895

CHAPTER 15

Vector Fields

Introduction This chapter and the next are concerned mainly with vector-valued
functions of a vector variable, typically functions whose domains and ranges lie
in the plane or in 3-space. Such functions are frequently called vector fields.
Applications of vector fields often involve integrals taken, not along axes or over
regions in the plane or 3-space, but rather over curves and surfaces. We will
introduce such line and surface integrals in this chapter. The next chapter will
be devoted to developing analogues of the Fundamental Theorem of Calculus for
integrals of vector fields.

A function whose domain and range are subsets of Euclidean 3-space, R?, is called

a vector field. Thus, a vector field F associates a vector F(x, y, z) with each point
(x, v, z) in its domain. The three components of F are scalar-valued (real-valued)
functions Fi(x, y, z), F»(x, y, 2), and F3(x, y, z), and F(x, y, z) can be expressed
in terms of the standard basis in R® as

Fx,y,z2) = Fi(x,y, i+ F(x,y,2j+ F3(x,y, 2)k.

(Note that the subscripts here represent components of a vector, not partial deriva-
tives.) If F3(x,y,z) = 0 and F| and F; are independent of z, then F reduces
to

F(x,y) = Fi(x, pi+ Fa(x, y)j

and so is called a plane vector field, or a vector field in the xy-plane. We will
frequently make use of position vectors in the arguments of vector fields. The
position vector of (x, y, z) isT = xi+ yj+ zk, and we can write F(r) as a shorthand
for F(x, y, z). In the context of discussion of vector fields, a scalar-valued function
of a vector variable (i.e., a function of several real variables as considered in the
context of Chapters 12—14) is frequently called a scalar field. Thus, the components
of a vector field are scalar fields.

Many of the results we prove about vector fields require that the field be smooth
in some sense. We will call a vector field smooth wherever its component scalar
fields have continuous partial derivatives of all orders. (For most purposes, however,
second order would be sufficient.)

Vector fields arise in many situations in applied mathematics. Let us list some:

(a) The gravitational field F(x, y, z) due to some object is the force of attraction
that the object exerts on a unit mass located at position (x, v, z).

(b) The electrostatic force field E(x, y, z) due to an electrically charged object is
the electrical force that the object exerts on a unit charge at position (x, y, z).
(The force may be either an attraction or a repulsion.)
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(¢) The velocity field v(x, y, z) in amoving fluid (or solid) is the velocity of motion
of the particle at position (x, y, z). If the motion is not “steady state,” then the
cohdﬁctiﬁg‘rhedihrﬁ. Pressure gradients provide siniildr information about tne
variation of pressure in a fluid such as an air mass or an ocean.

(e) The unit radial and unit transverse vectors r and 0 are examples of vector fields
in the xy-plane. Both are defined at all points of the plane except the origin.

IR  (The gravitational field of a point mass) The gravitational force
field due to a point mass m located at point Py having position rg is

—km
Fx,y,2) =F(r) = - (r — rp)

I —x0)i+ (y — yo)i + (z — z9)k
= —km

320
(6 =207 + (v =302 + (2 = 207?)

where k£ > 0 is a constant. F points toward the point ry and has magnitude
|F| = km/|r —ro|*.

Some vectors in a plane section of the field are shown graphically in Figure 15.1.

Each represents the value of the field at the position of its tail. The lengths of the

vectors indicate that the strength of the force increases the closer you get to Fy.
|

Remark The electrostatic field F due to a point charge g at Py is given by the
same formula as the gravitational field above, except with —m replaced by g. The
reason for the opposite sign is that like charges repel each other whereas masses
attract each other.
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The gravitational field of a point mass Figure 15.2 The velocity field of a rigid body

rotating about the z-axis




Figure 15.3 The velocity field and
some streamlines of wind blowing over
a hill
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The velocity field of a solid rotating about the z-axis with angular
velocity §2 = Qk is

v(x,y,z) = V(r) = 2Xr = —Qyi + Qxj.

Being the same in all planes normal to the z-axis, v can be regarded as a plane
vector field. Some vectors of the field are shown in Figure 15.2.

Field Lines (Integral Curves)

The graphical representations of vector fields such as those shown in Figures 15.1
and 15.2 and the wind velocity field over a hill shown in Figure 15.3 suggest a
pattern of motion through space or in the plane. Whether or not the field is a
velocity field, we can interpret it as such and ask what path will be followed by a
particle, initially at some point, whose velocity is given by the field. The path will
be a curve to which the field is tangent at every point. Such curves are called field
lines or integral curves for the given vector field. In the specific case where the
vector field gives the velocity in a fluid flow, the field lines are called streamlines
or flow lines of the flow; some of these are shown for the air flow in Figure 15.3.
For a force field, the field lines are called lines of force.

—_ . - T,

~N T T — —

The field lines of F do not depend on the magnitude of F at any point but only on the
direction of the field. If the field line through some point has parametric equation
r = r(t), then its tangent vector dr/dt must be parallel to F(r(¢)) for all . Thus

dr
= AOF(r()).

For some vector fields this differential equation can be integrated to find the field
lines. If we break the equation into components,

dx dy daz
— = A)F s 2), e F. y Y3y T = » Y. 2)s
7 O Fi(x,y,2) I A F(x,y,2) 7 MO F(x,y,2)

we can obtain equivalent differential expressions for A(¢) dt and hence write the
differential equation for the field lines in the form
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dx _ dy _ dz
Fi(x,y,2)  Fax,y,2)  F(x,y,2)

If multiplication of these differential equations by some function puts them in the
form

Px)dx = Q(v)dy = R(2)dz,

then we can integrate all three expressions to find the field lines.

m Find the field lines of the gravitational force field of Example 1:

F(x,y,2) = —km (x — xo)i+ (y — yo)j + (z — zO)k2

(6 =502+ 0 =32+ ¢ —20?)

Solution The vector in the numerator of the fraction gives the direction of F.
Therefore, the field lines satisfy the system

dx dy dz

X=X y—jdo -2
Integrating all three expressions leads to

Injx —xo| +InC; =In|y — yo| + InCz2 = Injz — 79| + In C3,
or, on taking exponentials,

Ci(x —x0) = C2(y — yo) = C3(z — 20).

This represents two families of planes all passing through Py = (x¢, ¥, 20). The
field lines are the intersections of planes from each of the families, so they are
straight lines through the point Py. (This is a two-parameter family of lines; any
one of the constants C; that is nonzero can be divided out of the equations above.)
The nature of the field lines should also be apparent from the plot of the vector field
in Figure 15.1.

_m

31 N8  Find the field lines of the velocity field v = Q(—yi + xj) of
Example 2.

Solution The field lines satisfy the differential equation

dx dy
_y - X :
We can separate variables in this equation to get x dx = —y dy. Integration then

gives x2/2 = —y?/2 + C/2, or x2 + y* = C. Thus, the field lines are circles
centred at the origin in the xy-plane, as is also apparent from the vector field plot in
Figure 15.2. If we regard v as a vector field in 3-space, we find that the field lines
are horizontal circles centred on the z-axis:

x2+y2=C1, z=Cs.
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Our ability to find field lines depends on our ability to solve differential equations
and, in 3-space, systems of differential equations.

.m Find the field lines of F = xzi + 2x?zj + x’k.

d d d .
Solution The field lines satisfy @ = 4 —Z, or, equivalently
xz  2x2z x?

dy =2xdx and dy = 2zdz.

The field lines are the curves of intersection of the two families y = x? + C; and
y = 7% + C; of parabolic cylinders.

_m

Vector Fields in Polar Coordinates

A vector field in the plane can be expressed in terms of polar coordinates in the
form

F =F(r,0) = F.(r,0)t + Fa(r, 00,
where f and @, defined everywhere except at the origin by

F= cosfi+sinfj
0 = —sindi + cos 6j,

A

are unit vectors in the direction of increasing r and 9 at [r, 8]. Note that dt/d6 = 0,
and that  is just T rotated 90° counterclockwise. Also note that we are using F,
and Fj to denote the components of F with respect to the basis {r, é}; the subscripts
do not indicate partial derivatives. Here, F, (r, ) is called the radial component of
F, and Fy(r, 9) is called the transverse component.

A curve with polar equation r = r(6) can be expressed in vector parametric
form

r=rr,

as we did in Section 11.6. This curve is a field line of F if its differential tangent
vector

df )
dr:drf'+r£d9=drf'+rd60

is parallel to the field vector F(r, 6) at any pointexcept the origin, thatis, if r = f(8)
satisfies the differential equation

dr - rdo
F(r,0) = Fo(r,0)

In specific cases we can find the field lines by solving this equation.
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(a) The vector field F =1+ 6 NN
(b) Field lines of F = ¢+ 6 (a) ')
13 EV IR Sketch the vector field F(r, 8) = + 9, and find its field lines.
Solution At each point [r, 8], the field vector bisects the angle between F and é
making a counterclockwise angle of 45° with . All of the vectors in the field have
the same length, 2. Some of the field vectors are shown in Figure 15.4(a).
They suggest that the field lines will spiral outward from the origin. Since
F.(r,0) = Fy(r,8) = 1 for this field, the field lines satisfy dr = r d#8, or, di-
viding by df, dr/d6 = r. This is the differential equation of exponential growth
and has solution r = K¢, or, equivalently, r = €T where @ = In K is a constant.
Several such curves are shown in Figure 15.4(b).
N ]
] Exercises 15.1
In Exercises 1-8, sketch the given plane vector field and 11. v(x,y, ) =yi—xj+k
determine its field lines. i 7
etermine its ines 12. v(x, y.2) = 1 le + ;’J .
1. F(x, y) = xi + xj 2. F(x,y) =xi+yj U +29&" 455
13. v(x,y,2) = xzi+ yzj+ xk
3. F(x, y) = yi+xj 4, F(x,y) =i+sinx] 14. v(x,y,2) = eV (xi+ y2j+ zk)
5. F(x,v) =i+ e 6. F(x,y) = vix? - ¥) 15. v(x, y) = X2 yi

*16. v(x,y)=xi+ (x j Hint:lety = .
7. F(x, v) = Vln(x2 + y2) 8. F(x,y)=cosyi—cosxj (x. Y) x4 " y =xv(x)
In Exercises 17-20, determine the field lines of the given polar

In Excrcises 9-16, describe the streamlines of the given velocity vector fields

fields. )
9, V(x,,\‘,z)zyi*yj—yk 17.F=r—|—r0 18.F=f'+99
10. v(x, v.z) = xi+ yj — xk 19. F =2f + 06 20. F=rf—0

Since the gradient of a scalar field is a vector field, it is natural to ask whether every
vector fleld is the gradient of a scalar field. Given a vector field F(x, y, z), does



SECTION 15.2: Conservative Fields 901

there exist a scalar field ¢ (x, v, z) such that

F(x,y,2)=Vo(x,y,2) = —i+ —j+ —k?

d¢
0x 9z

ap. 09
ay

The answer in general is “no.” Only special vector fields can be written in this way.

If F(x,y.z) = Vé(x, y, z) in adomain D, then we say that F is a conserva-
tive vector field in D, and we call the function ¢ a (scalar) potential for F on
D. Similar definitions hold in the plane or in n-space.

