogeneous. (Divide the numerator and denominator
of the right-hand side by x to see this.) If y = vx, the equation becomes

dv 1+wv 1

or

dv 1— 9?2

X — =
dx v

Separating variables and integrating, we calculate

/ vdv dx )
— = = Letu = 1 — 2.
1—22 x
1 [du _ dx
2 u X
—In|u| =2In|x|+ C, = In Cpx? (C, =1nGCy).
1
—=C2x2
||
c
-0 == (C3=1/Cy).
X
1_)’2 _ G
x2|  x2°

The solution is best expressed in the form x> — y> = C,;. However, near points
where y # 0, the equation can be solved for y as a function of x.

Exact Equations

A first-order differential equation expressed in differential form as

M, v)dx + Nix,y)dy =0,
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L ) dy M(x,y)
hich lentto — = —
whichn 1S equlva ent to dx N(_x,y)

the differential of a function ¢ (x, y):

, is said to be exact if the left-hand side is

do(x,y) = M(x,y)dx + N(x, y)dy.

The function ¢ is called an integral function of the differential equation. The level
curves ¢(x, y) = C of ¢ are the solution curves of the differential equation. For
example, the differential equation

xdx+ydy=0

has solution curves given by
x4yr=C

since d(x% + y?) = 2(x dx + ydy) = 0.

Remark The condition that the differential equation M dx + N dy = 0 should be
exact is just the condition that the vector field

F=Mu, y)i+Nx,y)j

should be conservative; the integral function of the differential equation is then the
potential function of the vector field. (See Section 15.2.)

A necessary condition for the exactness of the DE M dx + N dy = 0 is that

M 0N

9y ax’

2 2

this just says that the mixed partial derivatives of the integral

an
axady ayadx
function ¢ must be equal.

Once you know that an equation is exact, you can often guess the integral
function. In any event, ¢ can always be found by the same method used to find the
potential of a conservative vector field in Section 15.2.

[ EVGLY: W Verify that the DE

(2x +siny —ye ")dx + (xcosy+cosy+e *)dy=0
is exact and find its solution curves.
Solution Here, M =2x +siny — ye ™  and N = xcosy + cosy + ¢ *. Since

oM oN

—X
— =cosy —e¢ = —,
0x

dy
the DE is exact. We want to find ¢ so that

d d
—¢=M=2x+siny—ye'x and —¢:N=xcosy+cosy+e_x.
ox dy
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Integrate the first equation with respect to x, being careful to allow the constant of
integration to depend on y:

¢(x,y) = /(2x +siny — ye ¥)dx = x>+ xsiny + ye ¥ + C1(¥).
Now substitute this expression into the second equation:
—Xx a¢ —Xx !
xcosy+cosy+e ' = o =xcosy+e "+ Ci(y).
y

Thus Cj(y) = cosy, and C;(y) = siny + C,. (It is because the original DE was
exact that the equation for C{(y) turned out to be independent of x; this had to
happen or we could not have found C; as a function of y only.) Choosing C; = 0,
we find that ¢(x, y) = x> + x siny + ye™™ + sin y is an integral function for the
given DE. The solution curves for the DE are the level curves

x? 4 xsiny 4+ ye ¥ +siny = C.

Integrating Factors

Any ordinary differential equation of order 1 and degree 1 can be expressed in
differential form: M dx + N dy = 0. However, this latter equation will usually
not be exact. It may be possible to multiply the equation by an integrating factor
1 (x, y) so that the resulting equation

e, YYMx, v)dx + p(x, y) N(x,y)dy =0

is exact. In general, such integrating factors are difficult to find; they must satisfy
the partial differential equation

ou au IN oM
M * . N L] = ’ P ’
(x, ) 3y (x, ) o pix, y) ( ox  dy )
which follows from the necessary condition for exactness stated above. We will not
try to solve this equation here.

Sometimes it happens that a differential equation has an integrating factor
depending on only one of the two variables. Suppose, for instance, that u(x) is
an integrating factor for M dx + N dy = 0. Then p(x) must satisfy the ordinary
differential equation

du oM aN
N — = _—
or
aM 8GN

1 dp 3y ox
wx)dx N y)

This equation can be solved (by integration) for 41 as a function of x alone provided
that the right-hand side is independent of y.
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Show that (x + y?)dx + xydy = 0O has an integrating factor
depending only on x, find it, and solve the equation.

Solution Here M = x + y?and N = xy. Since

oM oN
ay ax _2y—y_l
N@x,y) — xy  x

does not depend on y, the equation has an integrating factor depending only on x.
This factor is given by du/u = dx/x. Evidently ;1 = x is a suitable integrating
factor; if we multiply the given differential equation by x, we obtain

3 2,2
0=(x2+xy2)dx+x2ydy=d(i€—+x Y )

3 2

The solution is therefore 2x3 + 3x%2y? = C.
|

Remark Of course, it may be possible to find an integrating factor depending on
y instead of x. See Exercises 34—36 below. It is also possible to look for integrating
factors that depend on specific combinations of x and y, for instance, xy. See
Exercise 37.

Slope Fields and Solution Curves
A general first-order differential equation of the form

d
;,% = f(x,y)

specifies a slope f(x,y) at every point (x, ¥) in the domain of f and therefore
represents a slope field. Such a slope field can be represented graphically by
drawing short line segments of the indicated slope at many points in the x y-plane.
Slope fields resemble vector fields, but the segments are usually drawn having the
same length and without arrowheads. Figure IV.1 portrays the slope field for the
differential equation

dy_

=x—y.
dx Y

Solving a typical initial-value problem

dy
3; - f(X, y)
y(x0) = yo
involves finding a function y = ¢ (x) such that
¢'(x)=f(x,¢(x)) and  ¢(xo) = yo.

The graph of the equation y = ¢(x) is a curve passing through (xo, yo) that is
tangent to the slope-field at each point. Such curves are called solution curves of
the differential equation. Figure IV.1 shows four solution curves for y/ = x — y
corresponding to the initial conditions y(0) = C, where C = —2, —1, 0, and 1.
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[T T T S S S S N e g

Vv

The slope field for the

Figure IV.1

R

DE y’ = x — y and four solution curves

for this DE

The DE y’ = x — y is linear and can be solved explicitly by the method of Section

7.9. Indeed, the solution satisfying y(0)

differential equations of the form y’

Cisy=x—1+4(C+ l)e™™. Most

f(x, y) cannot be solved for y as an explicit

function of x, so we must use numerical approximation methods to find the value

of a solution function ¢ (x) at particular points.

Existence and Uniqueness of Solutions

Even if we cannot calculate an explicit solution of an initial-value problem, it is

important to know when the problem has a solution and whether that solution is

unique.

REM o An existence and uniqueness theorem for first-order initial-value problems

Suppose that f(x, y) and fo(x, y) = (3/9dy) f(x, y) are continuous on a rectangle

R of the forma <x < b

, containing the point (xo, yo) in its interior.

Then there exists a number § > 0 and a unique function ¢ (x) defined and having

<d
a continuous derivative on the interval (xo — 8, xo + &) such that ¢ (xg)

=Y

yo and

flx,¢()) for xo — 8 < x < xo + 8. In other words, the initial-value

'(x)

)

problem

(%)

fx, )

dy _
dx
y(x0) = yo

has a unique solution on (x¢ — &, xp + 8).

We give only an outline of the proof here. Any solution y = ¢ (x) of the initial-value

problem (x) must also satisfy the integral equation

X

(k)

f(t. o) dt,

=YO+/

o(x)

0
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.1

Figure 1V.2 The solution to y’ = y2,
y(0) = 1 is the part of the curve

y = 1/(1 — x) to the left of the vertical
asymptote at x = 1

and, conversely, any solution of the integral equation (x+*) must also satisfy the
initial-value problem (*). A sequence of approximations ¢,(x) to a solution of
(*%x) can be constructed as follows:

$o(x) = Yo
¢>n+1(x)=yo+f ft.¢a®))dt  for n=0,1,2,....

X0

(These are called Picard iterations.) The proof of Theorem 3 involves showing
that

lim ¢, (x) = $(x)

exists on an interval (xo — 8, xo + 6) and that the resulting limit ¢ (x) satisfies
the integral equation (x%). The details can be found in more advanced texts on
differential equations and analysis.

Remark Some initial-value problems can have nonunique solutions. For example,
the functions v, (x) = x> and y,(x) = 0 both satisfy the initial-value problem

dy 2
22— 3423
dx Y
y(0) =0.

In this case f(x,y) = 3y*? is continuous on the whole xy-plane. However,

df/dy = 2y~'/3 is not continuous on the x-axis and is therefore not continuous on
any rectangle containing (0, 0) in its interior. The conditions of Theorem 3 are not
satisfied and the initial-value problem has a solution but not a unique one.

Remark Theunique solution y = ¢ (x) to the initial-value problem () guaranteed
by Theorem 3 may not be defined on the whole interval [a, b], because it can
“escape” from the rectangle R through the top or bottom edges. Even if f(x, y)
and (9/9y) f (x, y) are continuous on the whole xy-plane, the solution may not be
defined on the whole real line. For example

dy 2

y= satisfies the initial-value problem dx
1—x

y(©0) =1

but only for x < 1. Starting from (0, 1), we can follow the solution curve as far as
we want to the left of x = 0, but to the right of x = 0 the curve recedes to oo as
x — 1—. It makes no sense to regard the part of the curve to the right of x = 1 as
part of the solution curve to the initial-value problem. (See Figure 1V.2.)

Numerical Methods

Suppose that the conditions of Theorem 3 are satisfied, so we know that the initial-
value problem

d
ﬁ=f(x,y)

y(x0) = yo
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has a unique solution y = ¢(x) on some interval containing xy. Even if we cannot
solve the differential equation and find ¢ (x) explicitly, we can still try to find
approximate values y, for ¢(x,) at a sequence of points

X0, x1=xo+h, x2=xp+2h, x3=2x0+3h,

starting at xo. Here 2 > 0 (or h < 0) is called the step size of the approxima-
tion scheme. In the remainder of this section we will describe three methods for
constructing the approximations {y,}, namely

1. The Euler method,
2. The improved Euler method, and
3. The fourth-order Runge—Kutta method.

Each of these methods starts with the given value of yo and provides a formula
for constructing y,.; when you know y,. The three methods are listed above in
increasing order of the complexity of their formulas, but the more complicated
formulas produce much better approximations for any given step size .

The Euler method involves approximating the solution curve y = ¢ (x) by a
polygonal line (a sequence of straight line segments joined end to end), where each
segment has horizontal length # and has slope determined by the value of f(x, y)
at the end of the previous segment. Thus, if x, = x¢ + rh, then

¥1 = Yo + f(xo0, yo)h
y2=y1+ flx1, yDh
y3 =¥+ f(x2, y2)h

and, in general,
 Tteration formulas for Euler’s method
L

S TGN Use Euler’s method to find approximate values for the solution of
the initial-value problem

dy _
dx
y0) =1

xr=y

on the interval [0, 1] using
(a) Sstepsofsizeh =0.2 and
(b) 10 steps of size h = 0.1.

Calculate the error at each step, given that the problem (which involves a linear
equation, so can be solved explicitly) has solution y = ¢(x) = x — 1 + 2e7*.
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Solution
(a) Here, we have f(x,y) =x —y,x0 =0, y0 = 1, and & = 0.2, so that

n
Xn = g’ Ynt+1 = Yn + 0.2()6,1 - yn)3

and the erroris e, = ¢(x,) — y, forn =0, 1, 2,3, 4, and 5. The results of the
calculation, which was done easily using a computer spreadsheet program, are
presented in Table 1.

Table 1. Euler approximations with & = (0.2

n Xn Yn S (xn, yu) Yn+1 en = d(x,) — ¥n
0 0.0 1.000000 —1.000000 0.800000 0.000000
1 0.2 0.800000 —0.600000 0.680000 0.037462
2 0.4 0.680000 —0.280000 0.624000 0.060640
3 0.6 0.624000 —0.024000 0.619200 0.073623
4 0.8 0.619200 0.180800 0.655360 0.079458
5 1.0 0.655360 0.344640 0.080399

The exact solution y = ¢ (x) and the polygonal line representing the Euler approxi-
mation are shown in Figure IV.3. The approximation lies below the solution curve,
as is reflected in the positive values in the last column of Table 1, representing the
error at each step.

(b) Here, we have h = 0.1, so that

n
n = T nrl = Yo +0.100 — ¥y
=15 Y+l = Yn +0.1(x4 — yu)
forn =0, 1, ..., 10. Again we present the results in tabular form:

Table 2. Euler approximations with 2z = 0.1

n Xn Yn S xn, ¥n) Yn41 e, = $(Xn) — Yu
0 0.0 1.000000 —1.000000 0.900000 0.000000
1 0.1 0.900000 —0.800000 0.820000 0.009675
2 0.2 0.820000 —0.620000 0.758000 0.017462
3 0.3 0.758000 —0.458000 0.712200 0.023636
4 04 0.712200 —0.312200 0.680980 0.028440
5 0.5 0.680980 —0.180980 0.662882 0.032081
6 0.6 0.662882 —-0.062882 0.656594 0.034741
7 0.7 0.656594 0.043406 0.660934 0.036577
8 0.8 0.660934 0.139066 0.674841 0.037724
9 0.9 0.674841 0.225159 0.697357 0.038298
10 1.0 0.697357 0.302643 0.038402

Observe that the error at the end of the first step is about one-quarter of the error at
the end of the first step in part (a), but the final error at x = 1 is only about half as
large as in part (a). This behaviour is characteristic of Euler’s method.

n




Figure IV.3 The solution y = ¢(x)

toy’ = x —y, y(0) = 1, and an Euler
approximation to it on [0, 1] with step
size h = 0.2
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09 |
y=¢x)=x—-14+2e""

0.8

0.7

0.2

If we decrease the step size h, it takes more steps (n = |x — xo|/h) to get from the
starting point xo to a particular value x where we want to know the value of the
solution. For Euler’s method it can be shown that the error at each step decreases,
on average, proportionally to 42, but the errors can accumulate from step to step, so
the error at x can be expected to decrease proportionally to nh? = |x — xo|h. This is
consistent with the results of Example 6. Decreasing 4 and so increasing n is costly
in terms of computing resources, so we would like to find ways of reducing the error
without decreasing the step size. This is similar to developing better techniques
than the Trapezoid Rule for evaluating definite integrals numerically.

The improved Euler method is a step in this direction. The accuracy of
the Euler method is hampered by the fact that the slope of each segment in the
approximating polygonal line is determined by the value of f(x, y) at one endpoint
of the segment. Since f varies along the segment, we would expect to do better by
using, say, the average value of f(x, y) at the two ends of the segment, that is, by
calculating y,; from the formula

S Ony yn) + f K15 Y1)

Yntt =Yn+ h >

Unfortunately, y,+1 appears on both sides of this equation, and we can’t usually
solve the equation for y,,;. We can get around this difficulty by replacing y,, on
the right side by its Euler approximation y, + Af (x,, ¥,). The resulting formula is
the basis for the improved Euler method.

Tteration formulas foif the improved Enler method
Xt = Xn + h
Unt1 = Yo +h [ Qn, Yn)

kf(xn’,j Yn) + [ (Xns1, Uns1)
2 ’

Ynst =Ynt+h
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m Use the improved Euler method with 2 = 0.2 to find approximate
values for the solution to the initial-value problem of Example 6 on [0, 1]. Compare
the errors with those obtained by the Euler method.

Solution Table 3 summarizes the calculation of five steps of the improved Euler
method for f(x,y) =x — y,x =0,and yo = 1.

Table 3. Improved Euler approximations with 4 = 0.2

n Xn Yn Upt1 Yn+1 en = ¢(Xn) — Va
0 0.0 1.000000 0.800000 0.840000 0.000000
1 0.2 0.840000 0.712000 0.744800 —0.002538
2 0.4 0.744800 0.675840 0.702736 —0.004160
3 0.6 0.702736 0.682189 0.704244 —0.005113
4 0.8 0.704244 0.723395 0.741480 —0.005586
5 1.0 0.741480 0.793184 —0.005721

Observe that the errors are considerably less than 1/10 those obtained in Exam-
ple 6(a). Of course, more calculations are necessary at each step, but the number of
evaluations of f(x, y) required is only twice the number required for Example 6(a).
As for numerical integration, if f is complicated, it is these function evaluations
that constitute most of the computational “cost” of computing numerical solution;

Remark It can be shown for well-behaved functions f that the error at each step
in the improved Euler method is bounded by a multiple of 43, rather than h? as for
the (unimproved) Euler method. Thus, the cumulative error at x can be bounded by
a constant times |x — xo|A>. If Example 7 is repeated with 10 steps of size h = 0.1,
the error at n = 10 (i.e., at x = 1) is —0.001323, which is about 1/4 the size of the
error at x = 1 with 4 = 0.2

The fourth-order Runge-Kutta method further improves upon the improved
Euler method, but at the expense of requiring more complicated calculations at
each step. It requires four evaluations of f(x, y) at each step, but the error at each
step is less than a constant times 4>, so the cumulative error decreases like 4* as
h decreases. Like the improved Euler method, this method involves calculating
a certain kind of average slope for each segment in the polygonal approximation
to the solution to the initial-value problem. We present the appropriate formulas
below but cannot derive them here.

Iteration formulas for the Runge-Kutta method
Xnvi =Xyt h
Pr= f(xn; Vn)

h h
qﬂ:f xn+_2_ayn+—pn

2
rnzf(xn+§ J’n‘f“i%)
sp= fQn+h, Y, +hry)
+ 2qn + 21y 85,

)’n+l=yu+hpu' 6



APPENDIX IV: DIFFERENTIAL EQUATIONS A-37

Use the fourth-order Runge—Kutta method with & = 0.2 to find
approximate values for the solution to the initial-value problem of Example 6 on
[0, 1]. Compare the errors with those obtained by the Euler and improved Euler
methods.

Solution Table 4 summarizes the calculation of five steps of the Runge-Kutta
method for f(x,y) =x — y, x0 = 0, and yp = 1 according to the formulas above.
The table does not show the values of the intermediate quantities p,, g, ¥n, and
sa» but columns for these quantities were included in the spreadsheet in which the
calculations were made.

Table 4. Fourth-order Runge-Kutta approximations with 2 = 0.2

n Xn Yn en = (Xu) — Yn
0 0.0 1.000000 0.0000000
1 0.2 0.837467 —0.0000052
2 0.4 0.740649 —0.0000085
3 0.6 0.697634 —0.0000104
4 0.8 0.698669 —0.0000113
5 1.0 0.735770 —0.0000116

The errors here are about 1/500 of the size of the errors obtained with the improved
Euler method and about 1/7,000 of the size of the errors obtained with the Euler
method. This great improvement was achieved at the expense of doubling the num-
ber of function evaluations required in the improved Euler method and quadrupling
the number required in the Euler method. If we use 10 steps of size # = 0.1 in the
Runge—Kutta method, the error at x = 1 is reduced to —6.66482 x 107, which is
less than 1/16 of its value when & = 0.2.

Our final example shows what can happen with numerical approximations to a
solution that is unbounded.

(3 €T Obtain solutions at x = 0.4, x = 0.8, and x = 1.0 for solutions to
the initial-value problem

y/ — y2
y©0) =1

using all three methods described above, and using step sizes & = 0.2, & = 0.1,
and 4 = 0.05 for each method. What do the results suggest about the values of the
solution at these points? Compare the results with the actual solution y = 1/(1 —x).

Solution The various approximations are calculated using the various formulas
described above for f(x, y) = y%, xo = 0, and yy = 1. The results are presented in
Table 5.
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Table 5. Comparing methods and step sizes for y’ = y2, y(0) = 1

h=0.2 h=0.1 h =0.05
Euler
x=04 1.488000 1.557797 1.605224
x=0.38 2.676449 3.239652 3.793197
x=1.0 4.109124 6.128898 9.552668
Improved Euler
x=04 1.640092 1.658736 1.664515
x =038 4.190396 4.677726 4.897519
x=1.0 11.878846  22.290765 43.114668
Runge-Kutta
x=04 1.666473 1.666653 1.666666
x =028 4.965008 4.996628 4.999751
x=1.0 41.016258  81.996399 163.983395

Little useful information can be read from the Euler results. The improved Euler
results suggest that the solution exists at x = 0.4 and x = 0.8, but likely not
at x = 1. The Runge-Kutta results confirm this and suggest that y(0.4) = 5/3
and y(0.8) = 5, which are the correct values provided by the actual solution
y = 1/(1 — x). They also suggest very strongly that the solution “blows up” at (or
near) x = 1.

_ W

| Exercises

14. y; = ¢ is a solution of y” — k?y = 0. Guess and verify
another solution y; that is not a multiple of y;. Then find a
solution that satisfies y(1) = O and y'(1) = 2.

In Exercises 1-10, state the order of the given DE and whether it
is linear or nonlinear. If it is linear, is it homogeneous or
nonhomogeneous?

Io 42 15. Find a solution of y” + y = 0 that satisfies y(;r/2) = 2y(0)
1. ‘T‘ — 5y 2. d_z +x=y and y(/4) = 3. Hint: see Exercise 11.

ax

x 16. Find two values of r such that y = ¢"* is a solution of
dy . " —y" — 2y = 0. Then find a solution of the equation that

NG 4V ) — A q

Yax =7 Yo Xy = xsinx satisfies y(0) = 1, y'(0) = 2.
5 v 4 ysinxy =y 6. ' +4y — 3y = 22 17. Verify that y = x is a solution of y”" + y = x, and find a

solution y of this DE that satisfies y(z) = 1 and y' () = 0.

Ay dy Hint: use Exercise 11 and Theorem 2.
7. — +t—

dx inr— 0
0 i cost +xsmt = 18

203
Ty =t 8. . Verify that y = —e is a solution of y” — y = e, and find a

solution y of this DE that satisfies y(1) = 0 and y'(1) = 1.

9. v 4y =xPy 10. x°y" + €y = ! Hint: use Exercise 12 and Theorem 2.
y . . L .
Solve the differential equations in Exercises 19-24.

11. Verify that y = cosx and y = sin x are solutions of the DE Y nHat equations in Bxercises

¥" 4+ v = 0. Are any of the following functions solutions: 19 d_y _x+y 20 d_y XY
(a) sin x — cos x, (b) sin(x + 3), and (c) sin 2x? Justify your Tdx T x—y Tdx T x242y2
answers. ) 5 3 )
12. Verify that y = ¢* and y = e™* are solutions of the DE 21. dy = x_w 22. dy = %
y” — v = 0. Are any of the following functions solutjons: dx x dx  3x%y+y
(a) coshx = (¥ + ™), (b) cos x, and (c) x°? Justify d d
your ’mswersz 23, 222 = ¥ + x cos? (X) 24, T2
¢ : dx X dx x
13. y| = cos(kx) is a solution of y” 4 k?y = 0. Guess and 25. Find an equation of the curve in the xy-plane that passes

verify another solution y; that is not a multiple of y;. Then
find a solution that satisfies y(;r/k) = 3 and y'(7w/ k) = 3.

through the point (1, 3) and has, at every point (x, y) on it,
slope equal to 1 + (2y/x).
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A computer is almost essential for doing Exercises 39—44. The
calculations are easily done with a spreadsheet program in which
formulas for calculating the various quantities involved can be
replicated down columns to automate the iteration process.

26. Show that the change of variables § =x —xg, 7=y — yo
transforms the equation

A-39

217.

dy ax+by+c

dx ex+ fy+g a 3.

into the homogeneous equation

Use the Euler method with step sizes (a) & = 0.2, (b)
h = 0.1, and (c) & = 0.05 to approximate y(2) given that
vy =x+yand y(1) =0.

d £+ by B 40. Repeat Exercise 39 using the improved Euler method.
n a
d-g = eE+ Bl 41. Repeat Exercise 39 using the Runge—Kutta method.
o B 42. Use the Euler method with step sizes (a) h = 0.2, and (b)

provided (xp, yo) is the solution of the system

ax+by+c=0 43.
ex+ fy+g=0. 44,

h = 0.1 to approximate y(2) given that y’ = xe™” and
y(©0)=0.
Repeat Exercise 42 using the improved Euler method.

Repeat Exercise 42 using the Runge—Kutta method.

Solve the integral equations in Exercises 45—46 by rephrasing

Use the technique of the previous exercise to solve the
. dy x+4+2y—4
equation — =

= — 45.
dx 2x—y-3

Show that the DEs in Exercises 28-31 are exact, and solve them.

28.
29.
30.

31.

2+ y)dx + (2y +x)dy =0 46.

(e*siny +2x)dx + (e* cosy +2y)dy =0
eV +xy)dx +x2eY dy =0

47.

2
2
<2x+l—y—2) dx+ZXdy=0
X X

Show that the DEs in Exercises 32-33 admit integrating factors
that are functions of x alone. Then solve the equations.

32,

33.

34,

35.

(x> 4+2y)dx —xdy =0
2

(xe* +xIny+ y)dx + <x— +xlnx +xsiny) dy=0
y

What condition must the coefficients M (x, y) and N(x, y)
satisfy if the equation M dx + N dy = 0 is to have an
integrating factor of the form p(y), and what DE must the

integrating factor satisfy? 48.

Find an integrating factor of the form w(y) for the equation

them as initial-value problems.

X
d
y(x) =2 +/ (y())* dt. Hint: find 2 and y(1).
. dx

X
d
u(x) =143 / #2u(t) dt. Hint: find d—'f and u(2).
2 X
The methods of this section can be used to approximate
definite integrals numerically. For example,

b
I=/ fx)dx

is given by I = y(b), where

y=f(x) and y(@)=0.

Show that one step of the Runge—Kutta method with

h = b — a gives the same result for / as does Simpson’s
Rule with two subintervals of length A /2.

If¢$©0) = A >0and ¢'(x) > k¢p(x) on [0, X], where k > 0
and X > O are constants, show that ¢ (x) > Akt on [0, X1.
Hint: calculate (d/dx) (¢ (x)/e*).

2y2(x + yz) dx + xy(x + 6y2) dy =0, =49, Consider the three initial-value problems
A o =u? u(0) = 1
and hence solve the equation. Hint: see Exercise 34. p 5
. . . . B) Y=x+y y0) =1
36. Find an integrating factor of the form p(y) for the equation
ydx — (2x 4+ y3e¥)dy = 0, and hence solve the equation. ©  V=1+v v(0) =1

37.

38.

Hint: see Exercise 34.

What condition must the coefficients M (x, y) and N(x, y)
satisfy if the equation M dx 4+ N dy = 0 is to have an
integrating factor of the form @ (xy), and what DE must the
integrating factor satisfy?

Find an integrating factor of the form u(xy) for the equation

y? xsinx
(xcosx + —) dx — (
X y

and hence solve the equation. Hint: see Exercise 37.

+y) dy =0,

(a) Show that the solution of (B) remains between the
solutions of (A) and (C) on any interval [0, X] where
solutions of all three problems exist. Hint: we must
have u(x) > 1, y(x) > 1, and v(x) > 1 on [0. X].
(Why?) Apply the result of Exercise 48to¢p = y — u
andtop =v — y.

(b) Find explicit solutions for problems (A) and (C). What
can you conclude about the solution to problem (B).

(c) Use the Runge—Kutta method with 2 = 0.05, 4 = 0.02,
and 7 = 0.01 to approximate the solution to (B) on
[0, 1]. What can you conclude now?
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Appendix V

Doing Calculus with Maple

Computer algebra systems like Maple and Mathematica are capable of doing most
of the tedious calculations involved in doing calculus, especially the very intensive
calculations required by many applied problems. (They cannot, of course, do the
thinking for you; you must still fully understand what you are doing and what are
the limitations of such programs.) Throughout this text we have inserted material
illustrating how to use Maple to do common calculus-oriented calculations. These
insertions range in length from single paragraphs and remarks to entire sections.
To help you locate the Maple material appropriate for specific topics, we include
below a list pointing to the text sections containing Maple examples and the pages
on which they start.

Note, however, that this material assumes you are familiar with the basics of
starting a Maple session, preferably with a graphical user interface which typically
displays the prompt “>" when it is waiting for your input. In this book the input is
shown in colour. It normally concludes with a semicolon “;” followed by pressing
the <enter> key, which we omit from our examples. The output is typically
printed by Maple centred in the window; we show it in black. For instance,

> factor(x™2-x-2);

x+Dx—-2)

The author used Maple V, Release 5, and Maple 6 for preparing these examples.
Some of the examples involve procedure definition and worksheet files available
from the website for this text:

http://www.pearsoned.ca/text/adams_calc

Two of the Maple procedures used in Section 13.7 for finding roots of systems of
nonlinear equations and for finding and classifying critical points of functions of
several variables are quite lengthy, and rather than list them there, we have included
their definitions later on in this Appendix.

The Maple examples in this book are by no means complete or exhaustive. For
a more complete treatment of Maple as a tool for doing calculus, the author highly
recommends the excellent Maple lab manual Calculus: The Maple Way written by
his colleague, Professor Robert Israel of the University of British Columbia. Like
this book, it is published by Pearson Canada under the Addison-Wesley logo.
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List of Maple Examples and Discussion

Topic Section  Page
Defining and Graphing Functions P4 34
Calculating with Trigonometric Functions P6 52
Calculating Limits 1.3 76
Solving Equations with fsolve 1.4 87
Finding Derivatives 2.4 123
Higher-Order Derivatives 2.8 150
Derivatives of Implicit Functions 29 155
Solving DEs with dsolve 3.7 228
More Graph Plotting 44 261
Calculating Sums 5.1 307
Integrating Functions 6.4 373
Numerical Integration 6.4 374
Plotting Parametric Curves 8.2 491
Plotting Polar Curves 8.5 509
Infinite Series 9.5 564
Vector-and Matrix Calculations 10.7 642
Velocity, Acceleration, Curvature, Torsion 11.5 688
'Three-Dimensional Graphing 12.1 710
Partial Derivatives 124 728
The Jacobian Matrix 12.6 750
Gradients 12.7 760
Taylor Polynomials 12.9 77
Multivariable Newton’s Method 13.7 828
Double and Multiple Integrals 14.2 848
Gradient, Divergence, Curl, Laplacian 16.2 959

Several of the topics in the above list are covered over several pages. Only the first
page is listed.

The “newtroot” Procedure of Section 13.7

Here is a listing of the Maple procedures newtroot discussed in Section 13.7.
You can learn much about Maple by reading this listing and trying to understand
what it is doing.

newtroot:=proc(F: :procedure,v,m: :integer, tol::float)
local i,3,%k,v0,vl,w,FV,JF,A,b,error,n;
error := tol + 1.0; # tol = desired accuracy
i :=1; v0O := v;
if type(v,list) then
convert (v0,vector) ;
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n := vectdim(v0) ;
elsen :=1 fi;
w := vector (n);
ifn =1 then
while tol < error and i < m +1 do

vl:= evalf (vO-F(v0)/(D(F) (v0))); #Newton iteration
error := abs(vli-v0);
v0 := vl; #v0 becomes the new approximation
print (i, v0, F(v0), error);
i:= 1+1;

od

else FV := v -> F(seq(vI[jl,j=1..n));

JF := proc (FF::procedure,vv::vector)
jacobian (FF (vv),vv) ;

end;

while tol < error and 1 < m +1 do
A:= subs(seqg(wlk]=v0[k],k=1..n),JF(FV,w));
# A = JF(VO) .

b:= FV(v0);

vl := evalf (evalm(v0 - linsolve(A,b)));
#Newton iteration

error := norm{(v0-vl);

v0 := evalm(vl);

#v0 becomes the new approximation
print(i, v0,FV{(v0),error);
1 :=1 + 1;
od
fi;
if error <= tol then
RETURN{evalm(v0))
else print ('FAILED_.TO_FIND_ROOT', error) ;
RETURN (evalm(v0))
fi;
end;

The scalar case n = 1 evidently calculates the Newton’s Method approximation v;
from vy and then renames vy to be this new approximation before doing another
iteration. So does the vector case n > 1, handled by the “else” clause. However, it
does not use determinants (i.e., Cramer’s Rule) to calculate the next approximation
as we did in Section 13.6. Instead, it uses the Jacobian matrix 4 = J F(vy) of F
at vo. The next approximation v; satisfies the system of equations

AV —vg) +b =0, where b = F(vp).

The Maple function 1insolve (A, b) determines the solution x = A~'b of the
system AX = b, so the procedure calculates vi = vo — .4~'b. The evalm and
evalf operators then convert the resulting list of solutions to a vector with real
components.
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The “newtcp” Procedure of Section 13.7

This procedure, also discussed in Section 13.7, is a variant of newtroot used to
find and classify the critical points of a function of several variables.

newtcp:=proc (F: :procedure,v,m: :integer, tol::float)
local i,3,k,v0,vl,w,FV,GRADF,HF,A, Db, error,n;
error := tol + 1.0; # tol = desired accuracy
i :=1; v0 1= v;
if type(v,list) then
convert (v0,vector) ;
n := vectdim(v0) ;
elsen := 1 fi;
w := vector(n);
if n =1 then
while tol < error and i < m +1 do
vli:= evalf(vO0-D(F) (v0)/(DEE2) (F) (v0}));

error := abs(vl-v0);
v0 1= vl;
print(i,v0,F(v0),error);
1:= 1+41;

od;

else

FV := v -> F{(seg(v[3j],j=1..n));

GRADF := proc(FF::procedure,vv::vector)
grad(FF(vv) ,vv) ;

end;

HF := proc(FF::procedure,vv::vector)
hessian(FF(vv),vv) ;

end;

while tol < error and 1 < m +1 do
A:= subs (seg(wlk]l=v0{k],k=1..n),HF(FV,w));

#A=HF (v0) .
b:= subs(seg(wlk]l=v0[k],k=1..n),GRADF (FV,w)});
vl := evalf({evalm(v0 - linsolve(A,b)));
#Newton iteration
error := norm(v0-vl);
v0 := evalm(vl);

#v0 becomes the new approximation
print(i,v0,FV(v0),error);
i :=1 + 1;
od
fi;
if (error <= tol) then
if (n=1) then
print (’Second.deriv’,evalf ((DEE2) (F) (v0)));
RETURN (evalm(v0),F(v0))
else print(’'Eigenvalues’,evalf (eigenvals(a))) fi;
RETURN (evalm(v0) ,FV(v0))
else print(’'FAILED’,error) ;
RETURN (evalm(v0))
£fi;
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end;
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Answers to Odd-Numbered Exercises

Chapter P

Preliminaries

Section P.1 (page 11)

1.0.2

3.4/33
.1/7 = 0.142857,2/7 = 0.285714,
3/7 = 0.428571, 4/7 = 0.571428,
5/7=0.714285, 6/7 = 0.857142

7.10,5] 9. ]—o0, —6[ U]-5, oof
11. ]2, oo 13. ]—o00, —2f

15. (—o00, 5/4} 17. 10, oo

19. ]—o00, 5/3[ U ]2, oo 21. [0, 2]
23.1-2,0[U]2, oo 25.[-2,0[U[4, oof
27.x=-3,3 29.t =-1/2, —-9/2
3l.s =—1/3, 17/3 33.(—2,2)
35.[—1,3] 37.}%,3[
39. [0, 4] 41.x > 1
43.trueifa > 0, false ifa < 0O

Section P2 (page 18)

1

JAx =4, Ay = -3, dist=5

3.Ax = —4, Ay = —4, dist = 4+/2
5.(2,-4%)
7. circle, centre (0, 0), radius 1

9.
11.

points inside and on circle, centre (0, 0), radius 1

points on and above the parabola y = x?2

13.(a)x =-2,(b)yy=5/3

15.v=x+2 17.y =2x+b
19. above 21l.y =3x/2
23.y=(7—x)/3 25.y =2 —2x

31.
33.

39.
45.
47.
49,

4,3,
y
N3
3x+4y=12
4 >
N\ x
V2, -2//3
¥
) V2x - VIy=2
/ﬁ' ' ' x
/J ~2/3
@y=x-1,by=—-x+3
2,-3) 37.5
$23, 000 43. (-2, -2)
(31 +2x2), (31 + 2y2))

circle, centre (2, 0), radius 4
perp. if k = —8, parallel if k = 1/2

Section P.3 (page 25)

1.x2+y2=16 3.x2+y?4+4x =5
5.(1,0),2 7.(1,-2),3
9. exterior of circle, centre (0, 0), radius 1

11. closed disk, centre (—1, 0), radius 2

13. washer shaped region between the circles of radius 1

15.

and 2 centred at (0, 0)
first octant region lying inside the two circles of radius
1 having centres at (1, 0) and (0, 1)

17. x>+ y2 4 2x —4y < 1
19.x2+y2<2,x > 1 21.x2=16y
23.y? =8x
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25. (0,1/2),y = —1/2

L(0.1/2)

27.(~1,0),x = 1

29.(a)y=x>=3,b)y=x—4% )y = (x—3)?43,

y=(x-—4>2-2
My=J/G/B+T1
35.y = —(x + 1) 3My=(x—2
39.2,7), (1,4) 41. (4, -3),

43. ellipse, centre (0, 0), semiaxes 2, 1

y +

=Y

3.y =JGx/D +1

2 -2
(—4,3)

=y

45, ellipse, centre (3, —2), semiaxes 3,2

y

(3s _2)
[ ]

x=32  (y+2?*
o tT 4~

1

47. hyperbola, centre (0, 0), asymptotes x = £2y, ver-

tices (£2, 0)

49. rectangular hyperbola, asymptotes x =0 and y = 0,

vertices (2, —2) and (-2, 2)

22/ |

51. (a) reflecting the graph in the y-axis, (b) reflecting

the graph in the x-axis.




53.

y

x| + 1yl =1

-/
N

Section P4 (page 35)
D(f)y=R R(f) =1[1,00]

1.
3
5.
7. Only (ii) is the graph of a function. Vertical lines can
11.

13.

17.
19.

D(h) =]—00,2[, R(h) =]—00, o0[

meet the others more than once.

even, sym. about y-axis
odd, sym. about (0, 0)

sym. about x =3
even, sym. about y-axis

15.

sym. about (2, 0)

21. no symmetry
23. 25.
y
’ S ax
27. 29.
\v y
1 y=+x+1
L f
' X X
y=1-x3
31. 33.
y X
y=Ix—2| 2\/
; ——t—t—+ + 5 —t *
] y = —lx|
i
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35. 37.

y y
YNeo
y=tfx)+2
‘ TR /N x

39.D =10,2],R =12, 3]

41.D =[-2,0], R =[0, 1]

43.D =1[0,2], R = [—1,0]

y y
ly=rd-x
: R
- I T
y=—/x) ]

45.D =[2,4, R =[0,1] 47.[—0.18,0.68]
49.y =3/2

51.2,1), y=x—1,y=3—x

53. f(x) =0

Section P5 (page 41)

1. Thedomainsof f+g, f —g, fg,and g/f are 1, ool.
The domain of f/g is |1, oo[.
(f+ox)=x++/x—-1
(f—9@)=x—vx—1
(fO)x) =xvx—1
(f/e)x) =x/vx -1
@/ Hx)=+x—1/x
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y=x I x

7.(a) 2, (6) 22, (c) x> + 2, (d) x2 + 10x + 22, (e) 5, ()
—2.()x + 10, (h) x* —6x>+ 6

9.(a) (x — D)/x,x #0, 1,
() 1/(1 —/x — D on[l,2[U]2, col,
(©) Vx/(T=x),0on [0, 1]

(@ vvx—1—=1,0n[2,oc0[
11. (x + 1)2 13. x2
15.1/(x = 1) 19. D =(0,2], R = [0, 2]

21.D =[0,1], R =10, 1]

23. D=[-4,0,R =[1,2]

y

28.

27. (a) A =0, B arbitrary,or A=1,B =0
(b) A = —1, B arbitrary,or A=1,B=20

29, all integers

31

33.f2, g% fof, fog, go fareeven
fg. f/g. g/f. g ogareodd
f + g is neither, unless either f(x) = Oorg(x) = 0.

Section P.6 (page 55)

1.-1//2 3./3/2
5. (v/3—-1)/(2v2) 7. —cosx
9, —cosx 11. 1/(sin x cos x)

17.3sinx — 4sin® x
19. period @

y = cos(2x)

21. period 2

23.

25.cos6 = —4/5, tang = -3/4
27.sinf = —24/2/3, tanf = —2/2
29. cosf = —+/3/2, tanf = 1//3



la=1,b=3

33.b=5//3, c =10//3

35.a=>btan A 37.a=bcotB

39.c =bsecA 41.sin A = +/c? — b?/c
43.sin B = 3/(4v2) 45.sin B = +/135/16
47.6/(1 + V/3)

49. b = 4sin40°/ sin 70° = 2.736

. approx. 16.98 m

Chapter 1
Limits and Continuity

Section 1.1 (page 61)

1.

5.
7.

9.
11.

13.

((t+h)?> =t/ hm/s 3.4 m/s

—3 m/s, 3 m/s, 0 m/s
to the left, stopped, to the right

height 2, moving down
—1 ft/s, weight moving downward

day 45

Section 1.2 (page 70)

1.

5.

9.
13.
17.
21.
25.
29.
33.
37.
41.
45.
49.
53.
57.

61.
65.

67.
71.

75.

(a)1,(b)0,(c) 1 3.1

0 7.1

2/3 11.0

0 15. does not exist
1/6 19.0

—1 23. does not exist
2 27.3/8

-1/2 31.8/3

1/4 35.1/42

2x 39. —1/x°
1/(2/%) 43. 1

1/2 47. 1

0 51.2

does not exist 55. does not exist
—1/Q2a) 59.0

-2 63. 77

()0, (b)8,(c)9,(d) -3

5 69. 1

0.7071 73. im0 f(x) =0
2
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77. x13 < x3on]—1,0{ and ]1, oc],
x'3 > x3 on ]—o0, —1[ and 10, 1[,
limy_,, h(x) =afora =—1,0,and 1

Section 1.3 (page 77)

1.1/2 3.-3/5
5.0 7. -3
9.-2/\/3 11. does not exist
13. 400 15.0
17. —o0 19. -0
21. ¢ 23. —x
25, 00 27.—/2/4
29. -2 31. -1
33.horiz: y=0,y=—1,vert: x =0
35.1 37.1
39. —0 41.2
43. -1 45.1
47.3 49. does not exist
51.1

53. C(t) has a limit at every real ¢ except at the integers.
lim,_,,,— C(¢t) = C(tp) everywhere, but
. _ C(t) if £y not integral
lim,,,4 C) = { C(to) + 1.5 if ¢ an integer

Y A
$6.00 o—e
$4.50 o— o
$3.00 o—e

$150 o— »

y=C{®

1 2 3 4
55.(@ B, (b)A, (©)A, (DA

Section 1.4 (page 87)

1. at —2, right cont. and cont., at —1 disc., at 0 disc.
but left cont., at 1 disc. and right cont., at 2 disc.

3. no abs. max, abs. min 0

5.1no0 7. cont. everywhere

9. cont. everywhere except at x = 0, disc. atx =0

11. cont. everywhere except at the integers, discontinu-
ous but left-continuous at the integers




A-50 ANSWERS TO ODD-NUMBERED EXERCISES

13.4, x +2 15.1/5, ¢ -2)/t +2) 21.(1, 1), (—1, 1) 23.k=3/4
17.k =8 19. no max, min = 0 25. horiz. tangent at (0, 0), (3, 108), (5,0)
. iz. —0. . —-1,1
2L 16 23.5 27. horiz. tangent at (—0.5, 1.25), no tangents at (—1, 1)
and (1, —1)
25. f positive on ]—1,0[ and ]1, o0[; f negative on 29, horiz. tangent at (0, —1)
|00, —1[and J0, 1 31. no, consider y = x?/3 at (0, 0)
27. f positive on |—oo, —2[, ]—1, 1] and ]2, cof; f neg-
ative on -2, —1[and ]1, 2[ Section 2.2 (page 110)
35. max 1.593 at —0.831, min —0.756 at 0.629
37.max31/3 &~ 10.333atx = 3, min4.762 atx = 1.260 1. 3.
39.0.682 Y
41. —0.6367326508, 1.409624004 o
y=f'x)
Section 1.5 (page 94) - 1
1. between 12°C and 20°C R S B
3.(1.99,2.01) 5.(0.81,1.21)
7.8 =001 9.5~ 0.0165 S5.on[—2,2]exceptatx = —land x =1
Review Exercises (page 95) 7. slope positive for x < 1.5, negative for x > 1.5;
L 13 312 horizontal tangent at x = 1.5
) : 9. singular points at x = —1, 0, 1, horizontal tangents
5.4 7. does not exist at about x = £0.57
9. does not exist 11. —oco 11.2x — 3 13.3x2
13. 123 15.0 15 1 17.1— 1
. . 5
17. does not exist 19.-1/3 Vat+1 * )
X
.= X 9. ——m— 2l ————
21. —o0 | 23. 00 TEaYE ST
25. does not exist 27.0 23. Define f(0) = 0, f is not differentiable at 0
29.2 31. no disc. 25.,atx = —landx = —2
33. disc. and left cont. at 2 27.
35. disc. and right cont. at x = 1 X f®»-r@ x o -1
37. no disc. x—2 x =2
] 1.9 —0.26316 2.1 —0.23810
Challenging Problems (page 96) 1.99 |[-0.25126 2.01 |—0.24876
1. to the right 3.-1/4 1.999 |-0.25013 2.001 |—0.24988
1.9999| —0.25001 2.0001]—0.24999
5.3 7.T,F,T,F, F
d <1) ]
Chapter 2 dx \x/|,.p 4
Differentiation 29.x — 6y > —15 208+ 1)
a
. y=— -— >t —a)
Section 2.1 (page 102) at+a (@ +a)
21 _ —4/3
Ly=3xr—1 3y =8r—13 33. 22¢ ,allltls/4 35.—-(1/3)x 4, x £0
5.y = 12x +24 7.x —dy =5 37. (119/4)s ,$>0 39.—16 1
9.x -4y = -2 11y = 2xox — x2 41.1/(8v2) 3.y =a’x —a’ + -
a
13.no 15.yes, x = -2 45.y=6x —9andy = —2x — 1
oy — 1
17.yes, x =0 47, — 51 f'(x) = L x 723

19.(a)3a% (b)y=3x—2andy =3x+2 232




Section 2.3 (page 119)

1.6x -5
5. %s‘* — %sz
. %I—Z/S T %[73/4 + %f4/5

3.2Ax+ B

9. x3 4 x 783

2Jx
2 2

__x+S 15

(x2 + 5x)2 2 —m1)?
17. (4x? — 3)/x*
19. =372 1 (1/Dt7 V2 + (3/2)/t

24
(3 +4x)? Vil = )2
ad — be

25, —
(cx +d)?
27. 10 4+ 70x + 150x2 + 96x3

13.