Like antiderivatives, potentials are not determined uniquely; arbitrary constants can
be added to them. Note that F is conservative in a domain D if and only if F = V¢
at every point of D; the potential ¢ cannot have any singular points in D.

The equation Fi(x,y,z)dx + Fa(x,y,2)dy + Fz(x,y,z)dz = 0O is called
an exact differential equation if the left side is the differential of a scalar function

o(x,y,2):
dp = Fi(x,y,0dx+ F(x,y,2)dy + F3(x, y,2) dz.

In this case the differential equation has solutions given by ¢ (x, y,z) = C (con-
stant). Observe that the differential equation is exact if and only if the vector field
F = Fii + F»j + F3k is conservative, and that ¢ is the potential of F.

Being scalar fields rather than vector fields, potentials for conservative vector
fields are easier to manipulate algebraically than are the vector fields themselves.
For instance, a sum of potential functions is the potential function for the sum of
the corresponding vector fields. A vector field can always be computed from its
potential function by taking the gradient.

m (The gravitational field of a point mass is conservative) Show
that the gravitational field F(r) = —km(r—ro)/ [r—ro)3 of Example 1 in Section 15.1
is conservative wherever it is defined (i.e., everywhere in R? except at ry), by
showing that

km o km
Ir—rol  /(x = %02+ (y — yo)2 + (z — 20)?

¢(x’ y7z) =

is a potential function for F.
Solution Observe that
¢ —km(x — xo) _ —km(x — xp)

_ =
(w0 = 07+ 20?)

|r_r0|3 =Fl(r)s

and similar formulas hold for the other partial derivatives of ¢. It follows that
Vo(x,y,z) =F(x,y,z) for (x,y,2) # (xo, ¥o, 20), and F is conservative except
at ro.
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Remark 1t is not necessary to write the expression km/|r — ro| in terms of the
components of r — ry as we did in Example 1 in order to calculate its partial
derivatives. Here is a useful formula for the derivative of the length of a vector
function F with respect to a varjable x:

To see why this is true, express |F| = +/F o F and calculate its derivative using the
Chain Rule and the Product Rule:

2, \/—— ( 9 ) Fe (Bx )
— FeF = = ——"
8x 2«/F oF \¥]
Compare this with the derivative of an absolute value of a function of one variable:
d / f®)
L1 f 00l =sgn(f ) F/(x) = 22 £ ().
ax T = 7Ol
In the context of Example 1 we have
0 km —km 0 —km (r—rg)ei —km(x — xg)
— = 5 oo Ir—Tol = 5 = —
dx [r—ro| [r—rol® dx Ir —rol® Ir—rol Ir — 1ol

with similar expressions for the other partials of km /|r — 1|

m Show that the velocity field v = —Qyi+ Qxj of rigid body rotation
about the z-axis (see Example 2 of Section 15.1) is not conservative if Q # 0.
Solution There are two ways to show that no potential for v can exist. One way
is to try to find a potential ¢ (x, y) for the vector field. We require

2 = —Qy and 8_¢ = Qx.

dx ay
The first of these equations implies that ¢(x,y) = —Qxy + C(y). (We have
integrated with respect to x; the constant can still depend on y.) Similarly, the
second equation implies that ¢ (x, y) = Qxy + Ca(x). Therefore, we must have
—Qxy + Ci1(y) = Qxy + Ca(x), or 2Qxy = C;(y) — Co(x) for all (x, y). This is
not possible for any choice of the single-variable functions C;(y) and C»(x) unless
Q=0

Alternatively, if v has a potential ¢, then we can form the mixed partial deriva-
tives of ¢ from the two equations above and get

82 2
¢ =-Q and 9% =
dyox axay

This is not possible if £ # 0 because the smoothness of v implies that its potential
should be smooth, so the mixed partials should be equal. Thus, no such ¢ can exist;
v is not conservative.




Do not confuse this necessary
condition with a sufficient
condition to guarantee that F is
conservative. We will show later
that more than just

dr /oy =0F,/0xon Dis
necessary to guarantee that F is
conservative on D.
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Example 2 suggests a condition that must be satisfied by any conservative plane
vector field.

Necessary condition for a conservative plane vector field

If F(x,y) = Filx, »i+ Fx,y)jis a conservative vector field in a
domain D of the xy-plane, then the condition

d )
—Fix,y) = —FRx,y)
ay dx

must be satisfied at all points of D,

To see this, observe that

3. 9
F1i+F2j=F=V¢=—¢i+—¢j
dax ay

implies the two scalar equations

_%

00
T ax

F = b
1 3y

and F

and since the mixed partial derivatives of ¢ should be equal,

oF, 3% 3¢ R

dy  dydx  dxdy  ox

A similar condition obtains for vector fields in 3-space.

Necessary conditions for a conservative vector field in 3-space

ItF(x, y,2) = Fi(x,y, i+ Fa(x, ¥, 2)j + F5(x, y, D)k is a conservative
vector field in a domain D in 3-space, then we must have; everywhere in
D,

aF ok aF,  0F; aFy . dF;

9y ax’ 3z 9x 9z ay

Equipotential Surfaces and Curves

If ¢(x,y,z) is a potential function for the conservative vector field F, then the
level surfaces ¢(x, y,z) = C of ¢ are called equipotential surfaces of F. Since
F = V¢ is normal to these surfaces (wherever it does not vanish), the field lines
of F always intersect the equipotential surfaces at right angles. For instance, the
equipotential surfaces of the gravitational force field of a point mass are spheres
centred at the point; these spheres are normal to the field lines, which are straight
lines passing through the point. Similarly, for a conservative plane vector field, the
level curves of the potential function are called equipotential curves of the vector
field. They are the orthogonal trajectories of the field lines; that is, they intersect
the field lines at right angles.
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Figure 15.5 The field lines (black)
and equipotential curves (colour) for
the ficld F = xi — yj

m Show that the vector field F(x, y) = xi — yj is conservative and
find a potential function for it. Describe the field lines and the equipotential curves.
Solution Since 3F;/dy = 0 = 3 F,/dx everywhere in R?, we would expect F to
be conservative. Any potential function ¢ must satisfy

0 d
—¢_—_F1=x and —¢=F2=—y.
dax ay
The first of these equations gives
get
8¢> ’ 1 2
-y=—=C@ = CGHMH=—-32y+0C.
dy 2

Thus, F is conservative and, for any constant Co,

x2 - y?
dx,y) = + G
is a potential function for F. The field lines of F satisfy
dx dy
il = Injx|]=—-Inly|+InC; = xy=0Cs.
y

The field lines of F are thus rectangular hyperbolas with the coordinate axes as
asymptotes. The equipotential curves constitute another family of rectangular
hyperbolas, x? — y? = C4, with the lines x = +y as asymptotes. Curves of the two
families intersect at right angles. (See Figure 15.5.) Note, however, that F does not
specify a direction at the origin and the orthogonality breaks down there; in fact,
neither family has a unique curve through that point.

— u

Remark In the above example we constructed the potential ¢ by first integrating
d¢/dx = F;. We could equally well have started by integrating d¢/dy = F3, in
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which case the constant of integration would have depended on x. In the end the
same ¢ would have emerged.

SE W  Decide whether the vector field

. 1, ey, €&
F= (xy - smz)l + (—x — —-)J + (— —xcosz)k
2 z 72
is conservative in D = {(x, y, z) : z # 0}, and find a potential if it is.

Solution Note that F is not defined when z = 0. However, since
aFl an 3F1 3F3 3F2 e’ an
—=x=—, — =—cosz=—,and —=—5=—,
ay T o 9z YT 0z 2 dy

F may still be conservative in domains not intersecting the xy-plane z = 0. If so,
its potential ¢ should satisfy

3¢ _ 09 1, e 09 _¢ “
— =Xy —Sinzg, — = —-X"— —, an — = — — XCOSZ.
dx Y ¢ Iy 2 z 9z 2 ‘

From the first equation of (x),

1
o(x,y,2) = /(xy —sinz)dx = §x2y —xsinz 4+ Cy(y, 2).

(Again, note that the constant of integration can be a function of any parameters of
the integrand, it is constant only with respect to the variable of integration.) Using
the second equation of (x), we obtain

1 Yy 9 1 aC
_xz_e_=_¢:_x2+__l.(_y’_z)_
2 b4 ay 2 ay

Thus,
e’ e’
Ci(y, ) = —/ —dy =—-—+C2)
z Z
and
1, . e’
o(x,v,2) = Ex y—xsinz — " + C1(2).

Finally, using the third equation of (x),

e 3¢ e ,

— —xc0sz=— =—xcosz+ — + C2'(2).

z? 9z z2

Thus C,'(z) = 0 and C»(z) = C (a constant). Indeed, F is conservative and, for
any constant C,

1 . e’
¢x,v,2) = Exzy—xsmz— —+C
b4
is a potential function for F in the given domain D. C may have different values in
the two regions z > 0 and z < 0 whose union constitutes D.
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Remark 1f, in the above solution, the differential equation for C,(y, z) had in-
volved x or if that for C5(z) had involved either x or y, we would not have been
able to find ¢. This did not happen because of the three conditions on the partials
of Fy, F», and F3 verified at the outset.

Remark The existence of a potential for a vector field depends on the fopology
of the domain of the field (i.e., whether the domain has holes in it and what kind
of holes) as well as on the structure of the components of the field itself. (Even
if the necessary conditions given above are satisfied, a vector field may not be
conservative in a domain that has holes.) We will be probing further into the
nature of conservative vector fields in Section 15.4 and in the next chapter; we will
eventually show that the above necessary conditions are also sufficient to guarantee
that F is conservative if the domain of F satisfies certain conditions. At this point,
however, we give an example in which a plane vector field fails to be conservative
on a domain where the necessary condition is, nevertheless, satisfied.

m For (x, y) # (0, 0), define a vector field F(x, y) and a scalar field
6(x, y) as follows:

-y \. x .
Fix.y) = (x2+y2)l+ (x2+y2)J

0(x, y) = the polar angle 6 of (x, y) such that 0 < 8 < 2.

Thus, x = rcosf(x,y) and y = rsinf(x, y), where r> = x> + y2. Verify the
following:

9 0
(a) a—Fl(x, y) = —Fx(x, y) for (x, y) # (0,0).
y ax

(b) VO(x,y) =F(x,y) forall (x, y) # (0,0) such that 0 < 6 < 2m.

(c) F is not conservative on the whole xy-plane excluding the origin.

Solution
(a) Wehave F; = — 2 and F, = —~_ Th
\Y = an = . us
Py T XTI y2
9 9 2 _x? 9 x
—hG&,y)=— _2y 2] = yz N2 T ae \x2 2
ay ay \ x2+4vy (x2 4+ y?) dx \ x2+ y2
0
= —F(x,y)
0x

for all (x, y) # (0, 0).

(b) Differentiate the equations x = r cos6 and y = r sin 6 implicitly with respect
to x to obtain

0x ar .0
1l=—=—cosf —rsinf—,
ax dx 0x
ay ar a6
0=-—=—5sind —.
x °x sin +rcos98x

Eliminating dr/dx from this pair of equations and solving for 38/9x leads to

a0 rsiné y
_— = - = — =t Fl_
dx r? x24y?
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Similarly, differentiation with respect to y produces

26

W __x _ g
ay xZ+4y?