21.

29. 2x(/x + 1)(5x%3 —2) + L(x2 +4)(5x23 = 2)
X

2./x
10 5
+—3—x_l/3(x‘+4)(ﬁ+ 1
1
3o+l 33. -1
(6x2 4+ 2x + 1)?
35.20 37.-1
2
39 ! 41 4x — 6
S =4x —
18v2 '
43.(1,2)and (-1,-2)  45.(—1, %)
b2
A7.y=b— Tx
49.y=12x— 16,y =3x+2
51 x/v/x2+ 1

Section 2.4 (page 125)

1. 12(2x + 3)° 3. —20x(4 — x2)°
30 3\ 7! 12

5. {2+ = 7. ——
t2( +t) (5 — 4x)?

1 8§ ifx>1/4
‘10 ifx <1/4

1\ %3
u— l)

9. —2xsgn (1l — x?)

-3
2V3x +4Q2 + V3x + 4)?

5 1

13.

5 3 5..3/2
11— — 3/x - &x¥

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-51

17.

y=2+7
(3

y=4x+ |4x q 1|

S
~

23

27.
29.

31.

3s.

37.

41.

45

f(x)

— ’ — x2 _J
(5 =2x)f"(5x —x°) ZS.W

1 !
ﬁf (3 +2/x)
15F/(4 =50 f'(2 = 3f(4 — 51))
3
2V2
—6(1- $60* (G0* -2)7)
X (x + ((3x)5 - 2)_1/2)~7
y=22—-V2x+1) 39.y=4+x+2)
x(x*+2x2-2)
(x241)52

. no; yes; both functions are equal to x2.

33.102

43. 857,592

Section 2.5 (page 131)

3. —3sin3x 5.mwsec’ mx
7.3 csc?(4 — 3x) 9. rsin(s — rx)
—sinx

11. 27zx cos(x?) 13. Nﬁ
15. —(1 4 cosx) sin(x + sinx)
17. (37 /2) sin®(x /2) cos(mx /2)
19. a cos 2at 21.2cos(2x) + 2 sin(2x)
23.sec?x —csc’x 25. tan x
27. —tsint 29.1/(1 +cosx)
31. 2x cos(3x) — 3x?sin(3x)

33

. 2x[sec(x?) tan®(x2) + sec?(x2)]

35, —sec? ¢ sin(tan ) cos(cos(tan ¢))
V.y=m—x,y=x—7
41.y=1-(x—-m)/4, y=1+4(x —m)

43.

45.
51.

53.

1 T
y—ﬁ+—180ﬁ(x—
+(z/4, 1) 49. yes, (7, )
yes, (27/3, (2m/3) + +/3), (4 /3, (47/3) — /3)
2 55.1

45)




A-52  ANSWERS TO ODD-NUMBERED EXERCISES

57.1/2
59. infinitely many, 0.336508, 0.161228

Section 2.6 (page 139)

a+b 2
l.c = 3.ce=+—
2 V3
. 2 2
9.inc. on ]—oo, ——|: and ]—, oo[, dec. on
V3 3
|7l
V3 V3
11. inc. on ]—2, Of and ]2, oo[; dec. on ]—oo, —2[ and
10, 2

13. inc. on J—o0, 3[ and 15, oo[; dec. on 13, 5[

15. inc. on |—o0, 0o[
17. The two separate applications of MVT cannot be ex-

Y= 3xi

2 NN
y/// — _1§5x—1/2 + %x—S/Z
9.y =sec’x,y” = 2sec’xtanx,y"” = 4sec’ x tan® x+
2sect x
11.y' = —2xsin(x?), y” = —2sin(x?) — 4x%cos(x?),
y"” = —12x cos(x?) + 8x> sin(x?)

13. (= 1)"ntx D 15.n1(2 — x)~+D

17. (—=1)"n'b"(a + bx)~*tD

w _ | (=DFa"cos(ax)  ifn =2k )
v { (=D* gt sin(ax) ifn =2k +1 where
k = 0’ 17 2, [

21. f™ = (—=1D)¥[a"x sin(ax) — na" " cos(ax)] if
n = 2k, or (—D¥[a"x cos(ax) + na" 'sin(ax)] if
n=2k+1 wherek=0,1,2,...

pected to give the same value of c. 23

_1 X3 X5X-o X (2n—3)3n(1 _3x)-br,
n=2,3,..))
31.If £ exists on an interval / and f vanishes at n + 1

Section 2.7 (page 145)

. 4% . —4%
1. 4% 3 ¢ distinct points of I then f™ vanishes at at least one
5. 1% 7. 6% point of 1.
9. 8 ft/ft Section 2.9 (page 156)
11. [ /+/7 A units/square unit ! 2 4+
_ y X y
13. 167 m3/m 1 3 3. 37
dc  [x . . * o
15. JA=\Va length units/area unit s 2 —2xy? B 3x2 4 2xy
17.CP.x = 0, incr. x > 0, decr. x <0 3x2y2 4+ 1 x2+4y
19.CP. x = 0, x = —4, incr. on ]—o00, —4{ and 10, oo, 9.2x +3y =5 11.y =x
decr. on ]—4, 0] B.y=1- (x — Z)
23.0.535898, 7.464102 25.0, -0.518784 ) 4—m 4
27. (a) 10,500 L/min, 3,500 L/min, (b) 7,000 L/min 15.y =2 —x 7. 20-b
Ly = Y
29, decreases at 1/8 Ib/mi - (1=
31. (a) $300, (b) C(101) — C(100) = $299.50 19, GZONU =37 6
(By*—2y)’ 3y =2y
33. (a) —$2.00, (b) $9.11 2. —a2 )y} 23.0
Section 2.8 (page 150) 25. 26

y = —14(3 — 2x)°,
1§ v/ =168(3 —2x)°,

Section 2.10 (page 162)

V' = —1680(3 — 2x)* Lax+C 3.5+ C
'y'=—12(x—1)‘3, 5. 3¢+ C 7. —cosx + C
3.1 v =36(x — 7, 9.a%x — %X3 +C 11, %x3/2 + %x4/3 +C
V' = —144(x — 1) 13, foat — g2 4 4x? —x - C
y = L2y 1, 15. L sin(2x) + C 17, 1;lx Lc
SRR A 19. 12x + 32 4 C 21, cos(x?) + C

g 10 —8/3 + %X—IO/B

yo=5X 23.tanx —x + C




25. (x +sinxcosx)/2+C
27.y = 3x? —2x 43, allx
29,y =2x%2— 15, (x > 0)
A B ,
31.y= g(x — l)—i—z(x —D+Cx—-1+1, (all x)
33. y =sinx + (3/2), (all x)
35.y=1+4tanx, —w/2 <x <mw/2
37.y =x2+5x =3, (allx)

2
XS X~

39. %—3—1—8, (all x)

y
4.y =1+ x —cosx, (all x)

1
3. y=3x——, (x>0)
X

7% 18
45,y = ——— + — 0
y > + N (x>0
Section 2.11 (page 169)
l.(a)r>2, (b)r <2, (c)allt, (d)not,
@r>2 (MHr<2, @2 MO

3.t < —2/J3ort >2//3,
(b) —2/V3 <t <2/V3, ©t>0, Dt <0,
()t >2/v3or—2//3 <1t <0,
Ht < —2/\/§or0 <t < 2/«/5,
(g) £12//3atr = £2//3, (h) 12
5. acc = 9.8 m/s? downward at all times;
max height = 4.9 m; ball strikes ground at 9.8 m/s
7. time 27.8 s; distance 771.6 m

9. 4h m, /2vo m/s 11. 400 ft
13.0.833 km

2t
15.v={4 if2<t<8

20-2r if8 <t <10
v is continuous for 0 < t < 10.
if0<t<?2

a=10 if2 <t <38

) -2 if8 <t <10
a is continuous exceptatt =2 and t = 8.

Maximum velocity 4 is attained for2 < ¢ < 8.

if0<tr<2

17.7s 19. 448 ft
Review Exercises (page 171)
1. 18x +6 3. -1
5.6mx +12y =63+
7, S8 T : 9. x 354 — x*3)77/2
(x — sinx)?
11. —26 sec’ 6 tan 6 13.20x"°

17. —2xf'(3 — x?)

15. -3

f(2x) g'(x/2)

19.2F'(2x) /g(x/2) + 28 /%
S'Q2x)/gx/2) NI

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-53

21, f/(x + (g(x))NH (A + 2g(x)g'(x))
23. cosx f'(sinx) g(cosx) — sinx f(sinx) g'(cosx)
7Y Llic
"3 x
31.4x3 +3x4 =7

33. /i =xsinx +cosx +C, I, =sinx —xcosx +C

25.7x + 10y = 24

29.2tanx + 3secx + C

35.y =3x

37. points kzr and kx/(n + 1), where £ is any integer
39. (0,0), (£1/+/2,1/2), dist. = +/3/2 units

41.(a) k= g/R 43.153m

45. 80 ft/s, or about 55 mph

Challenging Problems (page 172)

3.(2) 0, (b) 3/8, (c) 12, (d) —48, (e) 3/7, () 21
13. f(m) = C — (m — B)*/(4A)
17. (a) 3b* > 8ac

19. (a)3s,(b)t =7s,(c)t = 125, (d) about 13.07 m/s?,
(e) 197.5 m, (f) 60.3 m.

Chapter 3
Transcendental Functions

Section 3.1 (page 181)

Lf'o=x+1
D(fH=R(NH=RGH=D(f)=R

3.7 =22+ 1, D(f ) = R(f) = [0, oo,
R(FTH=D(f) =1, 00[

5 f1(x) =x17
D(fH=R(NH=R(USH=D(f)=R

7.7 x) ==Vx, DY =R() =10, 00l,
R(f™1) =D(f) =]—00,0]

1
9. flx)y=——1, DU H=R)={x:x#0},

x
R(fH=D(f)={x:x #-1}

. _l—x

11. f (x)_2+x,

D(f N =R(f)={x:x # -2},
R =D(f) = {x 1 x # =1}
X

B.g ') =f1x+2 15k =f" (_5)
17.p7'(x) = f! (l _ 1)
X

_ ! af1—x
19.r1(x)_1<3—f ( 7 ))

21, fl(x) = { x—1

x—1

ifx >=1
ifx <1




A-54 ANSWERS TO ODD-NUMBERED EXERCISES

J1=-x ifx <1
25.¢7'(1) =2 29. 1/[6(f 1 (x))*]
31.2.23362 J3.R 1
35.¢=1,a,barbitrary,ora =b =0,c = —1.
37.1n0

23.h=1(x) = {«/x—l ifx>1

Section 3.2 (page 185)

1.V3 3.x6

53 7. —2x

9. x 11.1
13. 1 15.2

17.log, (x* + 4x? + 3) 19.4.728804 . ..
21. x = (logy 5)/(log,(4/5) &~ —7.212567
23.x = 315 = 100°803/5 ~ 1,24573

29.1/2 31.0
33. 0

Section 3.3 (page 195)

1. /e 3.x°
5. -3 7.1 64
. X . In 81
In2
9, in(x2(x — 2)° 11.x =
n(x?(x —2)°) x nG/2)
In5—9In2
13.x = 5 —9In2 15.0 < x <2
2In2
17.3<x <7/2 19. 5¢°*
3
21. (1 — 2x)e™ % 23.
(1 =2x)e 3x—2
25. ¢ 7.2 "¢
14 e 2
‘ e*
29, pxte 3. —
(14 e¥)?
1
33. ¢*(sinx — cosx) 35,
xInx
37.2x Inx 39. (21n5)5%+!
b
41, 5 x" Int 4 < Hxi! 43, —
rint+ (bs + &) Ina
- 1
45, xV¥ (\/—}_ (% Inx + 1))
1
47. sec x 49, —————
Vx2 +a?

51, O (x) = e**(na""' +a"x), n=123,...

53.y = 2xe”, ' =2(1+2xYe, :
V= 4Bx42x0e”, Y@ = 43+ 1252 +dxe*
55. f/(x) = x**'Q2Inx + 1),
. 1
gx) =x"x*[Inx + (Inx)? + —) ;
X

g grows more rapidly than does f.

1 1 1 1
57.f’(x>=f(X>(x_1+x_2+x—3+x—4)

556 1

A / = —, ! 1) = —

59. /(2 3675 @ c
61. finc.forx < 1,dec.forx > 1

63.y =ex 65.y =2ein2(x — 1)

67.—1/¢*

69. f'(x) = (A+ B)coslnx + (B — A)sinlnx,
[coslnxdx = %(coslnx + sinln x),
[sinlnxdx = %(sinlnx —coslnx)

71.(a) F2p,—24(x); (b) —2e*(cosx + sinx)

Section 3.4 (page 203)

1.0 3.2

5.0 7.0

9. 566 11. 29.15 years
13. 160.85 years 15.4,139 ¢

17. $7,557.84 19. about 14.7 years
21. (a) f(x) = Ce®™ — (a/b),

(b) y = (yo + (a/b))e?™ — (a/b)
23.22.35°C 25. 6.84 min

29. (0, —(1/k) In(yo/(yo — L))), solution — —oc

31. about 7,671 cases, growing at about 3,028 cases/week

Section 3.5 (page 212)

1.7/3 3. —m/4
5.0.7 7. —7/3
9. g +02 11.2/4/5
1
13. V1= 22 15.
V14 x2
/T %2
17. ad 19 !

x V2 x—x2



—sgna
a?— (x — b)?

25.2xtan" ' x + 1
- V1 —4x2sin7! 2x — 24/1 — x2 sinflx

V1 —x2/1 —4x2 (sin~! 2x

29. al 31 |20
(1 —x%sin~! x2 a+x

21. 23.tan"' ¢ +

1+¢2

T2
33.
! 1
37. —cse lx = ————
dx lx|+v/x2—1
Y (Lx/2)
ﬁ <1.L/2>
b4
39.tan" ! x +cot™! x = -5 forx <0
41. cont. everywhere, differentiable except at nw for in-
fegers n
43. continuous and differentiable everywhere except at
odd multiples of /2

y =cos”'(cosx) ¥

y = tan"!(tan x)

Y

M.
»

%%##'r'r?'tly.
—ﬁnfrri 2t x

—1 3
49.tan"' () —tan'x = Z on (—o0, —1)
x+1 4

51. f'(x) = 1—sgn(cosx)

b N

(m,7)

v

[SIE]

y = x —sin"!(sinx)

X
55.y =4sin ' =
y=4dsin! 2

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-55

Section 3.6 (page 218)

tanh x + tanh y

1 + tanh x tanh y
tanhx — tanh y

3.tanh(x + y) =

tanh(x — y) = 7——————
anh(x — y) 1 — tanhx tanh y

d 1
5. —sinh ' (x) = ——,
dx Vx21+1
— cosh™! = —,
x O O = ra
d i 1
Etanh (x) = m,
/ dx sinh™' (x) + C
et X ,
\/x; +1
_ Y _cosh i) +C (x> 1),
x2 —
s=tanh ') +C (-l<x<1)
1—-x
x?2—1 x2+1 x2—1
7. (b : . (d) x?
(a) o (b) o (C)x2+1 (d) x
1 1 1
9.coth™'x =tanh™! — = —In s > domain: all
X 2 x—1

x such that |x| > 1, range: all y # 0, derivative:

—1/x2-1)
¥y H
-1 i

AB = 8A+B,A-B; &C,D = J(C+D)/2.(C-D))2

'//4///u;§\\\1 |

13.y = yocoshk(x —a) + % sinhk(x — a)

Section 3.7 (page 228)

1.y =Ae™ + Be ¥
5.y = (A+ Bt)e™
7.y = (Acost + Bsint)e™
9.y = (Acos?2t + Bsin2t)e™’
11. y = (Acos 2t + Bsin~/21)e™"
13.y = Se'/2 + L=
15.y = e‘z’ (2cost + 6sint)
25. y = sm(lOt) circ freq 10, freq 12 2.+ ber

3.y=A+ Be ™

10, amp

10

33.y =¥ [2c0s(2(t — 3)) + sin2(t — 3))]

1
35.y = ) + Cie + Cre™®

3.y=——e "+ Cie + Cre™™




A-56 ANSWERS TO ODD-NUMBERED EXERCISES

39. v = —e*sinx + 3e* cosx + Cie* + Cre™ >

41. v = C 11" + Caor™ 45.y = C11> + Cot* Int

Review Exercises (page 230)

1.1/3 3. both limits are 0

5. max 1/+/2¢, min —1/+/2¢
7. f(x) = 3e@ /D2
9, (a) about 13.863%, (b) about 68 days

11 ¢
15. 13.8165% approx.

13.y=x

17. cos x = %—sin’lx,cot_lx = sgnxsin ' (1/+/x2 4+ 1),

csc !

19. 15°C

x =sin~'(1/x)

Chapter 4
Some Applications of Derivatives

Section 4.1 (page 237)

. 32 cm?/min
. increasing at 160 cm?/s

. (a) 1/(6xr) km/hr, (b) 1/(64/7 A) km/hr

~ N 9

9.2 cm?/s

13. increasing at rate 12

. 1/(180m) cm/s

11. increasing at 2 cm®/s

15. increasing at rate 2/+/5
17. 454/3 km/h 19. 1/3 m/s, 5/6 m/s
21. 100 tons/day 23. 16-- min after 3:00

25. 1/(18m) m/min
27.9/(62507) m/min, 4.64 m

29. 8 m/min 31. dec. at 126.9 km/h

33. 1/8 units/s 35. +/3/16 m/min
37. (a) down at 24/125 m/s, (b) right at 7/125 m/s

39. dec. at 0.0197 rad/s 41. 0.047 rad/s
Section 4.2 (page 246)
l.absminlatx = —1;absmax3atx =1
3.abs min 1 at x = —1; no max

5. abs min —1 at x = 0; abs max 8 at x = 3; loc max 3

atx = -2

7.absmina® +a -4 atx = a; absmax b + b — 4 at

x=b
9. abs max b° + b + 2b at x = b; no min value

11. no max or min values

13.
15.

17.
19.

21.

23.

25.

27.

max3atx = -2, minOatx =1
abs max 1 at x = 0; no min value

no max or min value

loc max at x = —1; loc min at x = 1

3 X
y=x"—3x—-2
(1,-4)
loc max at x = %; loc min at x = 1
¥y
,
y=x{x—1)°
14
(3‘27
1 X
loc max at x = %; loc min at x = 1;
critical point x = 0 is neither max nor min

(

(VY1)

108
’ 5

w

1

y=x'x—1?
lJocmaxatx = —1landx = 1/ﬁ; locminatx = 1
andx = —1/\/5
y
-1
1 \/g ’
; 1 1 x
y=xx?-1)? s
absminatx =0
¥y
_________________________________ =
X2
M|
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29.loc min at CP x = —1 and endpoint SP x = +/2; 37.absmaxatx = ¢
loc max at CP x = 1 and endpoint SP x = —+/2
(e.l/e)

i V. "
1 y=xv2—x2

T _ 0 .
31.loc max at x = 2nw — %; loc min at x = 2aw + — 39. loc max at CP x = 0; abs min at SPs

3 x ==+1
(n=0,+%1,%£2,..)

2
YA . y= =1
1

y=x—2sinx

—1 1 x

41. abs max at CPs x = (2r + 1)7z/2; abs min at SPs
x=nmr(n=0=£142,..)

y = |sinx|

33. loc max at CP x = +/3/2 and endpoint SP x = —1;
loc min at CP x = —+/3/2 and endpoint SP x = 1

43. no max or min 45. max 2, min —2

47. has min, no max 49. yes, no

VA

Section 4.3 (page 251)

1. conc down on JO, oo 3.concupon R

v . x 5. conc down on ]—1, O and ]1, oo[; conc up on

, ]—o00, —1[and ]O, 1[;infl x = —1,0, 1

y=2x —sin'x 7. conc down on ]—1, 1[; conc up on ]—oo, —1[ and
1, o0[; infl x = &1

35, absmaxatx = 1/In2 9. conc down on -2, —2/+/5[ and 12/~/5,2[; conc

up on ]—o0, —2[, 1-2/4/5,2/+/5[ and 12, oc[; infl

x =42, +2//5

(273 11. conc down on ]2nm, (2n + 1)m[; conc up on
12n — Dz, 2na[,(n =0, 1,2, ...);inflx = nx
/‘ Y =2 B 13. conc down on |nz, (n + Dx;

conc up on ](n - %)n, n [; infl x = nm/2,
n=0,+£1,%2,..)

15. conc down on 10, co[, up on ]—o0, O[; infl x = 0

17. concdownon |—1/+/2, 1/+/2[, upon]—o0, —1/+/2[
and 11/+/2, co[; infl x = +1//2

19. conc down on }—oo, —1[ and ]1, oo[; conc up on
-1, 1[; infl x = £1

21. conc down on |—~00, 4[, up on |4, oo[; infl x = 4

23. no concavity, no inflections
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25.loc minat x = 2;loc max at x = %
27.loc min at x = 1/+/3; loc max at —1/v/3
29. loc max at x = 1; loc min at x = —1 (both abs)

31. loc (and ab§) min at x = 1/e

Section 4.4 (page 261)

L@ g, ) f" ) f.(d) f
3. (a) k(x), (b) g(x), (©) f(x),(d) h(x)

11.

13.




17.

23.

y=x

19.

25.

21.

ANSWERS TO ODD-NUMBERED EXERCISES

YTy

V3 L

27.

—2/V3 2 3y

2 =32 41
y=——Q=

A-59
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29, 35.
v y
1
(-2)
g f 32 x
1 @Qr2m)
Inx
. y=—-
; y=x+2sinx x
w Am x
3 3
37.
¥y
31.
v
y=xe*
2 X 1
PN ,;2_) d
39.
1
33. (-2) y
v
y=0G2-1
y = X2 e—xz
(—=1.1/e) (1.1/e)
—1
infl infl 1 x
i infl infl i
- b | b « N —1
a?=(5+V17)/4 P =(5-/17)/4

41. y = 0. curve crosses asymptote at x = nx for every
integer n.

Section 4.5 (page 269)

1.49/4 3. 20 and 40
5.71.45 11. R? sq. units
13. 2ab un®
15. width 8 + 10+/2 m, height 4 + 52 m
17. rebate $250 19. point 5 km east of A

2. )0Om, (b)) x/(4+ 1) m
23. 8+/3 units



25.
27.

29.
31.
33.
37.

41.

[(a2/3 + 523 4 02]1/2 units

31/221/3 ynits

height 2R di \/zR it
C1 —, radius - units
MV 3

base 2mx2m, height 1m

. 20 . 10
width m, height ——m
4+ 4+m
width R, depth v/3R

2.6 ft

39. 0 =3L/8

2
43. il R? cubic units

9./3

Section 4.6 (page 278)

1.
5.
7.
9.
13.
15.

17.

19.
23.

1.41421356237 3. 0.453397651516
1.64809536561, 2.352392647658
0.510973429389

infinitely many, 4.49340945791

max 1, min —0.11063967219. ..

X1 —a, x = a = x¢. Look for a root half way
between xo and x|

Xp = (—1/2)" — 0 (root) as n — 00.

0.95025 21.0.45340

N(x,) is the Newton’s Method approximation x,.4;

Section 4.7 (page 284)

1.

S.
9.

11.
15.

17.

19.

21.

23.
25.
27.
29.
31.