These formulas hold only if 0 < 6 < 2m; 6 is not even continuous on the
positive x-axis; if x > 0, then '

lim 6(x,y) =0 but lim 6(x,y) =2m.
y—04+ y—0-—

Thus, V& = F holds everywhere in the plane except at points (x, 0) where
x > 0.

(c) Suppose that F is conservative on the whole plane excluding the origin. Then
F = V¢ there, for some scalar function ¢ (x, y). Then V(8 — ¢) = 0 for
0 <8 <27,and 6 — ¢ = C (constant), or § = ¢ + C. The left side of
this equation is discontinuous along the positive x-axis but the right side is
not. Therefore the two sides cannot be equal. This contradiction shows that F

cannot be conservative on the whole plane excluding the origin.
|

Remark Observe that the origin (0, 0) is a hole in the domain of F in the above ex-
ample. While F satisfies the necessary condition for being conservative everywhere
except at this hole, you must remove from the domain of F a half-line (ray), or,
more generally, a curve from the origin to infinity in order to get a potential function
for F. F is not conservative on any domain containing a curve that surrounds the
origin. Exercises 22-24 of Section 15.4 will shed further light on this situation.

Sources, Sinks, and Dipoles

Imagine that 3-space is filled with an incompressible fluid emitted by a point source
at the origin at a volume rate dV /dt = 4wm. (We say that the origin is a source of
strength m.) By symmetry, the fluid flows outward on radial lines from the origin
with equal speed at equal distances from the origin in all directions, and the fluid
emitted at the origin at some instant 1 = 0 will at later time ¢ be spread over a
spherical surface of radius r = r(z). All the fluid inside that sphere was emitted in
the time interval [0, ¢], so we have

—nr® = 4dnmt.
3

Differentiating this equation with respect to ¢ we obtain r2(dr/dt) = m, and the
outward speed of the fluid at distance r from the origin is v(r) = m/r?. The
velocity field of the moving fluid is therefore

r m

= —r.
Xl

This velocity field is conservative (except at the origin) and has potential

m
¢(r) =——.
r

v(r) = v(r)

A'sink is a negative source. A sink of strength m at the origin (which annihilates
or sucks up fluid at a rate dV /dt = 47rm) has velocity field and potential given by

v(r) = _:11_3 r and o) = ?
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The potentials or velocity fields of sources or sinks located at other points are
obtained by translation of these formulas; for instance, the velocity field of a source
of strength m at the point with position vector ry is

v(r) = —V( (r —rg).

|l'—l‘o|) Ir—rof?
This should be compared with the gravitational force field due to a mass m at
the origin. The two are the same except for sign and a constant related to units

of measurement. For this reason we regard a point mass as a sink for its own
~wavitatianal fiald  Qimilarly the alectrnstatic field due to a point charge g at ro

In general, the field lines of a vector field converge at a source or sink of that field.

A dipole is a system consisting of a source and a sink of equal strength m
separated by a short distance £. The product i = m¢ is called the dipole moment,
and the line containing the source and sink is called the axis of the dipole. Real
physical dipoles, such as magnets, are frequently modelled by ideal dipoles that are
the limits of such real dipoles as m — oo and £ — 0 in such a way that the dipole
moment 4 remains constant.

S ETLIEY  Calculate the velocity field, v(x, y, 7), associated with a dipole of
moment u located at the origin and having axis along the z-axis.

Solution We start with a source of strength m at position (0, 0, £/2) and a sink
of strength m at (0, 0, —£/2). The potential of this system is

1 1
Pl = (|r— Iy R %fkl)'

The potential of the ideal dipole is the limit of the potential of this systemasm — oo
and £ — 0 in such a way that m¢ = u:

(6) — Lim —m r + 3£k — |r — J£K|

>0 v+ 1¢k| |r — ¢K|
B |r+ 1ek| — |r — L¢k|
|]‘|2 £—0 £

ml=p

(now use 1’Hopital’s Rule and the rule for differentiating lengths of vectors)

(r+ 5¢k) o 5k (r—3¢k) o (—3K)

K |r + Lek| r — 1ek|
T r]?2 >0 1
. %z+%£+%z—iz

o I\ Tl T - g

nz

R
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The required velocity field is the gradient of this potential. We have

9¢ 3pzrei 3uxz

ox It vl P

¢  3uyz

ay P

3 3uz?  p(2z? —x* —y?)
PP Ir[3

v(r) = Vo(r) = #(&czi +3yzj + (22 — x* — yHk).

Some streamlines for a plane cross-section containing the z-axis are shown in

Figure 15.6 Streamlines of a dipole

|Exercises 15.2

In Exercises 1-6, determine whether the given vector field is
conservative, and find a potential if it is.

1. F(x,y,2) = xi—2yj+3zk

2. Flx,y,z) = yi+xj+ 2k
xi— vj xi+ yj
——= 4. F(x,y) = 55—
X242 .7 212

CFx, y,2) = Qxy — 29i+ Qyz 4+ x2)j — Qzx — yH)k
Fix,y,2) = ¢ T4 (xzi + yzj + xvk)
. Find the three-dimensional vector field with potential

$ir)y= L.

[r—ry|?

. Calculate Vin |r|, where r = xi + yj + zk.

3. Fx,y) =

= =

=

9. Show that the vector field
26, 2y, xI4y?
F(x,y‘z):fw—yj— >
z z z
is conservative, and find its potential. Describe the

equipotential surfaces. Find the field lines of F.

k

10. Repeat Exercise 9 for the field

2x, 2 x2 452
F(x,y,z)=71+7yj+(1— k.

11. Find the velocity field due to two sources of strength m, one
located at (0, 0, £) and the other at (0, 0, —¢). Where is the
velocity zero? Find the velocity at any point (x, y, 0) in the
xy-plane. Where in the xy-plane is the speed greatest?

*12. Find the velocity field for a system consisting of a source of
strength 2 at the origin and a sink of strength 1 at (0, 0, 1).
Show that the velocity is vertical at all points of a certain
sphere. Sketch the streamlines of the flow.

Exercises 13—18 provide an analysis of two-dimensional sources
and dipoles similar to that developed for three dimensions in the
text.

13. In 3-space filled with an incompressible fluid, we say that
the z-axis is a line source of strength m if every interval Az
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along that axis emits fluid at volume rate dV /dt = 2amAz.
The fluid then spreads out symmetrically in all directions
perpendicular to the z-axis. Show that the velocity field of
the flow is

* 18.

Show that the velocity field of a line source of strength 2m
can be found by integrating the (three-dimensional) velocity
field of a point source of strength m dz at (0, 0, z) over the
whole z-axis. Why does the integral correspond to a line

m source of strength 2m rather than strength m? Can the

V= —— (xi+yj). potential of the line source be obtained by integrating the
Aty potentials of the point sources?

19. Show that the gradient of a function expressed in terms of
14. The flow in Exercise 13 is two-dimensional because v polar coordinates in the plane is
depends only on x and y and has no component in the z
direction. Regarded as a plane vector field, it is the field of a
two-dimensional point source of strength m located at the
origin (i.e., fluid is emitted at the origin at the areal rate
dA/dt = 2m). Show that the vector field is conservative,

and find a potential function ¢ (x, y) for it.

0
Vo (r, 0) = 8—‘ff+

190¢ ~

-—0.

r 060

(This is a repeat of Exercise 16 in Section 12.7.)

20. Use the result of Exercise 19 to show that a necessary

+ 15. Find the potential, ¢, and the field, F = V¢, for a condition for the vector field
two-dimensional dipole at the origin, with axis in the y
direction and dipole moment g. Such a dipole is the limit of F(r,0) = F,(r, 0)t + Fa(r,0)0
a system consisting of a source of strength m at (0, £/2) and
a sink of strength m at (0, —£/2), as £ — O and m — 00 (expressed in terms of polar coordinates) to be conservative
such that m¢ = . is that
* 16. Show that the equipotential curves of the two-dimensional
dipole in Exercise 15 are circles tangent to the x-axis at the JoF, dFy - F
origin. a0 & e
* 17. Show that the streamlines (field lines) of the

two-dimensional dipole in Exercises 15 and 16 are circles

tangent to the y-axis at the origin. Hint: it is possible to do 21. Show that F.Z r Sil.‘ 20 + r cos 200 is conservative, and
this geometrically. If you choose to do it by setting up a find a potential for it.
differential equation, you may find the change of dependent 22. For what values of the constants « and 8 is the vector field
variable
dv dv F = rcos Of + arf sin60
y = vX, —=v+x—
’ dx dx

conservative? Find a potential for F if & and B have these
values.

useful for integrating the equation.

If a wire stretched out along the x-axis from x = a to x = b has constant line
density § (units of mass per unit length), then the total mass of the wire will be
m = 8(b — a). If the density of the wire is not constant but varies continuously
from point to point (e.g., because the thickness of the wire is not uniform), then
we must find the total mass of the wire by “summing” (i.e., integrating) differential
elements of mass dm = §(x) dx:

b
m= f d(x)dx.

In general, the definite integral, fah f(x) dx,represents the total amount of a quantity
distributed along the x-axis between a and b in terms of the line density, f(x), of
that quantity at point x. The amount of the quantity in an infinitesimal interval of
length dx at x is f(x) dx, and the integral adds up these infinitesimal contributions
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(or elements) to give the total amount of the quantity. Similarly, the integrals
[, fx,y)dA and ([, f(x,y,2)dV represent the total amounts of quantities
distributed over regions D in the plane and R in 3-space in terms of the areal or
volume densities of these quantities.

It may happen that a quantity is distributed with specified line density along a
curve in the plane or in 3-space, or with specified areal density over a surface in
3-space. In such cases we require line integrals or surface integrals to add up the
contributing elements and calculate the total quantity. We examine line integrals in
this section and the next and surface integrals in Sections 15.5 and 15.6.

Let C be a bounded, continuous parametric curve in R®. Recall (from Sec-
tion 11.1) that C is a smooth curve if it has a parametrization of the form

r=r()=xMi+y®)j+ z(H)k, t ininterval I,

with “velocity” vector v = dr/dt continuous and nonzero. We will call C a smooth
arc if it is a smooth curve with finite parameter interval I = [a, b].

In Section 11.3 we saw how to calculate the length of C by subdividing it into
short arcs using points corresponding to parameter values

a=fhh<ti<bh<-: <t <t,=b,

adding up the lengths |Ar;| = |r; — r;_;] of line segments joining these points, and
taking the limit as the maximum distance between adjacent points approached zero.
The length was denoted

/ds
14

and is a special example of a line integral along C having integrand 1.

The line integral of a general function f(x, y, z) can be defined similarly. We
choose a point (x/, y/, z}) on the i/th subarc and form the Riemann sum

Se=Y_ fQx].y}.2) |An.
i=l1

If this sum has a limit as max |Ar;| — 0, independent of the particular choices of
the points (x, y7, z}), then we call this limit the line integral of f along C and
denote it by

/ flx,y,2)ds.
C

If C is a smooth arc and if f is continuous on C, then the limit will certainly exist;
its value is given by a definite integral of a continuous function, as shown in the
next paragraph. It will also exist (for continuous f) if C is piecewise smooth,
consisting of finitely many smooth arcs linked end to end; in this case the line
integral of f along C is the sum of the line integrals of f along each of the smooth
arcs. Improper line integrals can also be considered, where f has discontinuities or
where the length of a curve is not finite.
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Evaluating Line Integrals

The length of C was evaluated by expressing the arc length element ds = |dr/dt| dt
in terms of a parametrization r = r(t), (a < t < b) of the curve, and integrating
this fromt =ator = b:

b
1engthofC=/ ds-——/
C a

More general line integrals are evaluated similarly:

d
ax dt.
dt

b dr
/ f&x,y,2)ds = [ fle®) 5| dr.
C : @ {

Of course, all of the above discussion applies equally well to line integrals of
functions f(x, y) along curves C in the xy-plane.