6x —9 — /B
(7—2x)/27 7.m —x

(1/4) + (V3/2)(x — (/6))

about 8 cm? 13. about 62.8 mi

V50 ~ % ~ 7.071429, error < 0,
lerror| < wiz & 0.0003644,17.07106, 7.071429[

V85 ~ & error < 0, |error| < 13.03635, 3.03704]

cos46° ~

2><35’

1 T
= (1 — Txo) ~ 0.694765, error < 0,

4
0.694658, 0.694765
(fg5) 1094058, o.c9476t

e
sin(3.14) ~ & — 3.14, error < 0,

lerror| < (m — 3.14)3/2 < 2.02 x 107°,
(m —3.14— (m —3.14)3/2, 7 —3.14)
17.07106, 7.07108[, v/50 ~ 7.07107
10.80891, 0.80921[, /85 ~ 0.80906
3<f(3)=<13/4

2(1.8) = 0.6, |error| < 0.0208

about 1005 cm?

lerror| <

Section 4.8 (page 292)

1.

, 1
l—x—}—%xh—g)ﬂ—i—%x“

11.

13.

15.

17.

19.
21.

25.x

27.¢

29,

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-61

l+x—e x—e? (x—e} (x=-er
e 2¢? 3e3 4e*
.2+x—4_(x—4)2 3(x — 4)°
4 64 1536

x1P 24 H(x — 8) — 3z (x — 8)%, 913 &~ 2.07986,
0 < error < 5/(81 x 256),
2.07986 < 9! < 2.08010

1
~1—x—-1D+&-1D% 1 ~ 0.9804,

x
1

—(0.02)3 < error < 0, 0.980392 < T < 0.9804

e~ 1+x+ 3x%, 0%~ 0.625,

—1£(0.5)* < error < 0, 0.604 < ¢7%5 < 0.625

5| -
(!

. x3 N x> x7 4R
inx = — = = ;
Sinx .XX 30 31 7 7
R; = sng’ x® for some X between 0 and x
. 1 1+( 71) 1 ( 7r>2
inx = — xX——)—={x——
Y= 1) 2 4
1 T3 1 T4 Rs:
(=) v (=) R
cos X TN\S
where Ry = 1 (x — Z) for some X between
x and 7 /4 ’
x=12 -1 @-1D*
Inx=x-1)— —
nx (x5 ) % 3 )
x-1 (x—1)
_ Re;
+ 5 6 + Re
(x—1)
where Rg = 7%7 for some X between 1 and x
1 3 9 N 9 3
x2 — %x“ 23.1 — 2x% +4x* — 8x5
[ B 2+
SRETIRATI +(2n+1)!
_ 1 x2 )C3 | nxn R
—x+5—-3—'+ +(—);!—+ ns
—Xxn+l
where R, = (—1)"! for some X between
(n+ 1!
0and x;
1 1 1 1
-~ ———+4---+ —=0.36788
e 2! 3! + 8'
1 — 2x + x? (f is its own best quadratic approxima-

tion); (error = 0). g(x) &~ 4 + 3x + 2x?; error = x3;

" X
8" ( )x3.

since g”’(x) = 6 = 3!, therefore error = 3 ;

no improvement possible.

Section 4.9 (page 298)

1.

3/4 3.a/b
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5.1 7.1 29. (x¥ 1 + 1)/(x+1)  31.—4,949
9.0 11. -3/2 35.2" — 1 37.n/(n+1)
13.1 15.-1/2 Section 5.2 (page 314)
17. o0 19.2/7
1. 3/2 sq. un. 3.6 sq. un.
21. 2 23.a
5. 26/3 5q. un. 7. 15 sq. un.
25.1 27.—1/2
29. ¢ 3.0 9. 4 sq. un. 11.32/3 sq. un.
33. £7(x) 13.3/(21n2) sq. un.

15. In(b/a), follows from definition of In
Review Exercises (page 299) 17.0 19. 7 /4

1. 6% /min

jon 5. 2
3. (a) —1,600 ohms/min, (b) —1,350 ohms/min Section 5.3 (page 320)

1.L(f, Ps) =7/4, U(f Ps)=9/4

5.2.000 7.327 R3/81 un® i1
9. 9000 cm® 11. approx 0.057 rad/s 3.L(f Pa) = e —1) ~4.22,
4
13. about 9.69465 cm 15. 2.06% U(f, Py) = 1 ~ 11.48
17. = + 0.0475 =~ 0.83290, |error| < 0.00011 ;(e - 3/~
5. L(f, Ps) = —(1 ++/3) ~ 1.43,
19.0, 1.4055636328 (+ Po) 6 ( )
21. approx. (—1.1462,0.3178) U(f, Ps) = g(3 ++/3) ~ 2.48
Challenging Problems (page 301) 7. L/, P,) = n— 1’ UCS. P, = n+ 1’
1. (a) x _ E(x3 x%), (b) Vo/2 1 1 g
370 T Joxdx =3
3.(b) 11 (n— 1)2 (n + 1)?
5.(c) vo(l — (¢/T), (d) (1 — (1//2)T 9. L(f.P) = 5= U, P) =~ 5,
23— 1
7 " o —12\/5)/42 -1 4 f01x3 dx =~
9.(a) cos™ (ra2/r1)7, (b)cos™ (ra/r1)". 4

11. approx 921 cm? 11. [, Jxdx 13. [ sinx dx
15. f; tan~"x dx

Chapter 5
Integration Section 5.4 (page 327)
Section 5.1 (| 307) 1.0 3-8
ection ). age
pag 5. (b2 - a?))2 7.7
3 3 3 3 3 n
L1422 +3%+4 33432433 4...43 9.0 11 27
5. 02 2 LEY e 13.0 15. 27 +3/3)/6
T2 22 32 (n —2)2 . -2+ 3)/
in T a2 3T _ km 17. 16 19.32/3
Mg TS Py T sy 21. (4 +37)/12 23.1n2
9.5 i 1.2 (—1)ii? 25.1n3 27.4
13.3°7 %' 15. 370 (=712 29.1 31.7/2
17. 3 1% sinG — 1) 19.15 33.1 35.11/6
n__ T
Mo+ Den+76 23D 4 3.5 -3 39.41/2

7 —1
25. In(n!) 27. 400 41.3/4 . k=f




Section 5.5 (page 333)

1.4 3.1
5.9 7.80%
2-V2
| J 11. (1/4/2) — (1/2)
2 / /
13.67 —e™™ 15. (a* — 1)/ Ina
17.7/2 19.Z
3
21. 1 sq.un 23. % sq. un.
25. é $g. un 27. 4 3 Sq. un.
29. 11—2 $q. un 31. 27 sq. un.
33.3 35. 1
3oe—1 39, 0%
x
41, —2 sin x 43, cost
X 1+1£2
45, (cosx)/(2./%) 47. f(x) = me™xD
49, 1/x? is not continuous (or even defined) at x = 0
so the Fundamental Theorem cannot be applied over
|—=T1, 1}; since l/x2 > 0 on its domain, we would
expect the integral to be positive if it exists at all. (It
doesn’t.)
51. F(x) has amaximum value at x = 1 but no minimum
value.
53.2

Section 5.6 (page 341)

1.
S.

—1e T 4+ C 3.
-5+ D+ C 7.

Gx+4)>2+C

2
5
1
e +C

1

9. ltan! ($sinx) + C

11.

13.

17.

21.
23.

25.
27.

29,
31.

33.

iln|e"/2—e’x/2|+C=1n|e"——2+e_"[+C
2

-3J/4-55+C 15. 3 sin”! <5> +C
—In(l+e™*)+C 19. —L(ncosx)* + C
L1 X+3
5 tan —~2—+C
gcos®x — Lcosbx +C

1 3
——cos’ax + C

3a
I—Séx— Zsm2x+ s1n4x+——sm 2x +C
tsecx+C

5
(tanx)*? + Z(tanx)"2 + C

gstnx — gsin(2sinx) + 35 sin(dsinx) + C

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-63

35 Landx+C
37.—fescx+ 2esc/x —tescdx + C
39. 2V17+ 3 41.37/16
43.1n2 45.2, 2(v2-1)
47. 7 /32 sq. un.
Section 5.7 (page 346)
1 64
1. 3 sq. units 3. 3 $q. units
5 125 its 7 : $q. units
. —— sq. uni .= sq.u
2 > 2™
5 15 .
9. — sq. units 11. — — 21n 2 sq. units
12 8
1 4
13. % —3 sq. units 15. 3 $q. units
17. 2+/2 sq. units 19.1 — n /4 sq. units
21. (r/8) — Inv/2 sqg. units
23, (47/3) — 21In(2 4+ /3) sq. units
4
25. (4/m) — 1 sq. units 27. 3 sq. units
29 ¢ 1 sq. unit
.= — . units
) q
Review Exercises (page 347)
1.sumis n(n 4+ 2)/(n + 1)?
3.20/3 S.4m
7.0 9.2
11. sin(r?) 13. —4¢50@9)
15. f(x) = —1®¥/20=0  17,9/2 5q. units
19. 3/10 sq. units 21. (3+/3/4) — 1 sq. units

23.
27.

. —cos/25s+1+C

29

(;sin@x*+ 1)+ C
(m/8) — (1/2)tan"!(1/2)

25.98/3

31. min —m /4, no max

Chapter 6
Techniques of Integration

Section 6.1 (page 355)

1.
3.

- BV |

11

xsinx +cosx—|2—C

. 2 .
—x%sinwx + —XCosTx — —sinwx + C

k14 T 3

. lx4 Inx — ix4.+ C
.xtan'x — 11n(1+x2)+C
. (32—

LIVZ+ 3+ V2)

)sm x + xvl—x2+C
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13. Le> (2sin3x — 3cos3x) + C 25. 2 tan-l x 4 3x 4 5x N

i "8 8(1 +x2)2
15. 02+ V3) - & o
17..x tanx—1n|secx\~|—C 27-%111(14‘«/1 —x2> — 3Inix| - —ZXT‘FC
19. — [cos(lnx) + sin(Inx)] + 29.2/x —4In(2+ J/x)+ C

21. Inx(ln(lnx) — 1) + C

'x —V1-x24+C

23. x cos™
2
25. 7 ~In2 + V3) 33.
27. %(x3+1) (tan’lx)z—xtan_1x+%ln(1+x2)+C 37.
1 -
29. te square units 39
31. [, = x(Inx)" —nl,_,,
Iy = x [(Inx)* = 4(nx)? + 12(Inx)? — 24(Inx) +24]4C 4y 9
| n—1
33./, = ——sin"" 'xcosx + ——1,_3,
5 n n 43.
X . .
le = Tg Cos¥ [4sin’ x + 2 sin’ x + & sinx]+C,
[ = —cosx [4sin®x + % sin x + % sin? x + ;—g] +C 45 —
35. 1, = a m=3
T 28— D2+ a)n ! 2a2(n—1) " 47.
X 3x X
L= -+ C

— t
4a?(x? + a?)? + 8a*(x? + a?) M
37. Any conditions that guarantee that

fb)g'(b) — f'(b)g(b) = f(a)g'(a) — f'(a)g(a) 1
will suffice.
3.
Section 6.2 (page 363)
5
1. l sin”!'(2x) + C
3.2s1n ‘;—C—%x\/9—x2+c li.
/9 )
5.0 "% 4 ¢ 13.
Ox .
7. =9 — x2 4+ sin”! §+C 1s.
9.39+x22 —9VO+x2+C
mil X ¢ o
) (lz az — x2 19.
13. x —sin”' = 4 C
a> — x? a
1 1
15, 5sec! 24 C 17 e 20 4 21.
2x +1 1 2x + 1
19. . tan~! - C 23.
3 At 2 642 +drts5
21. a sin™ —V2ax —x2+C 25.
3 —
23. a c 27,

31.

6

6x7/6 — 85/6 4 3323 4 0y 1/2
6x1/6+31n(1+x1/3)+6tan x4 C

35.7/3
2 tan(6/2) + 1)
—F |+ C
(7
_2_ can-! (tan(9/2)) ic

V35

square units

b .
a’cos™! <—> — ba/a? — b? square units
a

5 5
In(Y + 1+ Y?)
2

4 3 4 .
sin”' - —sin” - —121n§ square units

$q. units

Section 6.3 (page 372)

Jnj2x = 3|+ C

X 2
———21n|nx+2|+C

T om

a-+x

a—x

1
7. — In

2a

1
—In +C

x+3
x—3nlx+2/+inlx -1+ C
B3Injx+1j—2Injx|+C

1
3(1 — 3x)

1 13 1
—§x——ln|2—3x|+gln|x|+C

\+C

+C

_1_1nlx—_az|+c

2a2a x2
x+§ln|x—a|—gln(x2+ax+a2)
a 712x+a

B B T

Infx] —3Injx — 1|+ ilnjx = 3|+ C
x—i—l’_ x

1
3
1
2"

C
2(x2—-1) +

11
—+_—+C
tortes T

x—1
x -3
x

1

77 n
t—

4(t2 n

thjt+1+ g+ +C




1—41—x2 +

]
29. - 1In
3 x

—1In
12
1 —V14+x2 4
1 ++/1+x2

34+ x2

1 1
3., —+ —-In
J14+x2 2
1 —2x2
B L
x/x?2 =1

Section 6.4 (page 376)

xy/x2 =2
5.%—+1n|x+\/x2—2|+C

7. —V32+5/(51) + C

9. (x5/3125)(625(Inx)* — 500(In x)® + 300(In x)>

—120Inx +24) 4+ C

11. (1/6)(2x%2—x —3)v/2x — x2—(1/2)sin (1 —x)+C

13. (x —2)/(4/4x —x) + C
Section 6.5 (page 384)

1.1/2 3.1/2
5.3x213 7.3/2
9.3 11.7
13.1/2 15. diverges to oo
17.2 19. diverges
21.0 23. 1 5q. units
25. 21n 2 square units 29.2
31. diverges to co 33. converges
35. diverges to oo 37. diverges to 0o
39. diverges 41. diverges to oo

Section 6.6 (page 392)

1.7, =4.75,
My = 4.625,
Tg = 4.6875,
Mg = 4.65625,
Tie = 4.671875,
Actual errors:
I — Ty =~ —0.0833333,
I —M,~ 0.0416667,
I — Tg ~ —0.0208333,
I — Mg~ 0.0104167,
[ — T = —0.0052083
Error estimates:
[l — Ty] < 0.0833334,
I — M4| < 0.0416667,
|1 — Tg] < 0.0208334,
1 — Mg| <0.0104167,
[ — Tig| < 0.0052084

1 ) ((2+vl—x2)2

)+e

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-65

3.7, =0.9871158,
M4 = 1.0064545,
Tg = 0.9967852,
Mg = 1.0016082,
T = 0.9991967,
Actual errors:
I —-Ty~ 0.0128842,
I — M4 ~ —0.0064545,
I —Tg~ 0.0032148,
I — Mg ~ —0.0016082,
I — T~ 0.0008033
Error estimates:
[T — T4 < 0.020186,
|7 — M4| < 0.010093,
I — Tg| < 0.005047,
[T — Mg| < 0.002523,
|[I — Tig| < 0.001262
Ty =46, Ty = 46.7
7. Ty = 3,000 km?, Ty = 3,400 km>

9. Ty ~2.02622, M, ~2.03236,
T3 =~ 2.02929, My =~ 2.02982,
Ti6 ~ 2.029555
11. Mg =~ 1.3714136, T = 1.3704366, I ~ 1.371

Section 6.7 (page 397)
1.S4=Sg=[, Errors =0
3. 54 & 1.0001346, Sg = 1.0000083,
I — 54 ~ —0.0001346, I — Sz = —0.0000083
5.46.93
7. For f(x) =e™*:
[T — S4} < 0.000022, 1 — Sg| < 0.0000014;
for f(x) =sinx,
|1 — S4] <0.00021,
[T — Sgj < 0.000013
9. 54 &~ 2.0343333, Sg = 2.0303133,
S16 ~ 2.0296433

Section 6.8 (page 403)

L3 / ' udu
o 1+u?
/2 I plmi? | g1
3.[ eMde, or 2 ———du
—x/2 0 V2 —u?

24

1
5.4 / dv
0 V@2 —v2)(2—2v2+1v%)

7. T = 0.603553 T, ~ 0.643283,

Ts =~ 0.658130, Tig =~ 0.663581;

Errors: 1 — T5 ~ 0.0631, [ — T4~ (0.0234,

I — T3 = 0.0085, I — T~ 0.0031;

Errors do not decrease like 1/n% because the second

derivative of f(x) = /x is not bounded on [0, 1].
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9. / =~ (.74684 with error less than 10™*; seven terms
of the series are needed.
11.A=1,u=1/J3
13.4=5/9,B=8/9,u=,/3/5
15. Ry = 0.7471805, R, ~ 0.7468337,
Ry =~ 0.7468241, [ ~ 0.746824

2h
17. R, = Zlg(7yo +32y1 + 12y, + 32y3 + Tys)

2

5.5 ottt 4 P24 €
= - —In — + —1Inlx
R S PR

53. —1coslnx) +C 55. J exp(2tan™! x) +C

57. 1B +x))’ +C  59. L(sin'(x/2)) +

61. VxZ2+6x +10—2In(x+3+Vx2+6x+10)+C
2

63.

= +C
52+ x2)32 324 x2)32
65. 8x7/% — x5/ + 2 /x —6x!/® + 6tan! X0 + C

Review Exercises (Techniques of Integration) (page 404) 67. §x3/ Z_x+4/x—4ln(l+ Sx)+C

Lilnlx+2|—LtmpRex+1/+C
3 [2x—1
3.%sin4x—%sinc’x+c S.Zln 2i+1\
3

1 {/1=x2
7.—(—x) +C 9%( 3_2)1/3+C

3 X
1 Lan' T4

7 tan +8(4+x2)+
13.21 2(2W1+4X+1n(2*+«/1+4)<))+c

15. Ztan x4+ %tan x+C
17. —e*x (3cos2x + Lsin2x) +C

19. — (cos(3 Inx) +3sin(lnx)) + C

10
21 Y +x9)* +C
/7 52
23.5in-1 - VI TX L o
7 2

1 -1 1 1
25. — _ C
(7(4x + 17 + 4(4x 4+ 1)8 9(4x + 1)9) *
27. —1cosdx + ¢ cos?dx — 5 cos®4x + C

30
29. — ! InQe™ + 1) + C
31. —1sin*x —2sinx —4In(2 —sinx) + C

/1 — x2
BT ¢
X
35. (1 —4x2)32 — LT —4ax? 4 C

37. V24 14+ In(x +vVx2+ 1D+ C

39.x+ fInfx|+ Flnjx = 3] = 3In|x + 3|+ C
1 10 1 12 1
41. —g5co8'x + gcost?x — o4 cosx +C
i 1 1-2
43 22+ 2% — 1| — ——1n |2 V2
2 2V2  |x+1442

45. 1 3)« sin™! 2x + ,4\/ —4x2 — —(1
47. 1zx (3x sin(4x) + ¢ sm(8x))

422 4 C

49, tan~"! —;— +C

69, —
2(4 — x2) +

71 ix3tan~ x — Ix2+ L In(1 +x2) 4+ C

1 3tan(x/2) — 1

5| tan(x/2) +3

1

Lin|tan(x/2)| — 4 (tan=" (x/2))* + C

1 ( 1—cosx l—cosx>
= —{In - +C
4 1+ cosx

14+ cosx
77.2/x —2tan ! /x + C

73. +C

75.

1 4
79. Ex2+§1n|x—2|—§1n(x2+2x+4)
4 x+1
+—tan™! +C
V3 V3

Review Exercises (Other) (page 405)

1.1 = Y(xe*cosx + (x — 1)e* sinx),
J = ((1 —x)e*cosx + xe* smx)

3. diverges to oo 5.—-4/9

9. 367,000 m?
11. T3 = 1.61800, Sz = 1.62092, I =~ 1.62
13. (a) Ty = 5.526, S4 = 5.504; (b) Sg = 5.504; (c) yes,
because S4 = Sg, and Simpson’s Rule is exact for
cubics.

Challenging Problems (page 406)

1 22 1 22 1

—Y = —— < T < .
630" 7 630 7 1260
3. () 1 tan_1<2x+1>+ 1 . _1<2x—1>
-la) — —tan — ),
«/15 V3 \{5 NG
(b) —tan"'(v2x + 1) + ~—tan~! (+/2x — 1
) NG V2 ( )
7.@@) a=7/90,b = 16/45,c = 2/15.

(b) one interval: approx 0.6321208750, two intervals:
approx 0.6321205638, true val: 0.6321205588

.ol =




Chapter 7
Applications of Integration

Section 7.1 (page 416)

3
1. T cu. units 3. Tnd cu. units
167 , 8 .
5.(a) T cu. units, (b) 3 Cu. units
27 108
7. (a) Tn' cu. units, (b) 5 id CU. units

o

15 =
9.(a) Tn — % cu. units, (b) 7(2 — In2) cu. units
10
1. T’T cu. units 13. about 35%
h ,  24°
15. 70 (b2 — 302 + 22 ) cu. units
3 b
T ) .
17. ?( — b)*(2ua + b) cu. units
dmwab?
19. Ta cu. units
21. (a) 7/2 cu. units, (b) 27 cu. units
23.k>2 25. about 1, 537 cu. units
i
27.81927/105 cu. units ~ 29. R = e

sin & + cos 2«

Section 7.2 (page 420)

1.6m* 3. 7/3 units’

5. 1321t 7. ma’h/2 cm?

9. 372 sq. units 11. %”3 cu. units
13. 727 cm® 15. 7r%(a + b)/2 cu. units
17. 16,000 Cu. units 19. 127+/2 in®
21. approx 97.28 cm?

Section 7.3 (page 428)

1. 24/5 units 3. 52/3 units

5.(2/27)(13%% — 8) units

7. 6 units 9. (¢? + 1)/4 units
11. sinh a units.

13. V17 + 4lln(4 + +/17) units

15. 6a units 17. 1.0338 units
19. 1.0581

21. (10%2 — 1)7 /27 sq. units

23.

G4m [(13/4%2 -1 (13/4)2 -1
81 5 3

:| $q. units

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-67

25.27(v/2 + In(1 + +/2)) sq. units
255 .
27. 2% 16 + In4} sq. units

29. 47%ab sq. units
In(2
31.87 {1 + —ri(———-'_\/g $q. units
243

5 5 T

33.s - 4+m E<m>

35.k > —1

37. (a) w cu. units; (c¢) “Covering” a surface with paint
requires putting on a layer of constant thickness. Far
enough to the right, the horn is thinner than any pre-
scribed constant, so it can contain less paint than
would be necessary to paint its surface.

Section 7.4 (page 436)

2L _ L
1. mass —; centre of mass at § = E

Vs

4a

3.m=1ns L y=y=-—

m= zmdoa I=y =g
5 256k c—0 _ 16
m=—"; k=0, = —
15 Y=

7 ka? _ 2a _ a
= X = —, = —
> 30 772

9.m = [/ 8(r)(g(x) = f(x))dx;

Moo = ["x8(x)(g()=f(x))dx, %= M.o/m,
My =5 [} 500 ((8()? = (£ (x)?) dx,
5] - My:O/m

11. Mass is %]TR4 kg. The centre of mass is along the
line through the centre of the ball perpendicular to
the plane, at a distance R/10 m from the centre of the
ball on the side opposite the plane.

13.m = gmdoa*; X =16a/(157), y =0,
7z =8a/l15
3a
1 3. > — —
15.m = 3kma’; x =0, y_g

17. about 5.57C/ k*/?

Section 7.5 (page 442)

1. (4_r, 4_’)

37 37
3 ﬁ—l T
“\In(1 ++2) 81n(1 + +/2)

5, 0’9“/5—_4” 7. (1_9__1)
A7 — 3/3 9’ 3
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9. The centroid is on the axis of symmetry of the hemi-
sphere half way between the base plane and the ver-

tex.
11. The centroid is on the axis of the cone, one-quarter

of the cone’s height above the base plane.
13. (8/9,11/9) 15.(0.2/(3(r +2)))

T 7 2r 2r
17. (2 8> 19'(??)
Sm .
21. (1, =-2) 23. 3 cu. units
25.(0.71377, 0.26053) 27.(1, 1)
. Mo . Mo
29.x = ,y=
where f 20 = f()dy,
My o= / (D2 — (F0)?) dy,

d
Moo= [ () = F)dy

31. diamond ocrientation, edge upward

Section 7.6 (page 449)

1. (a) 235,200 N, (b) 352,800 N

3.6.12 x 108N 5.8.92 x 10°N

7.7.056 x 10° N-m

9.2450ma’ (a + %}5> N-m

Section 7.7 (page 453)

1. $11,000 3. $8(/x — In(1 + /x))
5. $9,063.46 7. $5,865.64
9. $50,000 11. $11,477.55

13. 564,872.10
17. about 23,300, $11,890

Section 7.8 (page 464)

15. [ e O P(1)dt

1.(a)%, byu=20%= %,a = %
(c) g—gﬁ ~ 0.63
3 3 3
3@3, dyp=70 o’ = 30°° =V 30°
69 [3
(c) %\/% ~ 0.668
1 1 1
5.(a)6,7 by = E,<72= 507 =\ 20
(c) VG ~ 0.626

2 1 -2
7. —_, = — =~ 0.0.564, ———,
(@) N (b) 1 NG o’ o
-2
o= "2 ~0426, (c)Pr~0.68
2
11. (a) 0, (b)e™3 =~ 0.05, (c)~ 0.046
13. approximately 0.006
Section 7.9 (page 472)
1.y?=Cx .-y =cC
Ce¥ — 1
5.Y = Ce'’/? Ty=—"
¢ Y= Cer +1

9.y=—In(Ce ™ —3)

13.y = % + Ce™™
2
17.y = Vo + 22 19.y:1—+x—, (x > 0)
X

21.If a = b, the given solution is indeterminate 0/0; in
this case the solution is x = a’kt/(1 + akt).

1.y = x>+ Cx?
15,y =x—1+Ce™

2./ kg/mt
mg e —1 mg
23.v = —_— " U —> =
eL/kg/mt +1 k
25. the hyperbolas x> — y> = C
Review Exercises (page 473)
1. about 833
3.a ~1.1904,b =~ 0.0476
S5.a=2.1773 7. (&, )
9. about 27,726 N-cm 1.y =4(x — 1)}
13. $8,798.85

Challenging Problems (page 473)
1. (b) In2/(2%), (c) 7 /(4k(k* + 1))
3.y =@/ =30/ h)x? +3(r/ h)x

5.b=——a=27/2 7.1/71:
2wac? 72

9. (@) S(a. a. ¢) = 2w+ In (“+\/a———c).
as —c c

2 2
() S(a, ¢, ¢) = 2w + —22 o5 (5)

/a2 — ¢2 a
b— —b
(©) S(a, b, c) ~ ~—=S(a,a.¢) + —2S(a. c. c).
a—C a—C
(d)8@3,2,1) = 49.595.

Chapter 8
Conics, Parametric Curves, and Polar Curves
Section 8.1 (page 487)

L(2/5)+ (039 =1  3.(x—2)2=16—4y



5.3y —x* = 7. single point (—1, 0)

(=1.0)

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-69

19. rectangular hyperbola, centre (1, —1),

semiaxesa = b = ﬁ,

eccentricity /2,
foci (W2 + 1,42 = 1),
(—V2+1,-vV2-1),

asymptotesx =1,y = —1

\;

21. ellipse, centre (6,0),
semi-axesa =2, b =1,

9. ellipse, centre (0,2)
11. parabola, vertex (—1, —4)

¥

13. hyperbola, centre (—%, l)
asymptotes
2x4+3 = £22(y—1)

15. ellipse, centre (1, —1)

3
(1.—1ty

17. v* — 8y = 16x or y? — 8y = —dx

foci+ (2\/§ —\/g)
y

CHIRN
ANED)

23. (1 —eHx + y> —2pelx = g2p?

Section 8.2 (page 494)
Ly=(@x-172%/4

Y A

x=1+42t

y=1
—00 < < OO

Joy=(1/x)—1 5.x24+y?2=9
y A
(1/4,3)
x =1/t
y=t—-1
O<t<4

x =3sin2t
v =3cos2t
0<t<n/3
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X

n

9. x> 4y =1

x =cos3t

y=sin’t
0<t<2m

11. the right half of the hyperbola x? — y2 =1

13. the curve starts at the origin and spirals twice coun-
terclockwise around the origin to end at (4, 0)

(—00 < m < o)

15.x =m/2, v=m?/4,
17.x = asect, y = asint;
y2 = a2 (x> —a?)/x?

Section 8.3 (page 499)

e aavsariaavema e~

7. horiz. at (0, £1), vert. at (1, 1/+/2) and (£1, —1/+/2)

9. -3/4 11.—-1/2
13.x=1t—-2, y=4t -2 15.slopes £1

17. not smooth att =0
19. not smoothatt =0

21. 23.

25.

v A

=372 { 1=0

1=2m

Section 8.4 (page 504)

1. 44/2 — 2 units 3. 6a units
5.3((1 +7%)*? — 1) units
7. 4 units 9. 8a units

11. 23/27 (1 + 2¢™)/5 sq. units
13. 727 (1 + +/2)/15 sq. units
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15. 256/15 sq. units 17.1/6 sq. units 17. 19.

Y A

X =1 3,
19. 97 /2 sq. units \/

v

x = (2+sint)cost

y = (2 +sint)sint 21. 23.r = £+/5in 360

0<t<2m

N

23. 32 a?/105 cu. units

X

Section 8.5 (page 511)

r? =4sin26
1. x = 3, vertical straight line ,
3.3y — 4x = 5, straight line 25. the origin and [v/3/2, /3]
5.2xy =7 1, rectangular hyperbola 27. the origin and [3/2, +7/3]
7.y = x* — x, aparabola 29. asymptote y = 1,
9. y2 =1 + 2x, a parabola r=1/(6 — ) has
11. x? — 3y> — 8y = 4, a hyperbola asymptote(cosa)y—(sina)x = 1

13. 15. v 4

v oA v / "%
a3 ©) >

3l.x = f(6)cos®, y= f(f)sinb

S 39.1n6; = 1/6,, point (—0.108461, 0.556676); In 6, =
r=1+sin0 r=1+2cosf —1/(6> + 7), point (—0.182488, —0.178606)

v
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Section 8.6 (page 515) 25. horizontal at (4, —%), (1, Z), (1, 2),
T

1. 7% sq. units 3.4 sq. unifs vertical at (3, —%), (3, —2%), no tangent at (0, Z)

Review Exercises (page 516)

1. ellipse, foci (%1,0), semi-major axis V2, semi-

minor axis 1
. parabola, vertex (4, 1), focus (15/4, 1)

3
5. straight line from (0, 2) to (2, 0)
7
9

.
.
Lo /4
.

P
,
P
/—\ p

x

. the parabola y = x? — [ left to right
. first quadrant part of ellipse 16x2 4 y? = 16 from
(1,0) to (0, 4)
11. horizontal tangents at (2, £2) (i.e. t = £1)
7.2 4 (7 /4) sq. units vertical tangent at (4, 0) (i.e. t = 0)

B

r? =a?cos 28

r=1-cosh

13. horizontal tangent at (0, 0) (i.e. t = 0)

) e 3 .
9. 7/4 sq. units 11. 77 — 3+/3 5q. units vertical tangents at (2, —1) and (=2, 1)
(e. t ==1)
15. 1/2 sq. units 17. 1 + €2 units
v 4 y

T r=1+4cos260

)

|

r=1+2cosé

17.67.5°, =22.5° 19.r =6 21.r =1+co0s26
19. 90~ at (0,0), 1 23.r = 1+2c0s26
a
+45°at (1 — —, =),
a( V2 4) Y
1 5#m
+135°at [ 1+ —, - 1
( \/E 4) r=1+2cos20

21. horizontal at (+%, ﬁ) vertical at (2,0) and the
origin

23. horizontal at (0,0), (3v/2, £ tan™! v/2),
(% V2, 7 + tan™! V2),
vertical at (O, %) (%«/E itan“(l/ﬁ)), 1
(3v2, 7 £an"'(1/v2)) 25. 7 + (3+/3/4) sq. units  27. (x — 3)/2 sq. units




Challenging Problems (page 516)

1. 167 sec§ cm? 5. 407 /3 ft?

7. about 84.65 min
9. r2 = cos(20) is the inner curve; area between curves
is 1/3 sq. units

Chapter 9
Sequences, Series, and Power Series

Section 9.1 (page 526)

1. bounded, positive, increasing, convergent to 2
3. bounded, positive, convergent to 4
5. bounded below, positive, increasing, divergent to in-

finity
7. bounded below, positive, increasing, divergent to in-
finity
9. bounded, positive, decreasing, convergent to 0
11. divergent 13. divergent
15. 00 17.0
19.1 21.¢73
23.0 25.1/2
27.0 29.0

31. lim, ,0a, =5
33. If {a,} is (ultimately) decreasing, then either it is
bounded below and therefore convergent, or it is un-
bounded below and therefore divergent to negative
infinity.
Section 9.2 (page 534)
1

1. -
2
3 1
T2+ m¥Q+m)E-1)
25 4
5. 7. ¢
4,416 e—2
3
9. diverges to 0o 11. 1
1 .
13. 3 15. div. to oo
17. div. to co 19. diverges
21. 14 m

25. If {a,} is ultimately negative, then the series ) _a,
must either converge (if its partial sums are bounded
below), or diverge to —oo (if its partial sums are not
bounded below).

(="

on

27. false, e.g., Y 29. true

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-73

31. true
Section 9.3 (page 545)

1. converges 3. diverges to oo

5. converges 7. diverges to 0o
9. converges 11. diverges to o0
13. diverges to oo 15. converges
17. converges 19. diverges to oo
21. converges 23. converges

25. converges

1 1
27.5, + —————— <s < s, + —; =6
) +3(n+1)3_s_s +3n3 n
29. s, + 2 <s= +2 63
. Sn <s<sy+—; n=
Jr+1 N
2
31.0<s—5, < nt ;
27(n + D!2n +3)
2"(4n* + 6n +2
3B.0<s_y < ton+d

= 2m)i@n? f6n)

39. converges, al/" (1/e) <1

41. no info from ratio test, but series diverges to infinity
since all terms exceed 1.

2
43.b)ys < ——— k=1,
®s =tk
(14 kyrt! n+2—+/n2+38
©0<s—s, < Lk =
2k (1 — k) 2(n — 1)

forn >2

Section 9.4 (page 553)

1. conv. conditionally 3. conv. conditionally

5. diverges 7. conv. absolutely

9. conv. conditionally 11. diverges
13.999 15.13
17. converges absolutely if —1 < x < 1, conditionally if
x = —1, diverges elsewhere

19. converges absolutely if 0 < x < 2, conditionally if
x = 2, diverges elsewhere

21. converges absolutely if —2 < x < 2, conditionally if
x = —2, diverges elsewhere

23. converges absolutely if — < x < 7, conditionally
if x = —%, diverges elsewhere

25. AST does not apply directly, but does if we remove
all the O terms; series converges conditionally

1"
27. (a) false, e.g., a, = b))

n b
sin(nm /2)

(b) false, e.g., a, = (see Exercise 25),

(c) true
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29. converges absolutely for —1 < x < 1, conditionally
it x = —1, diverges elsewhere

Section 9.5 (page 564)

1. centre 0, radius 1, interval |—1, 1]
. centre —2, radius 2, interval [—4, O[

. centre 0, radius oo, interval |—o0, oo

3
5. centre 3, radius 1.interval 1, 2[
7
N I _i(n+1)(n+2)

XLl <x <)

'(1—x)3‘n:0 2
1 Z(n—{—l)x (-1<x<1)
( 7x) n=0
1 X n4+1 .
13?27—)02_:2_;?"7)6’ (—2<x<2)

n

15. 02 -x)=In2-Y7 —Zx— (-2<x<2)
"n
X

1 n+1 n
17. _2 :Z on+2 (X+2) ’

1 1
2)1 2n+3 (___ < x < __)
Z_(:) V2 V2

1

1 +4x
) 3ifx =0,

(4 <x <0)

19.

21. (—
23. [—

1
-3 In(1 — x) — 7 % otherwise

25.(—1,1); 27.3/4

2
(1 —x2

29. 7% + D/(mr — 1)° 31.In(3/2)

Section 9.6 (page 572)

n

3"e
1.3+ =57 X
Zn:() n‘

3. sin (x — —})

, (all x)

n y2n+l
\/—Z(‘) |: 2n)! (2n+1)!

rin(F) oy EDT
5.xsin (5) =m0 3+1(2n 4+ 1!
o (_1—)’122_ 2n+1
n=0 (2n+1)'

=1—x? +Z( 1) 2n1 )’

n=2

:|, (all x)
X3 (all x)

7.sinxcosx = , (all x)

1+ x3
142
(—l <x<l)

22}2);

2n—1

11. ln

4n+2

13.coshx —cosx =23 0 (all x)

= (4n+2)V
0 & 1)2 (x+ 1", (allx)

15. ¢ 2y,

~ ( 1)n+l
17.cosx =3, !

(_l)nAI
41p

2 (all x)

(x —m)

19.In4+> 72,

21.sinx —Ccosx =

1)” 77\ 2n+1
IS Gy (7)o @i
1

o0
1
2. — = }:n; x+2)",
n=0

x2
-
25. (x — )+ 307, ———nEn _)1) (x = D",

xz  5x* xr x
27.1 4+ — + — 29, — = —
+2+24 9)c—i-2 G
2

X X
31,14+ - — —
+2 8

e —e X
35. =

2x

37.(a) 1 + x + x2,

(x=2", (-2<x<6)

(=4 <x <0)

-

0=x=2)

e~ (all x)

sinh x

ifx #0, 1ifx =0
®3+3x -1 +(x—1)?
Section 9.7 (page 576)

1.1.22140 3.3.32011
5.0.99619 7. —-0.10533
9. 0.42262 11. 1.54306
(=n"
13.71 22+ (all
() = 2o on+ D@2t 1 » (allx)
o (D"
15. K (x) = 322, CESTCRR (-1<x<1
17. M(X) Z o __(_l)_n___ 4n+1’
=0 2n+1)@dn+1)
(-1<x=<1
19. 0.946 21.2
23.-3/25 25.0
Section 9.8 (page 580)
1. —(0.2)7 — 5
720( ) 3 120(0 )
5 4 sec?(0.1) tan?(0.1) 4 2 sec*(0.1)
41104
24
7
120(1.95)5(20)°
In 2)"
9.0r = yoo, BIDT oy
2n+1
1l.sinx =) 22 (—1)"——, allx

@2n + 1)



1 0
13 — =n2=;x",——1<x<1
x > x\n 2 2
15. =3 (=113 (—) = <
2 ¥ 3x 2 (=D 2] T3 T3

1 ey n
17.sinx = 7 ,,Z:(:) & (x - %) , (for all x), where
cn = (=12 ifniseven, and ¢, = (—1)*~ D23 if
nis odd
19.Inx =302 (=)

____Z<x+2> e -0

n=0
Section 9.9 (page 584)
1. V1 +x

(=D" "1 x3x5x---
1+Zsil mpl
n!

x| <1

3.4+ x
=245 +22( !

(-4 <x < 4)
5.3 (n+ Dx",
Section 9.10 (page 589)

P s (_x — l)4k
= ap (l + Z 4kDYBYT) - - - (4k — 1))
(x )4k+1
+a, (x -1+ Z 4kDBYO) - - - 4k + 1))

2! 1
— LR R/ 2n 2n+1
3.y =2%D [(Zn)!x T ]
5.y=1—%x3+%6x5+'~
(— ket
Toyi =1+
=1L mee®

,0<x <2

L= 1"
n

x(2n—-3) ,
x

1 x3x5x%-
23nnl

-x (2n ——3)

|x] <1

Gk-1)°
1)k xk
y=x ( * Z (k!)(4)§7) .). “(3k+ 1))
Review Exercises (page 589)
1. conv.to 0 3. div. to o0
5. 1m0 an = V2 7.4V2/(N2—1)
9.2 11. converges

13. converges 15. converges

17. conv. abs. 19. conv. cond.
21.conv. abs. for x in (—1,5), cond. for x = —1,

div. elsewhere

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-75

23.1.202
25.3°%°  x"/3" x| < 3
27. 1+ X2 (=1 Ix?/(ne"), —Je <x < Je
29.x 4+ 300 (—1)"22 1y 2"+1/(2n)v all x
(=D"1x4x7x---x(3n—2)x"
31.(1/2)+ 302, TYTIY
-8 <x<8

3BY 2 (—D"(x =) /a0 <x <27
35. 1+ 2x +3x2+ Lx3 3701 Ju% + 2t

39 cos/x  ifx=>0
"l cosh/[x] ifx <O

43.1In(e/(e — 1))
47.3, 0.49386

Challenging Problems (page 590)

5.(c) 1.645
7. (a) 00, (c) e,

Chapter 10

’

41. 7% /(mr — 1)?

45.1/14

A fx) = [ e dr

Vectors and Coordinate Geometry in 3-Space

Section 10.1 (page 599)
1. 3 units 3. +/6 units

5. |z| units; vV ¥? + 72 units

7. cos 1 (—4/9) ~ 116.39°
9. +/3/2 sq. units 11. \/n — 1 units

13. the half-space containing the origin and bounded by
the plane passing through (0, —1, 0) perpendicular to
the y-axis.

15. the vertical plane (parallel to the z-axis) passing
through (1, 0, 0) and (0, 1, 0).

17. the sphere of radius 2 centred at (1, —2, 3).

19. the solid circular cylinder of radius 2 with axis along

the x-axis.
21. the parabolic cylinder generated by translating the

parabola z = y? in the yz-plane in the direction of

the x-axis .
23. the plane through the points (6, 0, 0), (0, 3, 0) and

0,0, 2).

25. the straight line through (1, 0, 0) and (1, 1, 1).

27. the circle in which the sphere of radius 2 centred at
the origin intersects the sphere of radius 2 with centre
(2,0,0).

29. the ellipse in which the plane z = x intersects the
circular cylinder of radius 1 and axis along the
Z-axis.

31. the part of the solid circular cylinder of radius 1 and
axis along the z-axis lying above or on the plane
z=y.
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/.

39.

ANSWERS TO ODD-NUMBERED EXERCISES
DULY — WS D PICITd A T ¥ T & — 1 auu

x>+ y% 4 72 = 4; interior — points between these
spheres; S is closed

bdry of S is S, namely the line x = y = z; interior is
empty; S closed

Section 10.2 (page 609)

1.

13.
15.

17.
19.

21.

23.
25.

31.
33.

35.

(a) 3i — 2j, (b) —3i + 2j,
—7i + 20§, (h) 2i — (5/3)j

.(a)6i — 10k, 8j, —3i+20j+ 5k
(b)5v2, 5v2
N 3 4 - 1

(e) cos™1(9/25) ~ 68.9°  (f) 18/5/2
(2) (27/25)i + (36/25)j — (9/5)k

. from southwest at 504/2 km/h.
11.

head at angle 6 to the east of AC, where
3
1

271+ 4k2

The trip not possible if k < %\/5_ Ifk > JT\/S_, there
is a second possible heading, m — 6, but the trip will
take longer.

t=2

cos™ (2/4/6) & 35.26°, 90°

(i+j+k)/V3

A = 1/2, midpoint, A = 2/3, 2/3 of way from P; to
P>, . = —1, P; is midway between this point and P;.
plane through point with position vector (b /|a|2)a
perpendicular to a.

x=2i—3j—4k

(lalv + [viw)/[[ulv + [v|ul

u=(wea/laj>)a, v=w-—u

X = (a+ Kw)/(2r), y = (a — K0)/(2s), where
K = ./|a|?> — 4rst and 1 is any unit vector

about 12.373 m 37.about 19 m

¢ = sin~

Section 10.3 (page 618)

1. 5i+ 13 + 7k

3. /6 sq. units

5.+£12i—2j+k) 15. 4/3 cubic units

17. k= —6

19,5 — X @ (VXW) _ Xe(wxXmw)  Xe(uxv)
T ne(vxw) T ue(vxw) T ue(VXW)

21.uX (vxw) = =2i+7j—4k, (uxXv) Xw = i+9j+9k;

the first is in the plane of v and w, the second is in
the plane of u and v.

3.

7.
11.
13.

15.

17.

19.

21.
25.

27.
31.

33.

WA Ty e —

x—y+2z=0 5.7x +5y —z=12

x—5y—3z=-7 9.x+6y—5z=17
(ry —r2) o [(r; —r3)X(r; —rg)] =0

planes passing through the linex =0, y +z =1
(except the plane y 4+ z = 1 itself)
r=(+20)i+@Q—-30j+ (3 -4k,
(—oo <t < 00)
x=142t,y=2-3¢t,z =3-4¢,
x—1 y—-2 z-3

2 7 -3 -4
=t(7i—6j—5k); x=71,
=5 x/T=-y/6=—z/5
i+2j—k+tdi+j+k);
=14t y=2+4t z=-141¢
—1l=y-2=z+1

=g o=
nEr G =14 0 F ),

V=(r —r)X{@ —14) #0,(r; —r3) ev=0.

(—o0 <t < o)

y = —6t,

LT B TS M
Il

74/2/10 units 29. 18/~/69 units
all lines parallel to the xy-plane and passing through

(0, Yo, Z0)-
(x, v, z) satisfies the quadratic if either
Aix + B1y + Ciz= D, or Ayx + By + Coz = D;.

Section 10.5 (page 631)

1.

11.

13.
15.

17.

19.

ellipsoid centred at the origin with semiaxes 6, 3 and
2 along the x-, y- and z-axes, respectively.

. sphere with centre (1, —2, 3) and radius 1/ V2.
. elliptic paraboloid with vertex at the origin, axis along

the z-axis, and cross-section x2+2y2 = 1 in the plane
z=1.

. hyperboloid of two sheets with vertices (42,0, 0)

and circular cross-sections in planes x = c, (¢? > 4).

. hyperbolic paraboloid — same as z = x> — y? but ro-

tated 45° about the z-axis (counterclockwise as seen
from above).

hyperbolic cylinder parallel to the y-axis, intersecting
the xz-plane in the hyperbola (x2/4) — 22 = 1.
parabolic cylinder parallel to the y-axis.

circular cone with vertex (2, 3, 1), vertical axis, and
semi-vertical angle 45°.

circle in the plane x + y 4+ z = 1 having centre
(1/3,1/3,1/3) and radius /11/3.

a parabola in the plane z = 1 4 x having vertex at
(—=1/2,0,1/2) and axis along the line z = 1 + x,
y=0.




y z x) y z 1( X\
==l =), =4+-=—-{14+—-);
= b ¢ ( a b+c )»1 +a)
yoo=r(+2) gra=n(-0)
EAN R 1+2), 2+2==(1-2
b ¢ At b+c nw a
23.a + k (or any multiple)
Section 10.6 (page 641)
6 7
1.(5 —3)
1
3 aw+by ax+ bz
‘New+dy cx+dz
4 3 2 1 1 2 3 4
33 21 01 2 3
T _ 2 _
5. A4 2 2 21 AT = 00 1 2
1 1 1 1 0 0 01
1 -1 0
7.36 15( 1 —1)
0 0 1
17.x=1,y=2,7=3
19.x1=1, x2:2, )C3=—1,X4=—2
21. neg. def. 23. pos. def.