Remark It should be noted that the value of the line integral of a function f along
a curve C depends on f and C but not on the particular way C is parametrized. If
r =r"(u),« <u < B,is another parametrization of the same smooth curve C, then
any point r(z) on C can be expressed in terms of the new parametrization as r*(u),
where u depends on¢: u = u(t). If r*(u) traces C in the same direction as r(t), then
u(a) = o, u(b) = B, and du/dt > 0, if r*(u) traces C in the opposite direction,
then u(a) = B, u(b) = a, and du/dt < 0. In either event,

*

* B

b dr b N
/ f(r(t)) \E‘ dt=/ f(r (u(t))) ’du I du.

Thus, the line integral is independent of parametrization of the curve C. The
following example illustrates this fact.

A circle of radius ¢ > 0 has centre at the origin in the xy-plane.
Let C be the half of this circle lying in the half-plane y > 0. Use two different
parametrizations of C to find the moment of C about y = 0.

Solution We are asked to calculate / yds.
c

C can be parametrized r = a cos ti + a sintj, (0 < t < 7). Therefore,

dr L. . dr
= —asinti+ acostj and m

dt

=a,

and the moment of C about y = 0 is

T
/ydsz/ asintadt = —a*cost
c 0

T
=242
0
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C can also be parametrized r = xi + +/a? — x2j, (—a < x < a), for which we have

dr_i x .

dx— «/az—_xz.]’

dr| P4 xr a
dx| a® —x¥  Ja? —x2

Thus, the moment of C about y = 0 is

a a a
ds=/ \/az—xz——dx:a/ dx = 24d°.
/Cy —a vaz—xz —a

It is comforting to get the same answer using different parametrizations. Unlike
the line integrals of vector fields considered in the next section, the line integrals of
scalar fields considered here do not depend on the direction (orientation) of C. The
two parametrizations of the semicircle were in opposite directions but still gave the
same result.

Line integrals frequently lead to definite integrals that are very difficult or impossible
to evaluate without using numerical techniques. Only very simple curves and ones
that have been contrived to lead to simple expressions for ds are amenable to exact
calculation of line integrals.

IR Find the centroid of the circular helix C given by
r=acosti+asintj+ btk, 0<t<2m.

Solution As we observed in Example 5 of Section 11.3, for this helix ds =
a2 + b2 dt. On the helix we have 7 = bt, so its moment about 7 = 0 is

2r
M.y = / zds = by a? + b? / rdt = 27%bv/a? + b2.
c 0

Since the helix has length L = 27 +/a? + b2, the z-component of its centroid is
M,—o/L = mb. The moment of the helix about x = 0 is

2m
Mx=0=/xds=a\/a2+b2/ costdt =0,
c 0
2m
My=0=/yds:a\/a2+b2/ sintdr = 0.
¢ 0

Thus the centroid is (0, 0, 7 b).

Sometimes a curve, along which a line integral is to be taken, is specified as the
intersection of two surfaces with given equations. It is normally necessary to
parametrize the curve in order to evaluate a line integral. Recall from Section 11.3
that if one of the surfaces is a cylinder parallel to one of the coordinate axes, it is
usually easiest to begin by parametrizing that cylinder. (Otherwise, combine the
equations to eliminate one variable and thus obtain such a cylinder on which the
curve lies.)
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Figure 15.7 The curve of
intersection of z = x2 and
= 2 — )(2 - 2y2

Find the mass of a wire lying along the first octant part C of the
curve of intersection of the elliptic paraboloid z = 2 — x? — 2y? and the parabolic
cylinder z = x2 between (0, 1,0) and (1,0, 1) (see Figure 15.7) if the density of
the wire at position (x, v, z) is §(x, vy, z) = xy.

Solution We need a convenient parametrization of C. Since the curve C lies on
the cylinder z = x? and x goes from O to 1, we can let x = ¢ and z = . Thus,
2y =2 —-x2—z7=2-2t2,50y% =1 — 2. Since C lies in the first octant, it can
be parametrized by

x =t, y=+v1—-12, z=1, 0<r<l).

Thendx/dt = 1,dy/dt = —t/~/1 — 1%, and dz/dr = 2t, so

«/1 412 — 4t4
1/ —+ 4¢2dt = +
1— t2

Hence, the mass of the wire is

! ST+ 462 — 44
m= xyds:/ V11—t —— gt
/c 0 Vi—2

1
=/ tV 14+ 412 — At de Letu = 2.
0
1 1
:—/ V1+4u —4udu
2 Jo
1 1
:—/ V2 —Qu—12%du Letv =2u —1..
2 Jo
1 ! 1 !
:Z_/ \/2—v2dv:§/ V2 —v2dv
-1 0

1<£ l)zng—Z'

2

4+2
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(The final integral above was evaluated by interpreting it as the area of part of a
circle. You are invited to supply the details. It can also be done by the substitution

v=+2sinw.)

| I;lercises 15.3

1.

10.

. Find

Show that the curve C given by

r=acostsintitasin’rj+acosrk, (0<t< 7,

lies on a sphere centred at the origin. Find / zds.
C

. Let C be the conical helix with parametric equations

x=tcost,y=tsint,z=1¢t,(0 <t <2m). Find | zds.
C

. Find the mass of a wire along the curve

r=3ti+3%+2%k, ©O<r<1),

if the density at r(¢) is 1 4 ¢ g/unit length.

. Show that the curve C in Example 3 also has parametrization

X =cost,y =sint,z = cos?t,(0<1t < 7/2), and
recalculate the mass of the wire in that example using this
parametrization,

. Find the moment of inertia about the z-axis (i.e., the value of

8 / (2 + yz) ds), for a wire of constant density 8 lying
C

along the curve C: r = €' costi + €' sintj + tk, from t = 0
tot =2m.

. Evaluate / ¢* ds, where C is the curve in Exercise 5.
c

xds along the line of intersection of the two

C
planes x —y +z =0, and x + y 4+ 2z = 0, from the origin
to the point (3, 1, —2).

. Find / v 1+ 4x2z2ds, where C is the curve of intersection
C

of the surfaces xZ 4+ z2 =1 and y = x2.

. Find the mass and centre of mass of a wire bent in the shape

of the circular helix x = cost, y = sint, z = ¢,

(0 <t < 2m) if the wire has line density given by

a(x, ¥, 2) =2

Repeat Exercise 9 for the part of the wire corresponding to
O<t<m.

11.

12.
%13,

* 14,

16.

. Find /
C

Find the moment of inertia about the y-axis, that is,

/(x2 + %) ds,
¢

ofthecurve x = ¢/, y = /21, z=¢"", (0 <1 < |).

Find the centroid of the curve in Exercise 11.
Find / x ds along the first octant part of the curve of
Cc

intersection of the cylinder x> 4 y? = a? and the plane
z=x.

Find | zds along the part of the curve x2 + y2 + 72 = 1,
C
x+y=1,wherez > 0.
ds
(2y? + 1)3/2°
2 =x2+y% x+z=1. Hint: use Yy =t as parameter.

where C is the parabola

Express as a definite integral, but do not try to evaluate, the

2

value of | xyzds, where Cisthe curve y = x=, z = y2

C
from (0, 0, 0) to (2, 4, 16).

. The function

¢
E(k,d)):/ 1 — k2?sin? 1 dt
¢

is called the elliptic integral function of the second kind.
The complete elliptic integral of the second kind is the
function E (k) = E (k, w/2). In terms of these functions,
express the length of one complete revolution of the elliptic
helix

X = acost, y = bsint, 7z =ct,
where 0 < a < b. What is the length of that part of the helix
lying betweent = 0and¢ = T, where 0 < T < 7 /2?

ds
. Evaluate , where L is the entire straight line with
x4+ y?

equation Ax + By = C, (C # 0). Hint: use the symmetry
of the integrand to replace the line with a line having a
simpler equation but giving the same value to the integral.
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Figure 15.8

dW = |F|cosfB ds
=FeoTds

In elementary physics the work done by a constant force of magnitude F in moving
an object a distance d is defined to be the product of F and d: W = Fd. There is,
however, a catch to this; it is understood that the force is exerted in the direction
of motion of the object. If the object moves in a direction different from that of
the force (because of some other forces acting on it), then the work done by the
particular force is the product of the distance moved and the component of the force
in the direction of motion. For instance, the work done by gravity in causing a 10 kg
crate to slide 5 m down a ramp inclined at 45° to the horizontalis W = 50g/+/2 N-m
(where g = 9.8 m/s?), since the scalar projection of the 10g N gravitational force
on the crate in the direction of the ramp is 10g/+/2 N.

The work done by a variable force F(x, y, z) = F(r), which depends contin-
uously on position, in moving an object along a smooth curve C is the integral of
work elements dW. The element d W corresponding to arc length element ds at
position r on C is ds times the tangential component of the force F(r) along C in
the direction of motion (see Figure 15.8):

dW =F(r) o Tds.

Thus, the total work done by F in moving the object along C is

Wz/Fo'i‘ds:/Fodr,
C C

where we use the vector differential dr as a convenient shorthand for T ds. Since

.~ dr dx dy dz
P S i BT
ds dsl+ds']+ds ’

we have
dr=Tds =dxi+dyj+dzk,

and the work W can be written in terms of the components of F as
W= / Fidx+ F>dy + F3dz.
c

In general, if F = Fji+ F>j + F3K is a continuous vector field, and C is an oriented
smooth curve, then the line integral of the tangential component of F along C is

[Fodl’::/Fo'i‘ds
C C

= f Fi(x,y, 2ydx+Fa(x;y, 2)dy + F3(x, y,2) dz.
c

Such a line integral is sometimes called, somewhat improperly, the line integral of
F along C. (It is not the line integral of F, which should have a vector value, but
rather the line integral of the tangential component of F, which has a scalar value.)
Unlike the line integral considered in the previous section, this line integral depends
on the direction of the orientation of C; reversing the direction of C causes this line
integral to change sign.




=y

71
(©) (1,1
(©) (a)
(b)
Figure 15.9 Three paths from (0, 0)
o (1. 1)

[Fear
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If C is a closed curve, the line integral of the tangential component of F around
C is also called the circulation of F around C. The fact that the curve is closed is
often indicated by a small circle drawn on the integral sign;

%Fodl‘
C

denotes the circulation of F around the closed curve C.