25. indefinite
Section 10.7 (page 648)

1. 2 units

5.8p:=(U,V)->U&.unitv (V)

7.ang:=(U,V)->evalf ((180/Pi)
* arccos(unitv(U)&.unitv(V})))
9. VolT:=(U,V,W)->(1/6) *abs (U&. (V&xX W) )

11. (u,v,x,y,2) = (1,0,-1,3,2)

13. -935
9 -36 30
15. [—36 192 —180]
30 —180 180

Review Exercises (page 648)

1. plane parallel to y-axis through (3, 0, 0) and (0, 0, 1)
3. all points on or above the plane through the origin
with normal i + j+ Kk
5. circular paraboloid with vertex at (0, 1, 0) and axis
along the y-axis, opening in the direction of increas-
ing y
. hyperbolic paraboloid
9. points inside the ellipsoid with vertices at (£2, 0, 0),
(0, %£2,0, and (0,0, £1)
11. cone with axis along the x-axis, vertex at the origin,
and elliptical cross-sections perpendicular to its axis

3

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-77

13. oblique circular cone (elliptic cone). Cross-sections
in horizontal planes z = k are circles of radius 1 with
centres at (k, 0, k)

15. horizontal line through (0, 0, 3) and (2, —1, 3)

17. circle of radius 1 centred at (1, 1, 1) in plane normal
toi+j+k

19.2x —y+3z=0 21.2x +5y+3z=2

23.7x +4y —8z=6
25.r=Q2+3ni+(1+j— A +20k
27.x=3t, y=-2t, z =4

29.(r; —r)X(@—ry) =0

31. (3/2)+/34 sq. units
1

0O 0 0
-2 1 00

_1_
3.4 = 1 -2 1 0
0 1 -2 1

35. pos.def.

Challenging Problems (page 649)

5. condition aeb =0,

X = + ta (for any scalar 1)

|a|?
Chapter 11
Vector Functions and Curves

Section 11.1 (page 657)

l.v=j,v=1,a=0,pathisthelinex =1,z =0
3.v=2j+k, v = 42+ 1, a = 2j, path is the
parabola y = z2, in the yz-plane
5.v = 2ti — 2tj, v = 2+/2¢, a = 2i — 2j, path is the
straight half-linex +y =0, z=1, (x = 0)
7.v=—asinti+acostj+ ck, v = +/a? + 2,
a = —acosti — asintj, path is a circular helix
9.v= —3sinti—4sintj+Scostk,v=5,a=—r,
path is the circle of intersection of the plane 4x = 3y
with the sphere x% + y* + 72 = 25
1ll.a=v=r,v=+va?+ b+ ¢, pathis the straight

. X y Z
line — === -
b ¢

13. v = —(e ' cos e’ + sine')i

+(—e'sine’ 4 cose’)j — €'k
—Viterted
a=[(e’ —e')cose +sine']i
+[(e™ —e")sine’ — cose’]j — €'k
The path is a spiral lying on the surface
z=—1//x24y?

15.a = —372%i — 47%j 17. /372(—i+j — 2k)
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19.v=2i+4j+4Kk,a=—3Q2i+j—2k)

29. ((]—II(UX(VXW)) = C—al;X(VXW)

dv dw

+u><(dt XW) +ux (vX dt)

31.u” e (uxu’)

33. r = roe¥, a = 4roe¥; the path is a straight line
through the origin in the direction of ry

1 _ e—("t

35.r=ry+

vo— S et + e — Dk
C

Section 11.2 (page 666)

e — 1 e — 1

1. ,
e n e . . . . «
3. r = costi + sintj + k; the curve is a circle of radius

| in the plane z = 1
2

5. 4.76° west of south; AN
R is the radius of the earth

7. (a) tangential only, 90° counterclockwise from v.
(b) tangential only, 90° clockwise from v.
(¢) normal only

9. 16.0 hours, 52.7°

2

toward the ground, where

Section 11.3 (page 673)
=+a2—12 y=t,0<t<a

v =asing, y = —acosf, 3 <6 <m
r= —2ti +tj + 4’k
.r=3costi+ 3sintj+ 3(cost + sinf)k
.r=(1+2cost)i —2(] —sint)j

+ (9 +4cost — 8sint)k

© Nm oW
-

) -1, . P41
. Choice (b) leads to r = i+1j+ K,

which represents the whole parabola. Choices (a) and
(c) lead to separate parametrizations for the halves
y > 0and y < 0 of the parabola. For (a) these are
r=ttV1+2tj+ 1+ 0k (¢ > —1/2)

13. (17/17 = 16+/2)/27 units

f VAl + B2 + 2

o
[

15. dt units;

a(T?> — 1)+ cln T units

17. 13/2 + 4722 + In(v/27 4+ /1 + 272) units
19. V27 4T — /34 | In S/
—11In(2 = V/3) units

21. straight line segments from (0, 0) to (1, 1), then to
0.2)

o 1 . .
= -_—m(ASl + Bsj+ Csk)

25.r=a(1 — ?)3/2 +a(K>3/2j+b<1 _ %)k

0<s <K, K=(92%+16b2)/2

Section 11.4 (page 682)

o= (i — 4t + 97k
LT = e A~ 4+ 9%
3.T= m(cos 2ti + sin 2¢j — sin 7K)
Section 11.5 (page 689)
1.1/2, 27/2 3.27/(4v2)
T=(i+2j)/V5 N=(=2i+j/V/5 B=k
. 1
7.T = ————(i+1j + 1°K),
«/1+tl2+t4 !
B= ———(%i—2tj+ k),
Vit + 412 + 1 !
R —+2i+ 1 =hHj+ @ + 20k
VA1V + 244
VP 4424 B 2
T4+ 132 T T a4

9. x(t) = 1/«/5, 7(t) = 0, curve is a circle in the plane
y + z = 4, having centre (2, 1, 3) and radius V2

R . 2j—k
1) T =i N:~J—5,

.42k

=1t 5 =0

NG

. A_ 2 L A—L_' .

i) T= /30— 75K, B=_( i+ 2j+2v2Kk),

N=—L@i+j+vok), «=232 1=-02
13. max a/b?, min b/a’

X

15. 6= —°

(1 +62x)3/2’
r=x—1—e®i+ e +e)j

3
17. 57—
21 r = —4x%i+ B3x% + ))j
23. f(x) = 1(15x — 10x* + 3x°)

Section 11.6 (page 699)
3. velocity: 1/4/2, 1/4/2;

acceleration: —e~%/2, e7% /2.

v (2 1
5. |a,|—-— ;2—+r—3

7.42.,777 km, the equatorial plane

9. Z% 13.3/4

15. (1/2) — (¢/m)




19. r = Asecw(d —6y), > =1—(k/h? ifk <h?,
r=1/(A+ BO)ifk = h?,
r=Ae”+Be ™, = (k/h)-1, ifk>h%
there are no bounded orbits that do not approach the
origin except in the case k = h” if B = 0 when
there are circular orbits. (Now aren’t you glad gravi-
tation is an inverse square rather than an inverse cube
attraction?)

Le
21.centre { ——,0);
€2 —1

e 1
asymptotes in directions # = 4 cos™! (——);
€

. . £
semi-transverse axis a = — ;
e —1
L . 4
semi-conjugate axis b = —;
€2 —1
. . Le
semi-focal separation ¢ = — 1
€2 —

Review Exercises (page 701)

3.v=2(1+2j+2k), a=(8/3)(—2i—j+2k)
5.k =1 =+2/(" +e")?2
9.4a(1 — cos(T/2)) units

1l.rc(t) = a(t —sint)i+a(l — cost)j

13. p = sin¢ cos Bi + sin ¢ sin 0 + cos ok

~

¢ = cos ¢ cos 01 + cos ¢ sinfj — sin pk

6 = —sinbi+ cos6j
right-handed

Challenging Problems (page 702)

i+ k
L= a~7272% 10
V2

(b) ac = —v2Qui.
(c) about 15.5 cm west of P.
3.
(©)v(t) = (vo—(voeK)K) cos(wt)+ (v xK) sin{wt)+
(vo e kK)k.
(d) Straight line if vy is parallel to k, circle if vy is
perpendicular to k.
5.(a) y = (48 +24x> — x*)/64

7. (a) Yes, time wa/(vv/2), (b) ¢ = 5
6 =1In [sec ( vt ) -+ tan (v_t)]
- a«/i a«/i

(c) infinitely often

T vt

>

2

ANSWERS TO ODD-NUMBERED EXERCISES

Chapter 12

Partial Differentiation

Section 12.1 (page 712)

1.all (x, y) withx # y
5.all (x, y) satisfying 4x% + 9y% > 36
7. all (x,y) with xy > —1
9.all (x, y, z) except (0, 0, 0)

1.z = f(x,y)=x

15. f(x,y) = yx* + y?

o
KL

X

4""",” 1y

Z

U,
r"',',""l',,’,'

iy
il

\y

9. fx,y)=x—y=C

A-79

3. all (x, y) except (0, 0)

13.2= f(x,y) =y

17. f(x, y) = |x[ + |y]

2. f(x,y)=xy=C

y
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27. At B, because the contours are closer together there

29. a plane containing the y-axis, sloping uphill in the x
direction

31. a right-circular cone with base in the xy-plane and
verlex at height 5 on the z-axis

33. No, different curves of the family must not intersect
in the region.

35 () y/x2 432 (b) (o + yHA,
@22+ )2 () eV
37. spheres centred at the origin
39. circular cylinders with axis along the z-axis
41. regular octahedra with vertices on the coordinate axes

Section 12.2 (page 717)

1.2 3. does not exist
5.—-1 7.0
9. does not exist 11.0

13. 7(0,0) =1

15. all (x, y) such that x # £y; yes; yes f(x,x) = ﬁ
makes f continuous at (x, x) for x # 0; no, f has
no continuous extension to the line x + y = 0.

1999 =¢c=0, b#0

23. a surface having no tears in it, meeting vertical lines
through points of the region exactly once

Section 12.3 (page 724)
1 fitx,y) = fi3.2) =1, hlx,y)= £2(3,2)=-1

17. no, yes

3. =310, =4y, fi =520yt
All three vanish at (0, —1, —1).
0z -y 0z X
5. T = =, —_— =
ax  xZ4y? dy  xZ4y*?
d 1 d 1
At(=1,1): =2 222

ax 2 3y 2
T fi = JFcosxyy),  fo = LSOV

2y
At(n/3,4). i=-1, fo=—m/24
a 9
9. _ﬂ =ylnzxWMz=b 2% o nx Ingx? e
ax ay
ow Y Inx Yinz
= ] ] 9
At (e, 2, e): ow = v =2e, w =e>.
dx 9z ay

11. £,(0,0 =2, f2(0,0)=—1/3
13.2=—4x —2y — 3;
1 X —7 b
15.z=—(1— ——+ —( —4>;

ﬁ( 4 Y9

X -7 y—4

“lava  mjle2 | -1

_ 2 3x _ 4y, x—1 __ y=2 _ z—1/5
17.2 =5 + 55 — 5; 3 T 3 T 35

19.z=n5+2(x - 1) — $(y +2);
x—=1 y+2 z—I5
2/5 T —4/5 7 -1

M= T oo =24 )=z 2
2 4
(-1, -1)

1

23.(0,0), (1,1,

B.w = fla,b o)+ fila,b,c)x—a)+ fala, b, c)(y—
b)+ fila,b,c)(z—¢)

35. /7 /4 units

37. £1(0,0) = 1, £,(0, 0) does not exist.

39. f is continuous at (0, 0); f1 and f, are not.

Section 12.4 (page 731)

8’z 9%z 92
1. — =2(1 +y%), =dxy, — =2x*
oz~ 20D gy A g T
8%w 33 0%w 1 3
3.5F———6xyz, W:& vz,
9w 8w
= 6x%y%z, — 9x2y223,
3z e dxay Ty
%w 82
= 0x2y3;2, — 9x3 2.2
axoz VY ayar . 0 YF
3? 32 a* ‘
5.—Z:—ye", < =e’ — ¢, L xe
dx?2 x0dy dy?

7.27, 10, x2e"y(xz sinxz — (3 + xy) cosxz)

19. u(x,y,z,t) = (32— 1) M

Section 12.5 (page 741)

Jw

1. o = fig2 + il + f3ka

Z !
3o —=gihi+gfh

ou

dw , ,
5. i hah + figa + b + fa,

ow ,

Br k= P+ £

z

awl _f

3z xy —J3

dz —Sy

Tox  13x2 —2xy +2y?
9.2 f1(2x,3y) 11.2x f>(y2, x?)

13.dT/dt = e7' (f'(1)— f(1));dT/dt = Oif f(t) = e
in this case the decrease in 7 with time (at fixed depth)
is exactly balanced by the increase in T with depth.

15.4fu + 1212 +9f, 6fu1 +5fiz —6fn,
9fu—12fn+4fn

17. fi1 coss — f, sins + fi;t coss sins

+ fiot(cos?s — sin?s) — for t sins coss
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19. o +2y% fia + xyfar — dxyfs — 2x2 fao; 33. Dy(Dy f) = v} fii+v3 fro+032 fa3+20102 f12+20103 13
all derivatives at (y2, xy, —x?)
27. ZZj:l Xi Xj f,‘j(X], v, xy)y =kk—1) f(xy, o0, Xn) +2vy03 f23.
31.u(x, y) = f(x +ct) This is the second derivative of f as measured by an
‘ observer moving with velocity v.
Section 12.6 (page 750, 3T aT
(pag ) 35. 32 T 2Dy (E) + Dagn T + Dyiry(Dyy T)
1.6.9 3.0.0814
5.2.967 7.(a) 3%, (b) 2%, (¢) 1% Section 12.8 (page 772)
9. 8.88 ft*
11. 169 m, 24 m, most sensitive to angle at B 4 4 3xy2
g L—%i;gﬂy¢odg¢—ﬁ3
cosf —rsinf ¥ +4xy
13. sind  rcosé 3xy* +xz
2 ’ S.ﬁ,y;&o,x;«éZyZ
15.( AU ), (5.99,3.98) Xy
—lnz 2y —x/z x — 212w 5 3G/ox 3G
5.72 5 , W 2xy 7.——8Ga S
Section 12.7 (page 761) e —w fou ou
9 v2H, + wH; 2 H 0
1L4i+2j; z=4xr+2y—3 2x+y=3 T R2H i, WA
3.(3i—4j)/25; 3x—4y—25z+10=0; all derivatives at (u’w, v?t, wt)
3x—4y+5=0 2w — 4y 1 1 1 1 1
5.(2i—4j)/5: 2x —4y—57 = 10—5In5; x—2y =5 . ~—=, 4w 1. 0.2 =5 —¢
T.x+y—3z7=-3 9. /3y +z=+3+7r/3 15. r; all points except the origin
4 17. =32
1. =% 13.1-23 19, OF.G.H) [3(F.G, H)
17. in directions making angles —30° or —150° with pos- T,z w) a(x, z, w)
itive x-axis; no; —j. 215 — a(F,G,H) [A(F,G H)
19.7i — j T d(x2, x3,x5) [ 8(x1, x3, X5)
21. a) 23.2u+v), -2, 0

Section 12.9 (page 780)

o0 n,,2n
a XY
1. Z(_l) 2n+1
n=0
0 2n+1 1 2n+1
3.3 (e U
= 2n + 1

o0 n

1 2k 2n—2k
S';kzo Ko —kr Y
73— 3 =2+ 30 - D+ fx—2)?
— =D - D43y — D2 — E(x—2)°
3 =2’ - D -3 -2 - D+ 36—

b) in direction —i — j

¢) 4+/2k deg/unit time 9. x +y*— %
d) 12k/~/5 deg/unit time 1L1—-G-D+(y—-12- %(x - %)2
2, = —4
e) X7y 13. —x — x% — (5/6)x>
23. 3)C2 — 2y2 =10 25. _4/3 15 X 2y 2x2 8xy 8y2

27.i—-2j+k 3 3 27 27 27
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17 | (2n)!P Chapter 13
(n1)? Applications of Partial Derivatives

Section 13.1 (page 791)

1.
Review Exercises (page 780)

N 7 B

11.
13.

15.
17.

19.

21.

25.
27.

29,

=-5

N

5. cont. except on lines x = *£y; can be extended to
x = y except at the origin; if f(0,0) = 0 then

£110,0) = f2(0,0) =1
7. (a) ax + by + 4cz = 16, 15.
(b) the circle z = 1, x> + y2 = 12, (¢) £(2, 2, v/2) 17.
9.7,500 m2, 7.213% 19.
11. (a) —1/+/2, (b) dir. of +(i + 3j — 4k, (¢) dir. of
~7i4+5j+ 2k

15.(a) du/0x = —5, duf3y = 1, (b) —1.13 1.

(2, —1), loc. (abs) min.

. (0, 0), saddle pt; (1, 1), loc. min.

. (—4, 2), loc. max.
.(0,nm), n=0,4£1, 12, -, all saddle points

. (0,a), (a > 0), loc min; (0, a), (a < 0), loc max;

(0, 0) saddle point; (£1,1/+/2), loc. (abs) max;
(£1, —1/4/2), loc. (abs) min.
(37173, 0), saddle pt.
(-1,=1), (1,-1), (-1, 1), saddle pts; (=3, —3),
loc. min.
(1,1, 3), saddle pt.

Lo 1 1 i
(0, 0), saddle pt; (ﬁ’ IE), (—7’ —ﬁ), l‘oc. (abs)
max; (%, _\/LE)’ (—ﬁ, %), loc. (abs) min.
max e~/2/2+/2, min —e~*2/24/2; f is continuous
everywhere, and f(x,y,z) = Oas
2+ y2 + 722 — oo.
L3/108 cu. un. 23. 8abc/(3+/3) cu. units
CPs are (+/In 3, —+/In3) and (—+/In 3, +/1n 3).

f does not have alocal minimum at (0, 0); the second
derivative test is inconclusive (BZ = AC).

A E F
A>O,2§>O,EBH>O,
F H C
A E F G
EBHI0
F H Cc J|~
G I J D

Section 13.2 (page 797)

. max 5/4, min —2

.max (v2 — 1)/2, min —(v/2 + 1)/2.

. max 2/3+/3, min 0 7. max 1, min —1
. max 1/+/e, min —1/./e

. max 4/9, min —4/9
. no limit; yes, max f = e~} (atall points of the curve

xy=1
$625,000,  $733,333

max 37/2 at (7/4,5) N
6667 kg deluxe, 6667 kg standard

Section 13.3 (page 807)

84,375 3.1 unit



5. max 4 units, min 2 units

J.a==%3, b=42/3, c = £/3

9. max &, min —8 11. max 2, min —2

24/6
13. max 7, min —1 15. Tf units

3 1
17. + _M 19.
22n+ 1)

X X

wind

=
W=

2V
21. width = (15> , depth = 3 x width,

5
height = 3 x width

23. max 1, min —1
27. method will not fail if Vf = 0 at extreme point; but
we will have A = 0.

Section 13.4 (page 814)
L.at(x, y)wherex = (3" x;) /n, y= (X1, yi) /n
3.a= (X0 vie") [ (T e)

5.1fA :inz’B = in}’i»c = in,DZZ)’iz,
E=%vi,.F=Yxz,G=Y vz,
and H = ) z;, then

A B cC L|F B C
A=|B D E|. a=-|G¢ D E|
C E n AHEn
A F C |A B F
b=-|B G E|, ¢c=-|B D G
Alc H Alc E H

7. Use linear regression to fit n = a + bx to the data
(xi,Iny;). Then p = €%, g = b. These are not the
same values as would be obtained by minimizing the
expression Y (y; — pe?¥)>.

9. Use linear regression to fit n = a + b& to the data

<xl-, &) Then p = a,qg = b. Not the same as
minimizing Y (y; — px; — qx;®)%.
11. Use linear regression to fit n = a + b€ to the data

(e_z“", L) Then p = a,q = b. Not the same as

exi
minimizing Y (y; — pe® — ge ). Other answers
possible.
BIHA=Yx""B=Yx*C=Yx2D=)x,
H =Y x*y, I =Y xiy;, and J = Yy, then
C

B L|H B¢
A=|B ¢ p|, a=-|1 ¢ bl
C D n Aly b »
A H C [|A B H
b==-|B I D|, c=-|B ¢ 1
Ale 1 » Ale b J

Review Exercises

ANSWERS TO ODD-NUMBERED EXERCISES  A-83

15.a =5/6, I = 1/252
17.a =15/16, b= —1/16, I = 1/448
19.a=8x2-16), b=25020-17?)

2Lagy =2 [ f(x) coskxdx, (k=0,1,2,--)
4 ((2k+1Dx) .
2w — 2y, A0

Section 13.5 (page 824)

L e 3.2/7 (/7 — /X
5, 2 . (6x2-2)

T ()
7. 5=, assume x > 0; 75 136%
9. n! 11 f(x) = [y e "2 dr
13.y = x? 15.x2+y? =1
17.y=x—} 19. no

21. no; a line of singular points
23.x2+y 4+ 22 =1 i
25.y = x — e sin(wx) + 5~ sin(2mx) + - - -

—Ll_ 2. 1622,
27.y =5 — s€x — ;e x” +

~1_ 1 1 PO
29.x = 1 = 56 — a0 Y~ 1~ 350002

Section 13.6 (page 828)

1. (0.797105, 2.219107)
3. (£0.2500305, £3.9995115),
(£1.9920783, £0.5019883)
5. (0.3727730, 0.3641994), (—1.4141606, —0.9877577)

1Y) A3

7.x=x0—%é y:hYO“X, 2=20— 7,
where A — a(f.8. 1)
9(x,y, 2) 1tx0.y0.20)
f
and A; is A with the ith column replaced with g
h

9. 18 iterations near (0, 0), 4 iterations near (1, 1); the
two curves are tangent at (0,0}, but not at (1,1).

Section 13.7 (page 833)

1. (£.45304, .81204, +.36789), (£.96897, .17751, £.17200)

3. local and absolute max .81042 at (—.33853, —.52062);
local and absolute min —.66572 at (.13319, .53682)

5. —-4.5937

{(page 834)

1. (0, 0) saddle pt., (1, —1) loc. min.

3.(2/3,4/3) loc. min; (2,—4) and (—1,2) saddle
points

5. yes, 2, on the sphere x> 4+ y2 4+ z2 = 1

7. max 1/(4e), min —1/(4e)

9. (a) L?/48 cm?, (b) L2/16 cm?
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11. 47 sq. units 13. 167 cu. units
15. 1.688 widgets, $2.00 each
17. vy = —2x — exe 2 + €2x2e™
Challenging Problems (page 835)

3. %ln(l + xHtan'x

Chapter 14
Multiple Integration

Section 14.1 (page 841)

115 3.21

5.15 7.96

9. 80 11. 36.6258
13.20 15.0
17. 57 19. 72
21. ¢

6

Section 14.2 (page 849)

1.5/24 3.4
5, ubw+bh) 7.7
9. & 1.2 m2- 3
13. ‘%
15. % <l ) region is a triangle with vertices (0,0),
(1,0) and (1,1)
17. I)» region is a triangle with vertices (0,0), (0,1) and
(Ln
19. 1/4 cu. units 21. 1/3 cu. units
23.1n2 cu. units 25. 2”7 cu. units

217. 16“ cu. units

Sectlon 14.3 (page 855)

1. converges to 1 3. converges to /2
5. diverges to co 7. converges to 4
9. convergesto | — é 11. diverges to oo
13. convergesto 2 In2 15.k >a —1
17.k < —-1—a
19.k > — 1—1% (provided b > —1)

1
21. ) (different answers are possible because the

double integral does not exist.)

a? 4 2a
23, — 25.

3 k¥4
27.yes, 1/(2m)

Section 14.4 (page 865)

1.wa*/2 3.2na
5.wa*/4 7.a%/3
2 V3+1)a?
9. (e” —1)/4 11, (3D
2a
1
13. 5 15. £y
4
a
17.k < 1; % 19.
21. 23” cu. units 23. ﬂ’L‘/SZ_—_—”“—} cu. units

25.16[1 — (1/+/2)]14> cu. units

42
27.1— T units 29. %nabc cu. units
b4
31.2asinha 33. 3182 4q. units
35. %(e —e™h

Section 14.5 (page 873)

1. 8abc 3. 167
5.2/3 7.1/15
9.2/(3m) 11. % In2
13. n/% 15.1/8

17. fydx fydy [y flx.y.2)ds

1

z




19. fol dx fidy [y 7 f(x,y.2)dz

2. (e 1)/3

— 1
29, f = av;1
/ vol(R) // R /
Section 14.6 (page 882)

1. Cartesian: (—+/3, 3, 2); cylindrical: [2+/3, 27/3, 2]
. Cartesian: (+/3, 1, —2); spherical: [2+/2, 37 /4, 71 /6]
. the half-planex =0,y > 0

. the xy-plane

. the circular cylinder of radius 4 with axis along the
Z-axis

11. the xy-plane

13. sphere of radius 1 with centre (0, 0, 1)

15. ¢ wa? (1 - \/LE) cu. units

17. 247 cu, units

N U W

19. 27 — E)a3 cu. units.

21. @ tan” ' — cu. units  23.
3 b

5
25, 8ma
15

2 5
27. 14 (1— < )
5 c?+1

T 3 23,2
ha’ ., wa‘h
2. = 31, e, xa

”T”b Cu. units

Section 14.7 (page 891)

1. 37 sq. units 3.2ma® sq. units

5.247//3 sq. units
7. (5+/5 — 1)/12 sq. units

9. 4 sq. units 11.5.123
13.47 A [a — VBtan™! (ﬁ)] units

15. 2nkm8(h + /a% + (b — h)? — Va2 + b?)
17. 2km8(h + /a? + (b — h)2 — Va® + b?)

ANSWERS TO ODD-NUMBERED EXERCISES ~ A-85

19. (5. 3. 3) 2L (3. 5. §)

23. The model still involves angular acceleration to spin
the ball—it doesn’t just fall. Part of the gravitational
energy goes to producing this spin even in the limiting

case.
- 12
5.1 =nsah (5 +4), D=(%5+%)
_ 1,2
_ méa’h { 2h*4+34° _ [ 2n2434°
27-1—%<12—o“)7 D—(’T)

29.1=%%" D= /34

31.1 = $sabc(a® + b?), D = /<12

33.m = Z8(a® - b, I = Im(2a® +3b%)
Salgsina

3s. 7(128:322 . .

39. The moment of inertia about the line

r(t) = Ati+ Btj+ Crk is

T (B CIP (P + P,
+(A*+ B)P,. —2ABP,, —2ACP,, —2BCPy,).
Review Exercises (page 892)
1.3/10 3.In2
5.k=1/V3
1 1 1

7./ dx / dy / fx,y,2)dz

0 x y

8

9. (1 — e %)/ (2a) 11. —1%(18\/3 —41)d’

13. vol =7/12,z = 11/28 15.17/24

1 /2
17. 6/ [(1+16cos®0)*/2 — 1] df ~ 7.904 sq. units
0

Challenging Problems (page 893)

2 8
1.7tabc| — — —— } cu. units
(3 93 )

3.(b) () Z;’li](—l)"‘ll/nz,
Z:O:I(_l)n_ll/n3
32 5 4
5.4 —tan"'(WV2) + =tan ' [ = ) - (7 24/2
an (f)+3an <\/§) 3(7[—1—«/—)
~ 18.9348 cu. units
7. a*/210 cu. units

i) >, 1/n%, (ii)
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Chapter 15

Vector Fields

Section 15.1 (page 900)

1. field lines: y = x+C

x
R Y

NN
NONN
NN
NN\
NN\
NN\

=

i

NN N
NN\
NN\
NN\

AN
NN

3. field lines: y? = x24+C

/
l

\
>N
AN

N

\

»
v
Y

b

7
VA PR N

v

-

®
Iy
b

N\
N\
\
!
/

~ o / /
/
¥

N
s

5. ficldlines: y = —3¢ > +C

N\

\

\
!
/
/Y

//'/_.\

-

)7

P+ » o
Pt ot s PN
Ftor s o o
bt P,
Ftor s e
Ftor o o o
Ftor s ~ —

7. fieldlines: y = Cx

N
yvkkR*Iffffu,
N UL . S I A S R R
“\\\\7/‘/;,.
‘.‘.\‘\\\[//')ay
-« = o A Y
= — .
TN
‘tx/’/lx\\\x‘
S A
2 A T T N

9. streamlines are lines parallel toi—j — k

11. streamlines: x>+ y? = a2,

13.y=Cix, 2x = 24+
15.y = Ce'/*

19.r = C6?

x = asin(z — b) (spirals)

17.r =60+ C

Section 15.2 (page 909)

Loxt o, 32
1. conservative; 5~ Yo+ >

3. not conservative

5. conservative; x2y + y%z — z%x
T—T,
7.2
9. (x? + y?)/z; equipotential surfaces are paraboloids

7 = C(x>+y?); field lines are ellipses x2+y% 427> = A
y = Bx in vertical planes through the origin
mxi+yj+ (z—0)k) mExi+ yj+ (z + K)
X2+ y2+ (2 =022 24y + (4 0P

2m(xi+yj)
(xz + y2 + g2)3/2 ’

speed maximum on the circle x? + y> = ¢2/2, z =0

15. ¢ = — 4 F = LEOHQPoOD (2 = 42 4 y2)

’

11.v=

v = 0 only at the origin; v(x, y,0) =

21.¢ = 3r?sin26

Section 15.3 (page 915)

LS (V241 +42))  3.8g
%((2e4” +1)3¥2 = 33/2)

3/14

.m = 2272, (0, —1/m, 41/3)
11. (e® + 3e* — 3e2 — 1)/(3e?)

13. (V2 + In(v/2 + 1))a?/2

15. 7/+/2

N N =
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— b2 — a2 7. (a) 6wmgh, (b) 6w Rva? + b?
17. 4yb2+ 2 E ; ~
b +c? 9. (b) &2 11. (xi — vj)//x2 + y2
b2 — a2 Challenging Problems (page 944)
b+ 2 E —F T ]
b +c? 1. centroid (0, 0, 2/7); upper half of the surface of the
torus obtained by rotating the circle (x —=2)>4z% = 1,
Section 15.4 (page 923) y = 0, about the z-axis
1.-1/4 3.1/2 Chapter 16
5.0 7.19/2 Vector Calculus
9. 1t/
11. A = 2’ B = 3’ 41n2 — % Section 16.1 (page 953)
13.-13/2 15. (a) ma?, (b) —7a’ LdivF =2, curlF =0
2 ra? 3.divF =0, curlF=—-i—-j—k
i1
17. (a) Ta, (b) " 19. (a) ab/2, (b) —ab/2 5.divF =1, curlF = —j
23. The plane with origin removed is not simply con- 7.divF = f'(x) + g'(y) +h'(2), curlF =0
1
nected. 9.divF = cos6 <1 + — cos 0);
Section 15.5 (page 935) r )
1.dS =dsdz = \/(g(e))Z +(g'(6)2do dz curlF = —sin# (1 + " cos 0) k
3, Taby AN B CY V’TZCTB”CZ sq. units (C % 0) 11.divF =0; curlF=(1/r)k
5.(@)dS = |VF/F,|dxdz, (b)dS =|VF/Fi|dydz  Section 16.2 (page 961)
7.3 9. 16a? sq. units 7. div F can have any value,
13. 27 15.1/96 curl F must be normal to F
3 9. f(r) = cr3
17.7(3e + e — 4)/23 15.1f F = V¢ and G = Vi then VX (¢ V) = FXG.
19. 2742 + 2rac In (a + Va? — c2> sq. unis 17. G = ye%i + xye*Kk is one possible vector potential.
/2 _ 2
ar—c ¢ Section 16.3 (page 965)
. /A2 2 p) '
212 VAT + B2+ C2/|D| 1. ra® — 44° 3.9
23. one-third of the way from the base to the vertex on 3
the axis 5. sq. units
1 1 7.0
25.2rkoma <\/a2+(bh)2 \/a2+b2>

27.1 =% noat; l—):\/ga
29. ggsina

Section 15.6 (page 943)

r=(sin 1)i+{sin 2¢)j

1.6 3. 3abc N
5.7(3a% —4ab+bY/2 147 ’
9.22n 11.47/3

13. 4wm 15.2) 27a®, b)8

Review Exercises (page 944)

1. 3¢/2) — (3/(2¢)) 3. 8«/5/15 Section 16.4 (page 971)
5.1 1. 47a3 3.4/)ra’
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5. 3607 7.81/4
11. %rmzb + %ncﬁb + ra?
13. (2) 124/37a%, (b) —4/3na’, (c) 164/3na’
15. (6 + 2% + 4y — 22)V  17.97mad?
Section 16.5 (page 977)
1.1/2 3. —37a?
7.97
1 _ _ 3
9.0{:—5, B=-3, I_—§n
11. yes, o Vi
Section 16.7 (page 996)
1. Vf = 0zF + 20 + rok
3.divF =2, purlF =0
5.divF = 25 cunF = — %%
o 0
7.divF =0, curlF = cot¢p —2¢
or ar
9, scale factors: hy, = |—|, hy, = |—
ou dv
1 ar 1 or

local basis: 01 = — —, V= — —
h, du h, dv
area element: dA = h, h, dudv

af . 10r s
1. Vigo)=2Ti+-2p
fr0) =2t t oy

aF, 1 19F,

VeF(r,0)= + - F,

ar TPt 0
aFy 1 19F,
VxF(r,9)=<—8“+—Fe—— )k
r

r r a6

13. u-surfaces: vertical elliptic cylinders with focal axes
atx = =£a,y =0
v-surfaces: vertical hyperbolic cylinders with focal
axesatx =%a,y =90 ‘
z-surfaces: horizontal planes
u-curves: horizontal hyperbolas with foci x = +a,
y=20
v-curves: horizontal ellipses with foci x = +a,

z-curves: vertical straight lines
32 29 1 8?
15. Vf:—f—l-—,i ¥/
0> pdp  p?ad?
cotg df 1 38%*f
p? 0¢  p?sin? ¢ 902
Review Exercises (page 997)
1. 1287 3.-6
5.3/4 7.2 = —-3,no

11. the ellipsoid x? + 4y2 4 z> = 4 with outward normal

Challenging Problems (page 998)
1.divv=3C

Appendix1 Complex Numbers
(page A-11)

1.R(z) = -5, () =2
5.zl =2, 6 =3n/4

9.zl =5, 6§ =tan™'2
11.z] =5, § = +tan"'(4/3)

13. 1z =2, 0 = 11x/6 15. |z = 3, 6 = 47/5

3.%(:) =0, 3@) =-n
Tzl =3, 6 =n/2

17.237/12 19.4 + 3i
b4 T 1 ﬁ

21703 4 1 23.1

25. -3 +5i 27.2+i

29, closed disk, radius 2, centre 0
31. closed disk, radius 5, centre 3 — 4
33. closed plane sector lying under y = 0 and to the left

ofy=—x
35.4 37.5—i
39.24 11§ a. -1+ 1%
43.1 .
4.0 =—3-3;, &= 1!
w 3

49. (a) circle |z| = /2, (b) no solutions

511, L + 54

53. 21/6(cos 6 +i sin @) where § = /4,117 /12,197 /12
1. 1 V3.

554214 (4 4i), 24 (5 — i)

Appendix IV Differential Equations
(page A-38)

1. 1, linear, homogeneous 3. 1, nonlinear

5. 2, linear, homogeneous
7. 3, linear, nonhomogeneous

9. 4, linear, homogeneous
11. (a) and (b) are solutions, (c) is not
13. y, = sin(kx), y = —3(cos(kx) + (3/k) sin(kx))
15. y = /2(cos x + 2 sinx)
17.y = x +sinx + (r — 1) cosx
19.2tan ! (y/x) = In(x2 +y?) + C
21.tan" ' (y/x) =In|x| + C
23.y = xtan~!(In|Cx|)
25.x +y = 4x?

25.9° +3y —3x2 =24
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—1y=1 __ IR Y 2 , oM , oN
27.4tan” 5 = In((y = D’ + (x = 2)%) +C 31N M ) 7 = Y N + )

29, ¢* si lyy2=cC
sy +xTHy 39, (a) 1.97664, (b) 2.187485, (c) 2.306595
2

3x% 4 x4 Y _ ¢ 41. (a) 2.436502, (b) 2.436559, (c) 2.436563
43. (a) 1.097897, (b) 1.098401
1 45.y =2/(3 — 2x)
Bouy)=-, xy+2xy*=cC 49. (b)u = 1/(1—x),v = tan(x + ). y(x) is defined at
Y leaston [0, 7 /4) and satisfies 1/(1—x) < y(x) < tan(x+7%)
there.

X
33.¢*+xlny+ylnx —cosy=C



Abel’s theorem, 560
Absolute convergence, 546
Absolute maximum, 83, 239, 783
Absolute minimum, 83, 239, 783
Absolute value, 8
Acceleration, 147, 165, 652
centripetal, 653, 662, 685
coriolis, 662
normal, 685
of a rolling ball, 8§89
polar components of, 694
tangential, 685
Addition
of functions, 36
of vectors, 600
Addition formulas, 48
Algebraic function, 175
Alternating sequence, 520
Alternating series bounds, 549
Alternating series test, 548
Ampére’s circuital law, 983
Amplitude, 223
Analytic function, 566, 729
Angle
between vectors, 607
Angle convention, 43
Angular momentum, 661
Angular speed, 659, 888
Angular velocity, 659
Anticyclone, 664
Antiderivative, 157
Aphelion, 697
Approximation
linear, 279
of definite integrals using series, 575
of functions using series, 573
of improper integrals, 398
of small changes, 140
of solutions of DEs, A-33
tangent plane, 743
with Taylor polynomials, 778
Arc
smooth, 911
Arccos, 210
Arccot, 212
Arccsce, 212
Archimedes’ principle, 985
Arc length, 422
of a parametric curve, 500
of a polar curve, 514
on a circle, 43
Arc length element, 423, 670
for a parametric curve, 500
for a polar curve, 515
on a coordinate curve, 992
Arc-length parametrization, 672

INDEX

Index

Arcsec, 211
Arcsin, 205
Arctan, 208
Area
between two curves, 342
bounded by a parametric curve, 502
bounded by a simple, closed curve, 963
element, 343
in polar coordinates, 513
of a circle, 60
of a circular sector, 43
of a conical surface, 429
of a plane region, 309, 342
of a polar region, 858
of a sphere, 427
of a surface of revolution, 427
of a torus, 429
Area element
for transformed coordinates, 863
in polar coordinates, 857
of a surface of revolution, 426
on a coordinate surface, 992
on a surface, 929
Argand diagram, A-3
Argument
of a complex number, A-3
Associative, 633
Astroid, 495
Asymptote, 72, 253
horizontal, 72, 254
oblique, 255
of a hyperbola, 24, 483
vertical, 254
Asymptotic series, 592
Atan and atan2, 210
Attraction
of a disk, 885
Auxiliary equation, 219
Average, 808
Average rate of change, 141
Average value
of a function, 325, 854
Average velocity, 57, 163, 651
Axes
of an ellipse, 24
Axiom of completeness, 4, A-14
Axis
coordinate, 12
major, 24
minor, 24
of a dipole, 908
of a parabola, 20, 478

Ball
volume of n-dimensional, 474
open, 598
volume of, 409
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Banking a curve, 685
Base, 181
Basic area problem, 309
Basis, 601, 602

local, 988

orthonormal, 610
Beats, 227
Beta function, 866
Big-O notation, 289
Biharmonic function, 731
Binomial coefficients, 584
Binomial series, 582
Binomial theorem, 581, 584
Binormal, 678
Biot-Savart law, 982
Bisection method, 86
Bound

for a sequence, 520
Boundary, 5

of a parametric surface, 925
Boundary point, 598, 784
Bounded

region, 376

function, A-18

set, 784
Boundedness theorem, A-16
Brachistochrone, 492
Branches of a hyperbola, 24
Buffon’s needle problem, 475

Cancellation identity, 177
Cardioid, 507
Cartesian coordinates, 12, 593
Cartesian plane, 12
CAST rule, 51
Catenary, 604
Cauchy product, 557
Cavalieri’s principle, 421
Celsius, 18
Central force, 694
Centre

of a circle, 19

of a hyperbola, 483

of an ellipse, 481

of convergence, 554

of curvature, 678

of gravity, 887

of mass. 432, 886
Centrifugal force, 663
Centripetal acceleration, 653, 662, 685
Centroid, 437, 887

of a triangle, 438
Chain Rule, 121, 732

as matrix multiplication, 749

proof of, 124

several variable proof, 745
Change of variables

in a double integral, 863

in a triple integral, 874
Circle, 19

osculating, 678
Circular frequency, 223

Circular helix, 671, 679
Circulation, 916

along a moving curve, 998
Closed curve, 667
Closed disk, 20
Closed interval, 5
Closed surface, 926
Clothoid, 701
Colatitude, 878
Column vector, 632
Common ratio, 529
Commutative, 633
Comparison test

for series, 539

limit form, 540

for improper integrals, 382
Complement of a set, 598
Complementary angles, 45
Complete elliptic integral, 425
Completeness, A-14

of the real numbers, 4, 524, A-14
Completing the square, 359
Complex arithmetic, A-5
Complex conjugate, A-4
Complex number, A-1
Complex plane, A-3
Component

of a cross product, 611

of a vector, 602

radial, transverse, 693
Composite function, 37
Composite surface, 926
Composition of functions, 37
Compound interest, 200
Concavity, 247

of a parametric curve, 498
Conditional convergence, 547
Cone, 417, 628
Conic, 477

classifying a, 485

in polar coordinates, 510
Conjugate of a complex number, A-4
Conjugate axis, 483
Conjugate hyperbola, 484
Connected curve, 85
Connected domain, 919
Conservation of energy, 448, 699
Conservation of mass, 978
Conservative force, 448
Conservative field, 901, 956

necessary conditions, 902
Constant of integration, 157
Constraint, 790

equation, 798

inequality, 798

linear, 795
Continuity

at an endpoint, 80

at a point, 79, 716, A-12




Continuity (continued)
of a differentiable function, 112
on an interval, 80, A-13
right and left, 79
uniform, A-21
Continuous
Continuous extension, 82
Continuous function, 80, A-13
Contour, 707
Convergence
absolute, 546
conditional, 547
improving, 546, 591
of an improper integral, 377
of a series, 528
of a sequence, 521
Convex set, 795
Coordinate axes, 12
Coordinate curve, 988
Coordinate plane, 594
Coordinate surface, 988
Coordinate system
Cartesian, 593
rotating, 661
Coordinates in 3-space, 594
Coriolis acceleration, 662
Coriolis effect, 666
Coriolis force, 663
Cosecant, 50
Cosh, 213
Cosine, 44
Cosine law, 53
Cotangent, 50
Coth, 216
Coulomb’s law, 981
Cramer’s rule, 638
Critical point, 137, 142, 784
Cross product, 611
as a determinant, 615
properties of, 612
Csch, 216
Cumulative distribution function, 462
Curl, 945, 954
as circulation density, 952
in curvilinear coordinates, 995
in cylindrical coordinates, 995
in spherical coordinates, 996
Curvature, 675, 678
Curve, 651, 666
closed, 667
coordinate, 988
equipotential, 903
integral, 897
parametric, 488
piecewise smooth, 671, 911
simple closed, 668
smooth, 422, 667
Curve sketching, 257
Curvilinear coordinates, 986
orthogonal, 988
Cusp, 99

INDEX

Cycloid, 492, 701

Cyclone, 664

Cylinder, 407, 628

Cylindrical coordinates, 875, 987
Cylindrical shells, 412

Damped harmonic motion, 225
Decreasing function, 135
Decreasing sequence, 520
Definite integral, 317
Definite quadratic form, 639
Degree of a polynomial, 68, 364
Del, 946
Delta function, 950
de Moivre’s theorem, A-7
Density, 429
probability, 455
Dependent variable, 26
Derivative
directional, 752
left and right, 103
of a composite function, 121
of a function, 103
of a product, 114
of a quotient, 117
of a reciprocal, 116
of a transformation, 748
of an inverse function, 179
of cosine, 128
of sine, 127
of the absolute value function, 106
of trigonometric functions, 130
second and higher order, 147
Determinant, 613, 634
properties of, 614
Difference quotient, 98
Differentiable
function, 103, 744
vector-valued function, 651
Differential, 318
in several variables, 746
of a variable, 109
Differential element, 409
Differential equation, 159, A-23
constant coefficient linear, 219
exact, A-27
existence/uniqueness theorem, A-31
first-order, linear, 469
first-order homogeneous, A-26
general solution, 160
linear, A-24
nonhomogeneous, 226
of exponential growth or decay, 198
of logistic growth, 202
of simple harmonic motion, 148, 223
order of a, 160, A-24
ordinary, A-24
partial, 720, 729, A-24
particular solution, 160
separable, 465
solution using series, 585
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Differentiation, 103

following motion, 757

graphical, 103

implicit, 151

logarithmic, 193

of power series, 558

through an integral, 815
Differentiation rules, 112

for vector functions, 655
Diffusion equation, 731
Dipole, 908

moment of, 908
Dirac delta function, 950
Direction vector, 622
Directional derivative, 752
Direction cosine, 609
Directrix

of a parabola, 20

of a parabola, 478

of an ellipse, 482
Dirichlet problem, 972
Discontinuity

removable, 82
Discontinuous function, 79
Discount rate, 451
Discriminant, 219
Disk

closed, 20

open, 20, 598
Distance

between points, 13

between lines, 626

from a point to a curve, 173

from a point to a line, 625

from a point to a plane, 624

from a point to a surface, 723

in n-space, 597

in 3-space, 594
Divergence, 945, 954

as flux density, 947

in curvilinear coordinates, 994

in cylindrical coordinates, 994

in spherical coordinates, 994

of a sequence, 522

of a series, 529
Divergence theorem, 949, 965, 966

variants of, 971
Divergent improper integral, 377
Division of functions, 36
Domain, 705, 919

x-simple, 843

y-simple, 843

connected, 919

of a function, 26

of integration, 836

regular, 843

simply connected, 919

star-like, 956
Domain convention, 28, 705
Dot product of vectors, 606
Double-angle formulas, 49