Like the line integrals studied in the previous section, a line integral of a
continuous vector field is converted into an ordinary definite integral by using a
parametrization of the path of integration. For a smooth arc

r=r() =x@i+y@®)j+z@0Kk, (a<t<bh),

we have

b dr
/Fodr——— Fe —d:r
C a dt

=fa”[pl (x(t), y(1), z(t))i—): + Fz(x(t), y(1), z(t))

d
+F (x(t), v (@), z(t))d—f:l dr.

dy
dt

Although this type of line integral changes sign if the orientation of C is reversed,
it is otherwise independent of the particular parametrization used for C. Again, a
line integral over a piecewise smooth path is the sum of the line integrals over the
individual smooth arcs constituting that path.

Let F(x, y) = y2i 4 2xyj. Evaluate the line integral

from (0, 0) to (1, 1) along

(a) the straight line y = x,

(b) the curve y = x2, and

(c) the piecewise smooth path consisting of the straight line segments from (0, 0)
to (0, 1) and from (0, 1) to (1, 1).

Solution The three paths are shown in Figure 15.9. The straight path (a) can be
parametrizedr = ti+¢j, 0 <7 < 1. Thus dr = dti + dtj and

F e dr = (£%i + 2¢%j) o (i + j)dt = 312 dt.

Therefore,

1
/Fodr:/ 3t2dr =13
C 0

1
=1

0
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(b)

(@)

-1

Figure 15.10 Two paths from (1, 0)
to (0, 1)

The parabolic path (b) can be parametrized r = £i + 12j, 0 < t < 1, so that
dr = dti+ 2t dtj. Thus,

F e dr = (i + 21%j) e (i + 2tj) dt = 5t* dt,

1
/Fodr:/ 5tdt =1
C 0

The third path (c) is made up of two segments, and we parametrize each separately.
Let us use y as parameter on the vertical segment (where x = 0 and dx = 0) and x
as parameter on the horizontal segment (where y = 1 and dy = 0):

/F.dr:fy2dx+2xydy
C C

1 1
_—_/(O)dy—l—/(l)dx:l.
0 0

In view of these results, we might ask whether fc F e dr is the same along every
path from (0, 0) to (1, 1).

and

1
=1.

0

m Let F = yi — xj. Find , F e dr from (1, 0) to (0, —1) along
(a) the straight line segment joining these points and

(b) three-quarters of the circle of unit radius centred at the origin and traversed
counterclockwise.

Solution Both paths are shown in Figure 15.10. The straight path (a) can be
parametrized:

r=(1—-2i-—tj, 0<t<l1.

Thus, dr = —dti — dtj, and

1 1
/Fodr =/ ((—t)(—dt) - {1- t)(—dt)) =f dt=1.
C 0 0

The circular path (b) can be parametrized:

e . 3

r =costi+sintj, 051‘57,

so that dr = — sint dti + cos t dtj. Therefore,
F e dr = —sin’t dt — cos® 1 dt = —dt,

and we have

3n/2
/Fodr:—f dt=—§£.
c 0 2

In this case the line integral depends on the path from (1, 0) to (0, —1) along which
the integral is taken.

—n




Figure 15.11
domain

A simply connected

X

SECTION 15.4: Line Integrals of Vector Fields 919

Some readers may have noticed that in Example 1 above the vector field F is
conservative, while in Example 2 it is not. Theorem 1 below confirms the link
between independence of path for a line integral of the tangential component of a
vector field and the existence of a scalar potential function for that field. This and
subsequent theorems require specific assumptions on the nature of the domain of
the vector field F, so we need to formulate some topological definitions.

Connected and Simply Connected Domains

Recall that a set S in the plane (or in 3-space) is open if every point in § is the
centre of a disk (or a ball) having positive radius and contained in S. If S is open
and B is a set (possibly empty) of boundary points of S, then the set D = S U B is
called a domain. A domain cannot contain isolated points. It may be closed, but it
must have interior points near any of its boundary points. (See Section 10.1 for a
discussion of open and closed sets and interior and boundary points.)

A domain D is said to be connected, if every pair of points P and Q in D can
be joined by a piecewise smooth curve lying in D.

For instance, the set of points (x, y) in the plane satisfying x > 0, y > 0, and
x? 4+ y2 < 4 is a connected domain, but the set of points satisfying |x| > 1 is not
connected. (There is no path from (-2, 0) to (2, 0) lying entirely in |x| > 1.) The
set of points (x, y, z) in 3-space satisfying 0 < z < 1 is a connected domain, but
the set satisfying z # 0 is not.

A closed curve is simple if it has no self-intersections other than beginning and
ending at the same point. (For example, a circle is a simple closed curve.) Imagine
an elastic band stretched in the shape of such a curve. If the elastic is infinitely
shrinkable, it can contract down to a single point.

A simply connected domain D is a connected domain in which every simple
closed curve can be continuously shrunk to a point in D without any part ever
passing out of D.

i
X X
Figure 15.12 A connected domain Figure 15.13 A domain that is not
that is not simply connected connected

Figure 15.11 shows a simply connected domain in the plane. Figure 15.12 shows a
connected but not simply connected domain. (A closed curve surrounding the hole
cannot be shrunk to a point without passing out of D.) The domain in Figure 15.13
is not even connected. It has two components; points in different components cannot
be joined by a curve that lies in D.
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AN Py

Figure 15.14
Cy —C2 = Cy +(—Cy) is aclosed curve

In the plane, a simply connected domain D can have no holes, not even a hole
consisting of a single point. The interior of every non-self-intersecting closed curve
in such a domain D lies in D. For instance, the domain of the function 1/(x? + y%)
is not simply connected because the origin does not belong to it. (The origin is
a “hole” in that domain.) In 3-space, a simply connected domain can have holes.
The set of all points in R different from the origin is simply connected, as is the
exterior of a ball. But the set of all points in R? satisfying x>+ y2 > 0is not simply
connected. Neither is the interior of a doughnut (a forus). In general, each of the
following conditions characterizes simply connected domains D:

(i) Any simple closed curve in D is the boundary of a “surface” lying in D.

(i1) IfC; and C, are two curves in D having the same endpoints, then C; can be
continuously deformed into C», remaining in D throughout the deformation
process.

Independence of Path

Independence of path

Let D be an open, connected domain, and let F be a smooth vector field defined on
D. Then the following three statements are equivalent in the sense that, if any one
of them is true, so are the other two:

(a) F is conservative in D.

(b) % F o dr = O for every piecewise smooth, closed curve C in D.
c

(c) Given any two points Py and P; in D, / F o dr has the same value for all

c
piecewise smooth curves in D starting at Py and ending at P;.

PROOF We will show that (a) implies (b), that (b) implies (c), and that (c) implies
(a). It then follows that any one implies the other two.
Suppose (a) is true. Then F = V¢ for some scalar potential function ¢ defined
in D. Therefore,
¢, 99,

Foﬁ:(g-+31+¥©o@ﬂ+®d+ﬂg

3¢ ¢ o¢
=-—dx+ —dy+—dz=d
ax KTy Yt =
If C is any piecewise smooth, closed curve, parametrized, say, by r = r(z),
(a <t < b),thenr(a) = r(b), and

/CF "= /ab 200D o =¢(r®) — ¢(r(@) =

dt

Thus (a) implies (b).

Now suppose (b) is true. Let Py and P; be two points in D, and let C; and
C» be two piecewise smooth curves in D from Py to P;. Let C = C; — C; denote
the closed curve going from Py to P; along C; and then back to Py along C, in the
opposite direction. (See Figure 15.14.) Since we are assuming that (b) is true, we
have

Oszodr:f Fodr—/ Fedr.
C G G




RY

Figure 15.15

A special path from
Py to Py
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Therefore,

/Fodr:/ F e dr,
C ¢

and we have proved that (b) implies (c).

Finally, suppose that (c) is true. Let Py = (xo, Yo, zo) be a fixed point in the
domain D, and let P = (x, y, z) be an arbitrary point in that domain. Define a
function ¢ by

¢(x,y,2) = /Fodr,
14

where C is some piecewise smooth curve in D from Py to P. (Under the hypotheses
of the theorem such a curve exists, and, since we are assuming (c), the integral has
the same value for all such curves. Therefore, ¢ is well defined in D.) We will
show that V¢ = F and thus establish that F is conservative and has potential ¢.

It is sufficient to show that 8¢ /dx = F(x, y, z); the other two components are
treated similarly. Since D is open, there is a ball of positive radius centred at P and
contained in D. Pick a point (xy, y, z) in this ball having x; < x. Note that the line
from this point to P is parallel to the x-axis. Since we are free to choose the curve
C in the integral defining ¢, let us choose it to consist of two segments: C;, which
is piecewise smooth and goes from (xg, Yo, zg) to (x1, ¥, z), and C», a straight-line
segment from (xy, y, z) to (x, y, z). (See Figure 15.15.) Then

¢(x,y,z):f Fodr+f Fedr.
Cl Cz

The first integral does not depend on x, so its derivative with respect to x is zero.
The straight-line path for the second integral is parametrized by r = i + yj + zk,
where x; <t < x so dr = dti. By the Fundamental Theorem of Calculus,

3 3 3 [
% _ /Fodr:—/ Fit,y,2)dt = Fi(x,y,2),
C 0x X

ax  ox
which is what we wanted. Thus F = V¢ is conservative, and (c) implies (a).

Remark It is very easy to evaluate the line integral of the tangential component
of a conservative vector field along a curve C, when you know a potential for F. If
F = V¢, and C goes from Py to Py, then

f Fedr= f dé = (P — B(Py).
C C

As noted above, the value of the integral depends only on the endpoints of C.

Remark In the next chapter we will add another item to the list of three condi-
tions shown to be equivalent in Theorem 1, provided that the domain D is simply
connected. For such a domain each of the above three conditions in the theorem is
equivalent to

aF  0F aF, 0F 0F, 0F;

— i I and — =

3y ax’ az ox’ 9z ay

We already know that these equations are satisfied on a domain where F is con-
servative. Theorem 4 of Section 16.2 states that if these three equations hold on a
simply connected domain, then F is conservative on that domain.
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For what values of the constants A and B is the vector field

F = Axsin(my)i+ (x* cos(my) + Bye ?)j + y’e°k

conservative? For this choice of A and B, evaluate f F o dr, where C is
c

(a) the curve r = cos ti + sin 2¢j + sin’ rk, (0 < ¢ < 27), and

(b) the curve of intersection of the paraboloid z = x? + 4y? and the plane
= 3x — 2y from (0,0,0) to (1, 1/2,2).

Solution F cannot be conservative unless

oF 0K aFT  0F oF, 0F;

dy  x’ 9z ax dz ay’
that is, unless

Z Z

Amx cos(my) = 2x cos(my), 0=0, and — Bye ‘=2ye "

Thus, we require that A = 2/ and B = —2. In this case, it is easily checked that
xZsin(my)
F=V¢, where ¢ = (———-— — yze'z) .

b4

For the curve (a) we have r(0) = i = r(2m), so this curve is a closed curve, and

/Fodr:ff‘h&odrzo.
C C

Since the curve (b) starts at (0, 0, 0) and ends at (1, 1/2, 2), we have

2 .
/F.dr: (’_‘M_y2e—z)
I T

(1,1/2,2)

1
(0,0,0) T

1
4e*’

The following example shows how to exploit the fact that

/Fodl‘
C

is easily evaluated for conservative F even if the F we want to integrate isn’t quite
conservative.