Double integral, 837
over a bounded domain, 839
properties of, 840

Double tangent, 348

Doubling time, 198

Dummy variable, 317

Eccentricity, 481
Eigenvalue, 640
Eigenvector, 640
Elasticity, 145
Electric field, 980
Electrostatics, 980
Element

of arc length, 423, 500, 515, 670

of area, 343

of surface area, 426, 883

of mass, 430, 883

of moment, 433

of volume, 409, 991

of work, 916
Ellipse, 24, 480

circumference of, 425

in polar coordinates, 691

parametric equations of, 490
Ellipsoid, 629

approximating surface area, 475

volume of, 421
Elliptic integral, 425, 915
Empirical regression line, §10
Endpoint, 5, 78
Energy

conservation of, 448

kinetic, 447, 888

potential, 447, 889
Envelope, 173, 819
Epicycloid, 496
Equation

of a circle, 19

of a plane, 620

of continuity, 979

of motion of a fluid, 980
Equations of a lines, 623
Equipotential curve, 903
Equipotential surface, 903
Error bound

Simpson’s rule, 395

trapezoid and midpoint rules, 390
Error function, 866
Error in linear approximation, 281
Escape velocity, 448
Euclidean n-space, 474, 597
Euler’s method, A-33
Euler’s theorem, 738
Evaluation symbol, 108, 329
Even function, 31
Evolute, 686
Exact differential equation, A-27
Existence theorem, 87

for a first-order DE, A-31
Expanding universe, 998
Expectation, 457




Exponent, 181
laws, 182
Exponential distribution, 456
Exponential function, 181, 189
growth rate, 196
Exponential growth and decay, 198
Extension of a function, 82
Exterior point, 598
Extreme value, 240
Extreme-value problem, 264
constrained, 790

Factorial, 147
Farenheit, 18
Fibonacci sequence, 519
Field
conservative, 901
electrostatic, 895
gradient, 896
gravitational, 895
scalar, 895
vector, 895
velocity, 895
Field lines, 897
First derivative test, 242
First-order linear DE, 469
Fixed point, 275
iteration method, 275
theorem, 277
Flow line, 897
Fluid dynamics, 978
Flux, 939
through a moving surface, 999
Focal property
of a hyperbola, 484
of a parabola, 480
of an ellipse, 481
Focus
of a hyperbola, 482
of a parabola, 20, 478
of an ellipse, 481
Folium of Descartes, 495
Force
central, 694
centrifugal, 663
coriolis, 663
on a dam, 444
Fourier
cosine series, 813
series, 812, 835
sine series, 813
Frenet frame, 678
Frenet—Serret formulas, 681
Frequency, 223
Function, 26
analytic, 566
arccos, inverse cosine, 210
arccot, inverse cotangent, 212
arcesc, inverse cosecant, 212
arcsec, inverse secant, 211
arcsin, inverse sine, 205
arctan, inverse tangent, 208

INDEX

Function (continued)
atan and atan2, 210
biharmonic, 731
bounded, A-18
composition, 37
concave up or down, 247
continuous, 79, 80, A-13
cosecant, 50
cosh, hyperbolic cosine, 213
cosine, 44
cotangent, 50
domain convention, 28
even, 31
exponential, 181, 189
from n-space to m-space, 747
gamma, 384
general exponential, 192
graph of a, 28, 705
greatest integer, 40
harmonic, 729
Heaviside, 39
hyperbolic, 213, 216
identity, 177
increasing and decreasing, 135
integrable, 317, 839, A-20
inverse, 176
inverse hyperbolic, 217
inverse sine, 205
inverse tangent, 208
Lagrangian, 799
least integer, 41
left continuous, 79
natural logarithm, 187
objective, 796
odd, 31
of several variables, 705
one-to-one, 175
periodic, 45
piecewise defined, 39
positively homogeneous, 737
power, 181
rational, 68, 256, 364
right continuous, 79
secant, 50
self-inverse, 178
signum, 39
sine, 44
sinh, hyperbolic sine, 213
square root, 28
tangent, 50
trigonometric, 44, 50
uniformly continuous, A-21
vector-valued, 651
Fundamental theorem of calculus (FTC), 328
Fundamental theorem of space curves, 681

Gamma function, 384, 866
Gaussian approximation, 402
Gauss’s law, 985

Gauss’s theorem, 966
General exponential, 192
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Generalized function, 950
Generalized mean-value theorem, 139
General power rule, 106, 155
General solution of a DE, 160
Geometric bounds for series, 543
Geometric series, 529
Global maximum or minimum, 783
Gradient, 751, 945, 954

in curvilinear coordinates, 993

in cylindrical coordinates, 993

in spherical coordinates, 994

geormetric properties of, 755

in higher dimensions, 758
Graph

of a function, 28, 705, 709

scaling, 22

shifting, 22
Gravitational attraction

of a ball, 935

of a spherical shell, 934
Gravitational field

of a point mass, 896
Greatest integer function, 40
Greatest lower bound, A-14
Growth

logistic, 202
Growth of exponentials and logarithms, 196

Half-angle formulas, 49
Half-life, 199
Half-open interval, 5
Hamilton’s theorem, 696
Hanging cables, 604
Harmonic function, 729
Harmonic series, 532
Heat equation, 731, 986
Heaviside function, 39, 79
Helix, 671, 679
Higher-order derivatives, 147
Homogeneous

differential linear DE, 219, A-25

first-order nonlinear DE, A-26

function, 737
Hooke’s law, 222, 445
Horizontal asymptote, 72, 254
Hubble’s constant, 998
Hyperbola, 24, 483

conjugate, 484

rectangular, 24, 483
Hyperbolic function, 213, 216
Hyperboloid, 630
Hypersurface, 705, 709
Hypocycloid, 495, 496

Identity function, 177
Identity matrix, 635
Imaginary axis, A-3
Imaginary part, A-2
Imaginary unit, A-1
Implicit differentiation, 151
Implicit function, 763
theorem, 153, 637, 769

Improper integral

converges, 377

diverges, 377

double, 850

type 1, 377

type 11, 379
Improved Euler method, A-35
Inclination of a line, 15
Incompressible fluid, 979
Increasing function, 135
Increasing sequence, 520
Increment, 13
Indefinite

integral, 157

quadratic form, 639
Independence of path, 920
Independent variable, 26
Indeterminate form, 292, 575
Index of summation, 303
Indicial equation, 587
Induced orientation, 937
Induction, 113
Inequality, 3
Inertia

moment of, 889
Infinite

limit, 74, 93

sequence, 519

series, 304, 527
Infinity, 72
Inflection point, 248
Initial-value problem, 160
Inner product, 606
Instantaneous rate of change, 141
Instantaneous velocity, 58
Integer, 4, A-1
Integrable function, 317, 839, 927, A-20
Integral

bounds for series, 537

curve, 897

definite, 317

double, 837

equation, 332, 466, 818

evaluating using Maple, 373

function, A-28

improper, 850

indefinite, 157

iterated, 844

line, 911

over a moving volume, 999

proper, 376

remainder for Taylor’s theorem, 579

sign, 157, 318

surface, 927

test, 535

triple, 867
Integrand, 318
Integrating factor, A-29
Integration

by parts, 349

limits of, 318




Integration (continued)

numerical, 385

of power series, 558

using tables, 374
Intercept, 17
Interest, 200
Interior point, 78, 598
Intermediate-value property, 85

of a derivative, 110
Intermediate-value theorem, 85, A-17
Intersection of intervals, 7
Interval, 5

of convergence, 555
Intrinsic parametrization, 672
Inverse

cosecant, 212

cosine, 210

cotangent, 212

function, 176

hyperbolic function, 217

matrix, 635

secant, 211

secant substitution, 358

sine, 205

sine substitution, 356

tangent, 208

tangent substitution, 357
Invertible matrix, 635
Involute of a circle, 493
Irrationality of e, 591
[rrationality of 7, 591
Irrotational vector field, 956
Isolated point, 713
Iterated integral, 844
Iteration

in polar coordinates, 857

of a double integral, 844
Jacobian determinant, 767, 861
Jacobian matrix, 748

Kepler, 691

Kepler’s laws, 691

Kinetic energy, 447, 888
Kuhn-Tucker condition, 806

Lagrange multiplier, 801
Lagrange remainder, 287, 577
Lagrangian function, 799
Laplace equation, 729

in polar coordinates, 740

in spherical coordinates, 782
Laplacian operator, 954
Latus rectum, 488
Least integer function, 41
Least squares method, 808
Least upper bound, A-14
Left continuous function, 79
Left limit, 66, 92
Leibniz notation, 108
Leibniz rule, 584
Lemniscate, 508

INDEX

Length

of a curve, 669

of a vector, 599
Level curve, 707
Level surface, 709
I"Hopital’s rules, 294
Limit, 58

at infinity, 71, 92

formal definition, 90, A-12

infinite, 74

informal definition, 63

left, 65, 92

of a function of 2 variables, 713

of a sequence, 521, A-15

of integration, 318

of summation, 304

one-sided, 65

right, 65, 92

rules for calculating, 67
Line, 14

in 3-space, 622

integral, 911, 916, 920

normal, 721

of force, 897
Linear algebra, 631
Linear approximation, 279
Linear combination, 601, 602
Linear dependence, 635
Linear differential equation, 219, A-24
Linear equation, 272, 637, 646
Linear function, 795
Linear programming, 795
Linear regression, 810
Linear transformation, 636
Linearization, 279

in several variables, 743
Lissajous figure, 496
Local basis, 988
Local maximum, 240, 783
Local minimum, 240, 783
Logarithm, 183

general, 193

growth rate of a, 196

laws, 184
Logarithmic differentiation, 193
Logistic equation, 202
Logistic growth, 202, 451
Longitude, 878
Lower bound, A-14

for a sequence, 520

Mach cone, 821

Maclaurin polynomial, 285

Maclaurin series, 566

Magnetic field, 980

Magnetostatics, 982

Magnitude, 8, 599

Main diagonal, 635

Major axis, 24, 481

Maple, A-40
3-dimensional plots, 710
a Newton’s method procedure, 829
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Maple (continued)
calculating derivatives with, 123
calculation of Taylor polynomials, 777
calculations for space curves, 689
Chain rule calculations, 739
critical points, 830
evaluating integrals, 373
grad, div, and curl, 959
gradient vector in, 760
graphing functions, 34
higher-dimensional gradient, 763
implicit differentiation using, 154
iterated integrals, 848
Jacobian matrix, 750
manipulation of matrices, 645
manipulation of vectors, 642
partial derivatives in, 728
solution of DEs and IVPs, 228
solution of linear systems, 646
trigonometric functions, 52
Marginal, 143
Mass, 429
element, 430, 883
Mathematical induction, 113
Matrix, 632
calculations with Maple, 645
identity, 635
inverse, 635
invertible, 635
multiplication, 632
representation, 636
singular, 635
symmetric, 632
Maximum, 239
absolute, 83, 239, 783
global, 783
local, 240, 783
relative, 783
Max-min problems, 264
Max-Min theorem, 83, A-16
Maxwell’s equations, 985
Mean, 808
of a random variable, 457
Mean value of a function, 325, 854
Mean-Value theorem, 133, 744
for double integrals, 853
for integrals, 324
generalized, 139
Method of Lagrange multipliers, 801
Method of least squares, 808
Method of partial fractions, 366
Method of substitution, 335
MG graphics software, 707
Midpoint rule, 389
error estimate, 390
Minimum, 239
absolute, 83, 239, 783
global, 783
local, 240, 783
relative, 783
Minor axis, 24, 481

Mixed partial derivatives

equality of, 727
Mobius band, 938
Modulus of a complex number, A-3
Moment, 432, 437, 886
Moment element, 433
Moment of inertia, 889
Momentum, 658

angular, 661
Monotonic sequence, 520
Multiplication

of functions, 36

of matrices, 632

of vectors by scalars, 600
Mutually perpendicular, 593

nth root, A-9
Nabla, 946
Nappe, 477
Natural logarithm, 187
Natural number, 4, A-1
Negative definite, 639
Neighbourhood, 598
Neumann problem, 972
Newton quotient, 98
Newton’s law of cooling, 199
Newton’s method, 272

error bounds, 275

formula for, 273

for systems, 825

using a spreadsheet, 827
Nondecreasing function, 135
Nonhomogeneous DE, 226
Nonhomogeneous term

in a linear DE, A-25
Nonincreasing function, 135
Nonlinear programming, 806
Non-self-intersecting curve, 667
Norm of a partition, 315
Normal acceleration, 685
Normal distribution, 461, 462
Normal line, 101, 721
Normal vector, 619, 676, 721
Number

complex, A-1

natural, 4, A-1

rational, 4, A-1

real, 3, A-1
Numerical integration, 385

by Simpson’s rule, 394

by the midpoint rule, 389

by the trapezoid rule, 387

Gaussian approximation, 402

Romberg method, 399

Objective function, 796, 801
Oblate spheroid, 429, 936
Oblique asymptote, 255
Octant, 594

Odd function, 31

One-sided limit, 65




One-to-one function, 175
Open ball, 598
Open disk, 20, 598
Open interval, 5
Open set, 598
Order of a differential equation, 160, A-24
Ordinary differential equation, A-24
Ordinary point of a linear DE, 585
Orientable surface, 937
Orientation
of a coordinate system, 593
of a curve, 668, 916
Oriented surface, 937
Origin, 12, 593
Orthogonal curvilinear coordinates, 988
Orthogonal trajectory, 903
Orthonormal basis, 610
Osculating circle, 678
Osculating plane, 678

p-Integrals, 381
p-series, 536
Pappus’s theorem, 440
Parabola, 20, 478
Paraboloid, 629
Parallelepiped, 615
Parameter, 488
Parametric curve, 488
slope of a, 496
smooth, 496
Parametric equations, 488
of a line, 489, 622
Parametric surface, 925
boundary of, 925
Parametrization, 492
arc-length, 672
intrinsic, 672
of a curve, 668
of the intersection of two surfaces, 913
Partial derivative, 718
equality of mixed, 727
higher-order, 726, 738
mixed, 726
pure, 726
Partial differential equation, 720, 729, A-24
Partial fraction decomposition, 366, 371
Partial fractions method, 366
Partial sum, 528
Particular solution, 160, 226
Partition, 315, 836, A-18
Pascal’s principle, 443
Pencil of planes, 621
Percentage change, 140
Perihelion, 697
Period, 223
Perturbation, 822
Phase-shift, 223
Piecewise continuous function, 326
Piecewise defined function, 39

INDEX

Plane
equation of a, 619, 620
osculating, 678
tangent, 721
curve, 491
Planetary motion, 691
Point-slope equation, 16
Poiseuilie’s law, 146
Polar axis, 505
Polar coordinates, 505
Polar graph of a function, 507
Polar representation
of a complex number, A-4
Pole, 505
Polygon, 309
Polynomial, 68, 364
Position vector, 601, 651
Positive definite, 639
Positive series, 535
Positively homogeneous function, 737
Potential
energy, 447, 889
for a conservative field, 901
vector, 956
Power function, 181
Power series, 554
continuity of, 560
differentiation of, 558
integration of, 558
operations on, 556
Present value, 450
Pressure, 443
Primary trigonometric function, 51
Principal nth root, A-10
Principal argument, A-4
Principal square root, A-9
Prism, 407
Probability, 454
Probability density function, 455
Product of complex numbers, A-5
Product of inertia, 892
Product rule, 114
Projectile, 653
Projection of a vector, 607
Prolate cycloid, 495
Prolate spheroid, 429, 936
Proper integral, 376
Pyramid, 417
Pythagorean identity, 45

Quadrant, 12

Quadratic equation, 272

Quadratic form, 639

Quadric surface, 628

Quotient of complex numbers, A-8
Quotient rule, 117

Radial component, 693
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Radian, 43 Right-circular cone (continued)
Radius vertex of a, 477
of a circle, 19 Right continuous function, 79
of convergence, 555 Right limit, 66, 92
Radius (continued) Rise, 14
of curvature, 675 Rolle’s Theorem, 137
of gyration, 889 Romberg integration, 399
Random variable Root of an equation, 85, 272
continuous, 455 Root test, 543
discrete, 454 Rotating frame, 661
Range, 705 Row vector, 632
of a function, 26 Ruled surface, 629
Rate of change, 141 Rules for inequalities, 3
average, 141 Run, 14
instantaneous, 141 Runge—Kutta method, A-36
seen by a moving observer, 757 Saddle point, 785

Rational function, 68, 256, 364
Rational number, 4, A-1
Ratio test, 542, 590

Scalar field, 895
Scalar multiplication, 600
Scalar potential, 901

Real axis, A-3 Scalar product, 606

Real line, 3 Scalar projection, 607

Real numbers, 3, A-1 Scalar triple product, 616
completeness of, 4 Scale factors, 990

Real part, A-2 Scaling, 22

Rearrangement of series, 552

! Secant
Reciprocal of a complex number, A-8

function, 50

Reciprocal rule, 116 line, 59, 97
Rectangular hyperbola, 24, 483 Sech, 216
Rectifiable curve, 422, 669

. Second derivative, 147
Recurrence relation, 585, 587 Second derivative test, 250, 787

Reduction formula, 353 Secondary trigonometric function, 51
Refinement of a partition, 317, A-19 Sector of a circle, 43

Reflection Self-inverse, 178

by a hyperbola, 484 Semi-conjugate axis, 483

by a line, 32 Semidefinite matrix, 639

by a parabola, 22, 480 Semi-focal separation

by a straight line, 479 of a hyperbola, 483

by an ellipse, 481 of an ellipse, 481
Region Semi-latus rectum, 488

bounded, 376 Semi-major axis, 481
Regression, 810 Semi-minor axis, 481
Regression line, 810 Semi-transverse axis, 483
Regular domain, 843, 966 Sensitivity, 143
Regular singular point, 587 Separable equation, 465
Related rates, 233 Sequence, 519
Relative change, 140 bounded, 520
Relative maximum, 783 convergent, 521
Relative minimum, 783 divergent, 522
Removable discontinuity, 82 of partial sums, 528
Representation Series, 527

of a function by series, 565 asymptotic, 592
Resonance, 226 Fourier, 812
Richardson extrapolation, 399 geometric, 529
Riemann integral, A-20 harmonic, 532
Riemann sum, 319, 927 Maclaurin, 566

for a double integral, 837 positive, 535

upper and lower, 315, A-18 power, 554
Right-circular cone, 477 representation of a function, 565

axis of a, 477 solutions of a DE, 585

nappe of a, 477 Taylor, 566

semi-vertical angle of a, 477 telescoping, 531




Set
bounded, 784
convex, 795
open, 598
Shell
cylindrical, 412
spherical, 431
Shift, 22
Sigma notation, 303
Signum function, 39
Simple closed curve, 668, 919
Simple harmonic motion, 148, 222
differential equation of, 223
Simply connected domain, 919
Simpson’s rule, 394
Sine, 44
Sine law, 53
Singular matrix, 635
Singular point, 103, 784
of a DE, 587
Sinh, 213
Sink, 907
Sketching graphs, 257
Slicing, 408, 417
Slope
of a curve, 100
of a parametric curve, 496
of a polar curve, 512
Smooth arc, 911
Smooth curve, 100, 422, 667
Smooth parametric curve, 496
Smooth surface, 928
Snell’s law, 271
Solenoidal vector field, 956
Solid angle, 998
Solution
of a differential equation, 159
Solution curve, A-28
Solve routines, 277
Source, 907
Speed, 164, 652
angular, 659, 888
Sphere, 628
surface area of, 427
Spherical coordinates, 877, 987
Spheroid, 429, 936
Spline, 474
Square root function, 28
Square root rule, 120
Squeeze theorem, 69
Stability of a floating object, 442
Standard basis, 601, 602, 608
Standard deviation, 458
Standard volume problem, 836
Star-like domain, 956
Steiner’s problem, 835
Steradian, 998
Stokes’s theorem, 973
Straight line, 14
parametric equations of, 489
point-slope equation, 16
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Straight line (continued)
slope-intercept equation, 17
two intercept equation, 18

Streamline, 897

Subspace, 635

Substitution
in a definite integral, 336

Subtraction of functions, 36

Sum of a series, 528

Summation by parts, 590

Summation formulas, 305

Sunrise and Sunset, 666

Supplementary angles, 45

Surface, 705
area element, 426
closed, 926
composite, 926
coordinate, 988
equipotential, 903
of revolution, 426
oriented, 937
parametric, 925
ruled, 629
smooth, 928

Surface area, 501

Surface area element, 883
vector form, 939

Surface integral, 927

Symmetric matrix, 632

System of equations, 764

Tail of a series, 533
Tan 6 /2 substitution, 361
Tangent function, 50
Tangent line, 59
approximation, 279
nonvertical, 99
to a parametric curve, 497
vertical, 100
Tangent plane, 721
approximation, 743
equation of, 722
Tangent unit vector, 674
Tangential acceleration, 685
Tanh, 216
Tautochrone, 492
Taylor approximation
of implicit functions, 778
Taylor polynomial, 285
in several variables, 775
Taylor series, 566
in several variables, 775
Taylor’s formula
approximating integrals with, 398
with integral remainder, 579
with Lagrange remainder, 287, 577
Telescoping series, 531
Tetrahedron, 618
Time-shift, 223
Topographic map, 707
Topology, 598
Torque, 661
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Torricelli’s law, 301
Torsion, 679
Torus, 413
Track design, 687
Tractrix curve, 475
Transcendental function, 175
Transcendental number, 190
Transformation, 748, 874
inverse of a, 861
of plane coordinates, 861
Transpose, 632
Transverse axis, 483
Transverse component, 693
Trapezoid, 386
Trapezoid rule, 387
error estimate, 390
Trefoil knot, 926
Triangle inequality, 9, 610, 840
for the definite integral, 321
Trigonometric function, 50
Trigonometric polynomial, 812
Trigonometry, 52
Triple integral, 867
Triple product
scalar, 616
vector, 618
Tube around a curve, 926

Ultimate property of a sequence, 521
Uniform continuity, A-21
Uniform distribution, 455
Union, 7
Unit binormal, 678
Unit normal, 676
Unit normal field, 937
Unit principal normal, 676
Unit tangent vector, 674
Upper bound, A-14

for a sequence, 520

Variable, 26
Variable of integration, 318
Variance, 458
Vector, 599
Vector addition, 600
calculations with Maple, 642
cross product, 611
column, 632
differential identities, 954
dot product, 606
in n-space, 608
normal, 721
position, 601

Vector (continued)
potential, 956
projection, 607
row, 632
triple product, 618

Vector area element
on a surface, 939

Vector field, 895
conservative, 956
in polar coordinates, 899
irrotational, 956
smooth, 895
solenoidal, 956

Vector-valued function, 651

Velocity, 147, 164, 651
angular, 659
average, 57, 163, 651
escape, 448
instantaneous, 58
polar components of, 694

Velocity field
of a rotating solid, 896

Vertex
of a hyperbola, 483
of a parabola, 20, 478

Vertical asymptote, 254

Vertical tangent line, 100

Volume
by slicing, 408, 417
element, 409
of a ball, 409
of a cone, 410, 969
of a torus, 413
of an ellipsoid, 421

Volume element, 991

in cylindrical coordinates, 875

in spherical coordinates, 879

Wave

spherically expanding, 782
Wave equation, 730, A-24
Winding number, 924
Witch of Agnesi, 495
Work, 445, 915

element of, 916

x-simple domain, 843, 966
y-simple domain, 843, 966

z-simple domain, 966
Zero of a function, 272, 825
Zero vector, 600