[3ET W Evaluate ] = f (e* siny+3y)dx + (e* cosy +2x —2y)dy coun-

c
terclockwise around the ellipse 4x2 + y? = 4.

Solution I = f F e dr, where F is the vector field
c

F = (e*siny + 3y)i+ (¢' cos y + 2x — 2y)j.




Therefore, we have

SECTION 15.4: Line Integrals of Vector Fields 923

This vector field is not conservative, but it would be if the 3y term in F| were 2y
instead; specifically, if

P(x,y) =¢e"siny +2xy — v,

then F = V¢ + yi, the sum of a conservative part and a nonconservative part.

I:¢V¢odr+‘¢ydx.
c c

The first integral is zero since Ve is conservative and C is closed. For the second
integral we parametrize C by x = cost, y = 2sint, (0 <t < 2m), and obtain

2n 27r1_ s(2t
1=7§ydx=—2f sinztdt:—zf Toeos@h i o
c 0 0

2

lExercises 15.4

In Exercises 1-6, evaluate the line integral of the tangential
component of the given vector field along the given curve.

1.
2.
3.

. Evaluate

F(x,y) = xvi — x%j along y = x2 from (0, 0) to (1, 1)
F(x, y) = cos x1— yjalong y = sinx from (0, 0) to (7, 0)

F(x, y,z) = yi+ zj — xk along the straight line from
(0,0,0) to (1, 1, 1)

. F(x,y,z) = zi — yj + 2xk along the curve x =1, y = 2,

- =13 from (0,0,0) to (1, 1, 1)

. F(x,y,2) = yzi+ xzj + xyk from (-1, 0, 0) to (1, 0, 0)

along either direction of the curve of intersection of the
cylinder x2 + y? = 1 and the plane z = y

. F(x,y,2) = (x —2)i+ (y — 2)j — (x + y)k along the

polygonal path from (0, 0, 0) to (1,0, 0) to (1, 1, 0) to
(L, 1,1

. Find the work done by the force field

F=U4+yi+kx-2j+z—-y»k

in moving an object from (1, 0, —1) to (0, —2, 3) along any
smooth curve.

xzy dx + x3 y dy counterclockwise around the

C
square with vertices (0, 0), (1,0), (1, 1), and (0, 1).

. Evaluate

/ e sin(y + ) dx + &5 (sin(y ~+2) + cos(y + z)) dy
C
+ e cos(y + 2) dz

along the straight line segment from (0,0,0) to (1, &, 7).

10.

11.

12.

13.

The field F = (axy + 2)i+ x2j + (bx + 22)k is conservative.
Find a and b, and find a potential for F. Also, evaluate

fc F o dr, where C is the curve from (1, 1, 0) to (0, 0, 3) that
lies on the intersection of the surfaces 2x + y +z = 3 and
9x? —|—9y2 + 272 = 18 in the octant x >0,y>0,z=>0.

Determine the values of A and B for which the vector field
%2
F=Axlnzi+ By’zj+ (— +y3> k
K4

is conservative. If C is the straight line from (1, 1, 1) to
2,1,2), find

/ 2xInzdx +2y°zdy + vy dz.
C

Find the work done by the force field
F= (y2 cos x + 22)i+ Qysinx —4)j + (Gxz® + 2)k

in moving a particle along the curve x =sin™'¢, y = 1 — 21,
z=3—-1,0=<rtr<1).

If C is the intersection of z = In(1 + x) and y = x from
(0,0,0)to (1, 1, 1In2), evaluate

/ (2x sin(mry) — ez) dx + (nx2 cos(my) — 3ez) dy — xe* dz.
C

14.

Is each of the following sets a domain? a connected
domain? a simply connected domain?




924

CHAPTER 15 Vector Fields

(a) the set of points (x, y) in the plane such that x > 0 and
vy=0

(b) the set of points (x, y) in the plane such that x = 0 and
v=0

(c) the set of points (x, y) in the plane such that x % 0 and
v>0

(d) the set of points (x, v, z) in 3-space such that

2 >1

(e) the set of points (x, y, z) in 3-space such that
x4y

(f) the set of points (x, y, z) in 3-space such that
Py

In Exercises 15-19, evaluate the closed line integrals

(@) fxdy.,
C

arou

15.

16.

17.
18.

19.
20.

21.

(b) f ydx
C

nd the given curves, all oriented counterclockwise.

The circle x> + yz =a’

2 2

X ¥
The ellipse 22 + Pl 1
The boundary of the haif-disk x> + y> < a?, y > 0
The boundary of the square with vertices (0, 0), (1, 0),
(1. 1), and (0, 1)
The triangle with vertices (0, 0), (a, 0), and (0, b)
On the basis of your results for Exercises 15-19, guess the
values of the closed line integrals

(a) %xdy, (b) %ydx
C C

for any non-self-intersecting closed curve in the xy-plane.
Prove your guess in the case that C bounds a region of the
plane that is both x-simple and y-simple. (See

Section 14.2.)

If f and g are scalar fields with continuous first partial
derivatives in a connected domain D, show that

/./'Vg.dl”rfgvf edr = f(Q)g(Q) — f(P)g(P)
¢ c

22.

23.

%24,

for any piecewise smooth curve in D from P to Q.

Evaluate

1 —ydx +xdy

E I x2+y2

(a) counterclockwise around the circle x4+ y2 =a?,

(b) clockwise around the square with vertices (—1, —1),
(=1, 1, (1, 1), and (1, = 1),

(c) counterclockwise around the boundary of the region
l<x>+y2<4,y>0.

Review Example 5 in Section 15.2 in which it was shown

that

-y

d 8 X
y \x2+y2) " ax \x2+y?2 )’

for all (x, y) # (0, 0). Why does this result, together with
that of Exercise 22, not contradict the final assertion in the
remark following Theorem 1?7

Let C be a piecewise smooth curve in the xy-plane which
does not pass through the origin. Let & = 6(x, y) be the
polar angle coordinate of the point P = (x, y) on C, not
restricted to an interval of length 27, but varying
continuously as P moves from one end of C to the other. As
in Example 5 of Section 15.2, it happens that

y it X .
- 1 .
21y )

Vo =
If, in addition, C is a closed curve, show that

1
[

has an integer value. w is called the winding number of C
about the origin.

xdy—ydx
x4+ y?

This section and the next are devoted to integrals of functions defined over surfaces
in 3-space. Before we can begin, it is necessary to make more precise just what
is meant by the term “surface.” Until now we have been treating surfaces in an
intuitive way, either as the graphs of functions f(x, y) or as the graphs of equations
fx,y,2)=0.




Figure 15.16 A parametric surface
& defined on parameter region R. The
contour curves on S correspond to the
rulings of R
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A smooth curve is a one-dimensional object because points on it can be located
by giving one coordinate (for instance, the distance from an endpoint). Therefore,
the curve can be defined as the range of a vector-valued function of one real
variable. A surface is a two-dimensional object; points on it can be located by using
two coordinates, and it can be defined as the range of a vector-valued function of
two real variables. We will call certain such functions parametric surfaces.

Parametric Surfaces

A parametric surface in 3-space is a continuous function r defined on some
rectangle R givenbya < u < b, ¢ < v < d in the uv-plane and having values
in 3-space:

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, (u,v)in R.

y

Actually, we think of the range of the function r(u, v) as being the parametric
surface. It is a set S of points (x, y, z) in 3-space whose position vectors are
the vectors r(u, v) for (u, v) in R. (See Figure 15.16.) If r is one-to-one, then
the surface does not intersect itself. In this case r maps the boundary of the
rectangle R (the four edges) onto a curve in 3-space, which we call the boundary
of the parametric surface. The requirement that R be a rectangle is made only
to simplify the discussion. Any connected, closed, bounded set in the uv-plane,
having well-defined area and consisting of an open set together with its boundary
points would do as well. Thus, we will from time to time consider parametric
surfaces over closed disks, triangles, or other such domains in the uv-plane. Being
the range of a continuous function defined on a closed, bounded set, a parametric
surface is always bounded in 3-space.

m The graph of z = f(x, y), where f has the rectangle R as its

domain, can be represented as the parametric surface
r =ru,v) =ui+vj+ fu, vk
for (u, v) in R. Its scalar parametric equations are

xX=u, y=u, z= f(u,v), (u,v)in R.
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For such graphs it is sometimes convenient to identify the wv-plane with the xy-
plane and write the equation of the surface in the form

r=xi+yj+ f(x, vk, (x,y)in R.

m Describe the surface

r=acosusinvit+asinusinvj+acosvk, O<u <2m 0=<v<m/2),

where a > 0. What is its boundary?

Solution Observe that if x = acosusiny, y = asinusinv, and z = acosv,
then x? + y? + z2 = a®. Thus, the given parametric surface lies on the sphere of
radius @ centred at the origin. (Observe that # and v are the spherical coordinates
0 and ¢ on the sphere.) The restrictions on « and v allow (x, y) to be any point in
the disk x? + y?> < a® but force z > 0. Thus, the surface is the upper half of the
sphere. The given parametrization is one-to-one on the open rectangle 0 < u < 2w,
0 < v < m/2, but not on the closed rectangle, since the edges u = 0 and u = 27
get mapped onto the same points, and the entire edge v = 0 collapses to a single
point. The boundary of the surface is still the circle X%+ y2 =a? z =0, and
corresponds to the edge v = 71/2 of the rectangle.

_m

Remark Surface parametrizations that are one-to-one only in the interior of the
parameter domain R are still reasonable representations of the surface. However,
as in Example 2, the boundary of the surface may be obtained from only part of
the boundary of R, or there may be no boundary at all, in which case the surface is
called a closed surface. For example, if the domain of r in Example 2 is extended
to allow 0 < v < 7, then the surface becomes the entire sphere of radius a centred
at the origin. The sphere is a closed surface, having no boundary curves.

Remark Like parametrizations of curves, parametrizations of surfaces are not
unique. The hemisphere in Example 2 can also be parametrized:

r(u, v) = ui+ vj+ va? — u? — vk for u®+v* <d’
Here, the domain of r is a closed disk of radius a.

m (A tube around a curve) If r = F(¢), a <t < b, is a parametric

curve C in 3-space having unit normal ﬁ(t) and binormal ﬁ(t), then the parametric
surface

J
=

N
5

S

el

r=F(u)+scost(u)+ssinv]§(u), a<u<b, 0<v<2nm,

N2

b
=
N

is a tube-shaped surface of radius s centred along the curve C. (Why?) Figure 15.17
shows such a tube, having radius s = 0.25, around the curve

r = (14 0.3cos(31))(cos(20)i + sin(21)j) + 0.35 sin(30)k, 0<t<2m
Figure 15.17 A tube in the shape of
a trefoil knot This closed curve is called a trefoil knot.




Figure 15.18 A composite surface
obtained by joining five smooth
parametric surfaces (squares) in pairs
along edges. The four unpaired edges at
the tops of the side faces make up the
boundary of the composite surface

Figure 15.19 A partition of a
parametric surface into many
nonoverlapping pieces
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Composite Surfaces

If two parametric surfaces are joined together along part or all of their boundary
curves, the result is called a composite surface, or, thinking geometrically, just a
surface. For example, a sphere can be obtained by joining two hemispheres along
their boundary circles. In general, composite surfaces can be obtained by joining a
finite number of parametric surfaces pairwise along edges. The surface of a cube
consists of the six square faces joined in pairs along the edges of the cube. This
surface is closed since there are no unjoined edges to comprise the boundary. If the
top square face is removed, the remaining five form the surface of a cubical box
with no top. The top edges of the four side faces now constitute the boundary of
this composite surface. (See Figure 15.18.)

Surface Integrals

In order to define integrals of functions defined on a surface as limits of Riemann
sums, we need to refer to the areas of regions on the surface. It is more difficult
to define the area of a curved surface than it is to define the length of a curve.
However, you will likely have a good idea of what area means for a region lying in
a plane, and we examined briefly the problem of finding the area of the graph of a
function f(x, y) in Section 14.7. We will avoid difficulties by assuming that all the
surfaces we will encounter are “smooth enough” that they can be subdivided into
small pieces each of which is approximately planar. We can then approximate the
surface area of each piece by a plane area and add up the approximations to get a
Riemann sum approximation to the area of the whole surface. We will make more
precise definitions of “smooth surface” and “surface area” later in this section. For
the moment, we assume the reader has an intuitive feel for what they mean.

X

Let S be a smooth surface of finite area in R>, and let f(x,y,z) be a bounded
function defined at all points of S. If we subdivide S into small, nonoverlapping
pieces, say Si, 52, ..., Sy, where S; has area AS; (see Figure 15.19), we can form
a Riemann sum R, for f on S by choosing arbitrary points (x;, y;, z;) in S; and
letting

R, = Z f(xi, yi,2i) AS;.
iz
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If such Riemann sums have a unique limit as the diameters of all the pieces S;
approach zero, independently of how the points (x;, v;, z;) are chosen, then we say
that f is integrable on S and denote the limit by

/f fx,y,2)dS.
S

Smooth Surfaces, Normals, and Area Elements

A surface is smooth if it has a unique tangent plane at any nonboundary point P.
A nonzero vector n normal to that tangent plane at P is said to be normal to the
surface at P. The following somewhat technical definition makes this precise.

A set Sin 3-space is a smooth surface if any point P in S has a neighbourhood
N (an open ball of positive radius centred at P) that is the domain of a smooth
function g(x, y, z) satisfying:

i) NNnS={Qe N : g(Q)=0}and

(ii)) Vg(@) #0,if Qisin NN S.

For example, the cone x% 4+ y? = 72, with the origin removed, is a smooth surface.
Note that V(x2 + y2 — z%) = 0 at the origin, and the cone is not smooth there, since
it does not have a unique tangent plane.

A parametric surface cannot satisfy the condition of the smoothness definition
at its boundary points but will be called smooth if that condition is satisfied at all
nonboundary points.

We can find the normal to a smooth parametric surface defined on parameter
domain R as follows. If (ug, vg) is a point in the interior of R, then r = r(u, vy)
and r = r(uo, v) are two curves on S, intersecting at ro = r(uo, vo) and having, at
that point, tangent vectors

or ar

— and —
Ju ov (t0.10)

(o, v0)
respectively. Assuming these two tangent vectors are not parallel, their cross
product n, which is not zero, is normal to S at ro. Furthermore, the area element
on S bounded by the four curves r = r(ug, v), r = r(uo +du, v), r = r(u, vy), and
r = r(u, vp + dv) (see Figure 15.20) is an infinitesimal parallelogram spanned by
the vectors (0r/du) du and (dr/dv) dv (at (ug, vo)), and hence has area

Jr or
_X_

ds =
du Jv

dudv.

Let us express the normal vector n and the area element d S in terms of the compo-
nents of r. Since

ar  odx dy dz ar  dx ay az
ar _dx. By, 9z g v _dx. oy oz
R R P e an v o et Ta
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r(u, vo + dv)

Figure 15.20 An area element d §

. r(u du, v
on a parametric surface (uo +du. v)

the normal vector to S at r(u, v) is

i § ok
ar  Ir dx 8y 9z
T ltay | 0u Ou u
9x 9y 3z
v dv Jv
8o, B X)), A,y
b T e

Also, the area element at a point r(u, v) on the surface is given by

ar ¢ ar
du v

2 2 2
_ (a(y,z)) i (a(z, x) gt ax, y) dud.
alu, v) a(u; v) au, v)
The area of the surface itself is the “sum” of these area elements:

Areaof & = ff ds.
8

S ETLIEY M The graph z = g(x, y) of a function g with continuous first partial
derivatives in a domain D of the xy-plane can be regarded as a parametric surface
S with parametrization

ds = dudv

X=u, y=u, 7z =g(u,v), (u,v)in D.
In this case
a(y, a(z, a(x,
0.2) —81(u, v), &0 _ —82(u,v), and )y
a(u, v) a(u, v) a(u, v)

and, since the parameter region coincides with the domain D of g, the surface
integral of f(x, y, z) over S can be expressed as a double integral over D:
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xy-plane

//f(x,y,z)ds
s

= ffD flxy, 8(x, ) \/1 + (21, ) + (20x, 1)) dx dy.

As observed in Section 14.7, this formula can also be justified geometrically. The
vectorn = —g,(x, y)i — g2(x, ¥)j + k is normal to S and makes angle y with the
positive z-axis, where

nek 1
4 (@) + (g2 )

cosy =

The surface area element 4.5 must have area 1/ cosy times the area dx dy of its

perpendicular projection onto the xy-plane. (See Figure 15.21.)
_n

The surface area
element d S and its projection onto the

n=—gi-gj+k

=glx,y)

Evaluating Surface Integrals

We illustrate the use of the formulas given above for dS in calculating surface
integrals.

m Evaluate / / z d§ over the conical surface 7 = \/x2 + y2 between

S
z=0andz = 1.

Solution Since z2 = x? + y? on the surface S, we have 9z/dx = x/z and
dz/0y = y/z. Therefore,

x2 42 2, 2
ds= 1+ +Laray = |Z 2% dvay = Vidx dy.
Z Z Z




X

Figure 15.22
this cone

dS = 2dxdyon
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(Note that we could have anticipated this result, since the normal to the cone always
makes an angle of y = 45° with the positive z-axis; see Figure 15.22. Therefore,
dS = dxdy/cos45® = V2dxdy.) Since z = \/x2+ y? = r on the conical
surface, it is easiest to carry out the integration in polar coordinates:

/fzdS:ﬁ// zdxdy
S *2y?<l

27 1 2 o)
=J§f dG/ a2 22T
0 0 3

_n

[SELI LN Find the moment of inertia about the z-axis of the parametric surface
X =2uv,y:u2—v2,z = u? + 0% where u? +v* < 1.

Solution We are asked to find f f (x? 4+ y?)dS. We have
s

8(-x7 )’) _ 21) 2”

A2 a2
b 2w —2v| = TV,
a(Z, X) 2u  2v _ 2 2
du,v)  |2v 2u| A =7,
dy,.z)  |2u —2v| S
du,v) |2u v )

Therefore, the surface area element on S is given by

dS =4/ (u? + v2)? 4+ (u? —v)? + du>v dudv
= 4\/2(u4 + v} + 2u2v) du dv = 42 W? + v¥) du dv.

Now x2 + y2 = 4u?v? + (u? — v%)? = (u? + v?)%. Thus,
f/ 2+ yHdS = /f @2 + )2 4V2w? + v¥) dudv
S u24v2<1

2 1
=42 / dé / rOrdr (using polar coordinates).
0 0
= 27.

This is the required moment of inertia.

Even though most surfaces we encounter can be easily parametrized, it is usually
possible to obtain the surface area element dS geometrically rather than relying
on the parametric formula. As we have seen above, if a surface has a one-to-one
projection onto a region in the xy-plane, then the area element dS on the surface
can be expressed as

s e
[

1 v
dS=|——|dxdy = —
A lcosr' = [ne k|
where y is the angle between the normal vector n to S and the positive z-axis. This
formula is useful no matter how we obtain n.



932

CHAPTER 15 Vector Fields

Consider a surface S with equation of the form G(x,y,z) = 0. As we
discovered in Section 12.7, if G has continuous first partial derivatives that do not
all vanish at a point (x, y, z) on S, then the nonzero vector

n=VG(x,y,z)

is normal to S at that point. Since n e k = Gs(x,y,z), if S has a one-to-one
projection onto the domain D in the xy-plane, then

VG (x5, 2)

ds =
Gilx, y,2)

dxdy,

and the surface integral of f(x, v, z) over S can be expressed as a double integral
over the domain D:

/f flx, y,z)dS /f flx,y, 8, 9)

Of course, there are analogous formulas for area elements of surfaces (and integrals
over surfaces) with one-to-one projections onto the xz-plane or the yz-plane. (G3
is replaced by G, and G|, respectively.)

m Find the moment about z = 0, that is, f / zdS, where S is the

s
hyperbolic bowl z> = 1 4+ x2 + y? between the planes z = 1 and z = /5.

YG(x, VG(x,y.z2) 2)

dxdy.
Gi(x,y,2) Y

Solution Sis givenby G(x, y,z) =0, where G(x,y,z) = x> +y* - 22+ 1. It
lies above the disk x* + y% < 4 in the xy-plane. We have VG = 2xi + 2yj — 27Kk,
and G3 = —2z. Hence, on S, we have

VAx2 4+ 4y? +4z2
2ds = YTy = ST 262 1)) dx dy,

2z

and the required moment is

//zdS:// 1+2G2+ y2)dxdy
S xry2<4
2n 2 2 2%
=/ d@/ \/1—|—2r2rdr=%(1—{—2r2)3/2 =2
0 0 0

3

_u

The next example illustrates a technique that can often reduce the effort needed to
integrate over a cylindrical surface.

[SETLIEEN  Find the area of that part of the cylinder x> + y? = 2ay that lies
inside the sphere x? + y? + 7> = 4a”.

Solution One quarter of the required area lies in the first octant. (See Figure 15.23.)
Since the cylinder is generated by vertical lines, we can express an area element

d S on it in terms of the length element ds along the curve C in the xy-plane having

equation x” + y? = 2ay:




Figure 15.23 An area element on a
cylinder. The z-coordinate has already
been integrated
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X
dS =zds =+/4a% — x? — y%ds.

In expressing d S this way, we have already integrated dz, so only a single integral is
needed to sum these area elements. Again, it is convenient to use polar coordinates
in the xy-plane. In terms of polar coordinates, the curve C has equationr = 2a sin 6.
Thus dr/df = 2acosd and ds = /r? + (dr/d0)?>d6 = 2ad8. Therefore, the
total surface area of that part of the cylinder that lies inside the sphere is given by

/2
A=4/ vda? —r? 2ado
0
/2
=8a / V4a? — 4a2sin’ 6 do
0

/2
= 164> / cos 6 df = 16a? square units.
0

Remark The area calculated in Example 8 can also be calculated by projecting the
cylindrical surface in Figure 15.23 into the yz-plane. (This is the only coordinate
plane you can use. Why?) See Exercise 6 below.

In spherical coordinates, ¢ and 6 can be used as parameters on the spherical
surface p = a. The area element on that surface can therefore be expressed in terms
of these coordinates:

Areaclementonthe sphere p =a:  dS =a® singde db.

(See Figure 14.43 in Section 14.6 and Exercise 2 below.)

Example 9 UL // z2dS over the hemisphere z = /a2 — x2 — y2.
s

Solution Since z = a cos ¢ and the hemisphere correspondsto 0 < 8 < 27, and
4
0<¢c=< E,wehave
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2 /2
/f z2dS=/ d@/ a’cos’pa’singp do
S 0 0

o 1 5 2 2pg
=2ma <_§ cos qb) =

o 3

|

Finally, if a composite surface S is composed of smooth parametric surfaces joined
pairwise along their edges, then we call S a piecewise smooth surface. The surface
integral of a function f over a piecewise smooth surface S is the sum of the surface
integrals of f over the individual smooth surfaces comprising S. We will encounter
an example of this in the next section.

The Attraction of a Spherical Shell

In Section 14.7 we calculated the gravitational attraction of a disk in the xy-plane
on a mass m located at position (0, 0, b) on the z-axis. Here, we undertake a similar
calculation of the attractive force exerted on m by a spherical shell of radius ¢ and
areal density o (units of mass per unit area) centred at the origin. This calculation
would be more difficult if we tried to do it by integrating the vertical component
of the force on m as we did in Section 14.7. It is greatly simplified if, instead, we
use an integral to find the total gravitational potential ®(0, 0, z) due to the sphere
at position (0, 0, z) and then calculate the force on m as F = mV®(0, 0, b).

By the Cosine Law, the distance from the point with spherical coordinates
[a, ¢, 8] to the point (0, O, z) on the positive z-axis (see Figure 15.24) is

D = a? +z2 — 2az cos .

Figure 15.24 The attraction of a The area element dS = a® sing d¢ d8 at [a, ¢, 8] has mass dm = o dS, and its
sphere gravitational potential at (0, 0, z) (see Example 1 in Section 15.2) is

40(0.0. ) kdm koa®sing do do
s, U, Z) = = .
D Va4 72 —2azcos¢

For the total potential at (0,0, z) due to the sphere, we integrate d® over the
surface of the sphere. Making the change of variables u = a” + z> — 2azcos ¢,
du = 2azsin ¢ d¢, we obtain

T sing d¢
0 a?+z2—2azcos¢g

a 2
= anaaZ/(Z+ ¥ 1 du
(

27
®(0, 0, z) = koa? / do
0

7—a)? ﬁ %
2rkoa (eta)?
= u
Z (z—a)?
2k 2 :
_ 27 oa(z+a_ Iz—al) _ | 4nkoa®/z ¥fz >a
z dnkoa ifz <a.

The potential is constant inside the sphere and decreases proportionally to 1/z
outside. The force on a mass m located at (0, 0, b) is, therefore,

F = mV®(0,0,b) = { —@nkmoa/B)k ifb > a
0 ifb < a.



Figure 15.25 The force of attraction
of a homogeneous solid ball on a
particle located at varying distances
from the centre of the ball

|Exercises 15.5
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We are led to the somewhat surprising result that, if the mass m is anywhere inside
the sphere, the net force of attraction of the sphere on it is zero. This is to be
expected at the centre of the sphere, but away from the centre it appears that the
larger forces due to parts of the sphere close to m are exactly cancelled by smaller
forces due to parts farther away; these farther parts have larger area and therefore
larger total mass. If m is outside the sphere, the sphere attracts it with a force of
magnitude

kmM
F= :
b2

where M = 4moa? is the total mass of the sphere. This is the same force that
would be exerted by a point mass with the same mass as the sphere and located at
the centre of the sphere.

Remark A solid ball of constant density, or density depending only on the distance
from the centre (for instance, a planet), can be regarded as being made up of mass
elements that are concentric spheres of constant density. Therefore, the attraction
of such a ball on a mass m located outside the ball will also be the same as if the
whole mass of the ball were concentrated at its centre. However, the attraction on
a mass m located somewhere inside the ball will be that produced by only the part
of the ball that is closer to the centre than m is. The maximum force of attraction
will occur when m is right at the surface of the ball. If the density is constant, the
magnitude of the force increases linearly with the distance from the centre (why?7)
up to the surface and then decreases with the square of the distance as m recedes
from the ball. (See Figure 15.25.)

force of attraction

radius of ball distance from
centre of ball

Remark All of the above discussion also holds for the electrostatic attraction or
repulsion of a point charge by a uniform charge density over a spherical shell, which
is also governed by an inverse square law. In particular, there is no net electrostatic
force on a charge located inside the shell.

1. Verify that on the curve with polar equation r = g(6) the arc What is the area element on the vertical cylinder given in

length element is given by

ds =/ (g(0))? + (8/(9))* db.

terms of cylindrical coordinates by r = g(6)?

2. Verify that on the spherical surface xZ 4+ y? 4+ z2 = a? the
area element is given in terms of spherical coordinates by
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10.

11.

12.

13.

14.

15.

. Find the area of the part of the sphere x2 + v+t =4a

CHAPTER 15 Vector Fields

ds = a* singde de.

. Find the area of the part of the plane Ax + By + Cz = D

lying inside the elliptic cylinder

2
that lies inside the cylinder x? + y2 = 2ay.

. State formulas for the surface area element d S for the

surface with equation F(x, v, z) = 0 valid for the case
where the surface has a one-to-one projection on (a) the
xz-plane and (b) the yz-plane.

. Repeat the area calculation of Example 8 by projecting the

part of the surface shown in Figure 15.23 onto the yz-plane
and using the formula in Exercise 5(b).

. Find / / x d S over the part of the parabolic cylinder
S

2 = x2/2 that lies inside the first octant part of the cylinder
X2+ »\'2 =1

. Find the area of the part of the cone z2 = x% + y? that lies

inside the cylinder x2 + y? = 2ay.

. Find the area of the part of the cylinder x? + y? = 2ay that

lies outside the cone z2 = x2 + yz.

Find the area of the part of the cylinder x2 + z2 = 4 that
lies inside the cylinder y2 + 72 = a?.

A circular cylinder of radius a is circumscribed about a
spherc of radius a so that the cylinder is tangent to the sphere
along the equator. Two planes, each perpendicular to the
axis of the cylinder, intersect the sphere and the cylinder in
circles. Show that the area of that part of the sphere between
the two planes is equal to the area of the part of the cylinder
between the two planes. Thus, the area of the part of a
sphere between two parallel planes that intersect it depends
only on the radius of the sphere and the distance between the
planes, and not on the particular position of the planes.

Let O < a < b. In terms of the elliptic integral functions
defined in Exercise 17 of Section 15.3, find the area of that
part of each of the cylinders x> + 72 = 4% and y2 + 7% = b2
that lies inside the other cylinder.

Find f/ ydS, where Sis the part of the plane z = 1 + y
S

that lies inside the cone z = /2(x2 + y2).

Find // ydS, where § is the part of the cone
S

2 = /2(x? + y?) that lies below the plane z = 1 + y.

Find 2

xzdS, where § is the part of the surface z = x

)
that lies in the first octant of 3-space and inside the

paraboloid z = 1 — 3x2 — y2.

16.

17.

Find the mass of the part of the surface z = /2xy that lies
above the region 0 < x < 5,0 < y < 2, if the areal density
of the surface is o (x, y, 7) = kz.

Find the total charge on the surface
r=e“cosvit+e*sinvj+uk, O<u<l, 0<v<m),

if the charge density on the surface is § = /1 4 2.

Exercises 18-19 concern spheroids, which are ellipsoids with
two of their three semi-axes equal, say a = b:

*19.

20.

* 21,

22.

23,

* 24,

* 25,

2 2 2
x y z
S +5+5=1
a2 gz 2
. Find the surface area of a prolate spheroid, where

0 < a < c. A prolate spheroid has its two shorter semi-axes
equal, like an (American) “pro football.”

Find the surface area of an oblate spheroid, where
0 < ¢ < a. An oblate spheroid has its two longer semi-axes
equal, like the earth.

Describe the parametric surface

X = aucosv, y =ausinv, 7=

O<u<l1, 0<v <2m),and find its area.

ds
Evaluate
p (X% +

_—yzm, where P is the plane with
equation Ax + By + Cz = D, (D # 0).

A spherical shell of radius a is centred at the origin. Find the
centroid of that part of the sphere that lies in the first octant.

Find the centre of mass of a right-circular conical shell of
base radius g, height /2, and constant areal density o.

Find the gravitational attraction of a hemispherical shell of
radius a and constant areal density o on a mass m located at
the centre of the base of the hemisphere.

Find the gravitational attraction of a circular cylindrical shell
of radius a, height /, and constant areal density o on a mass
m located on the axis of the cylinder b units above the base.

In Exercises 26-28, find the moment of inertia and radius of
gyration of the given object about the given axis. Assume
constant areal density o in each case.

26.

27.
28.

29.

A cylindrical shell of radius a and height /i about the axis of
the cylinder

A spherical shell of radius a about a diameter

A right-circular conical shell of base radius a and height /
about the a xis of the cone

With what acceleration will the spherical shell of

Exercise 27 roll down a plane inclined at angle ¢ to the
horizontal? (Compare your result with that of Example 4(b)
of Section 16.7.)
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Surface integrals of normal components of vector fields play a very important role in
vector calculus, similar to the role played by line integrals of tangential components
of vector fields. Before we consider such surface integrals we need to define the
orientation of a surface.

Oriented Surfaces

A smooth surface S in 3-space is said to be orientable if there exists a unit vector
field N(P) defined on S, which varies continuously as P ranges over S and which
is everywhere normal to S. Any such vector field N(P) determines an orientation
of S. The surface must have two sides since N(P) can have only one value at each
point P. The side out of which N points is called the positive side; the other side
is the negative side. An oriented surface is a smooth surface together with a
particular choice of orienting unit normal vector field N(P).

For example, if we define N on the smooth surface z = f(x,y)by

—file, Mi— folx, y)i+k

N= ,
VI+(file, y)2 + (falx, y)?

then the top of the surface is the positive side. (See Figure 15.26.)

Z Z
N(P) N(P)

Figure 15.26 The boundary /

curves of an oriented surface are X
themselves oriented with the surface
on the left (a) (b)

A smooth or piecewise smooth surface may be closed (i.e., it may have no boundary),
or it may have one or more boundary curves. (The unit normal vector field N(P)
need not be defined at points of the boundary curves.)

An oriented surface S induces an orientation on any of its boundary curves C;
if we stand on the positive side of the surface S and walk around C in the direction
of its orientation, then S will be on our left side. (See Figure 15.26(a) and (b).)

A piecewise smooth surface is orientable if, whenever two smooth component
surfaces join along a common boundary curve C, they induce opposite orientations
along C. This forces the normals N to be on the same side of adjacent components.
For instance, the surface of a cube is a piecewise smooth, closed surface, consisting
of six smooth surfaces (the square faces) joined along edges. (See Figure 15.27.)
If all of the faces are oriented so that their normals N point out of the cube (or if
they all point into the cube), then the surface of the cube itself is oriented.
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Figure 15.27 The surface of the cube is orientable; Figure 15.28  The Mébius band is not orientable; it has
adjacent faces induce opposite orientations on their only one “side”

common edge

Figure 15.29 The fluid crossing d.§
in time d fills the tube

Not every surface can be oriented, even if it appears smooth. An orientable surface
must have two sides. For example, a Mobius band, consisting of a strip of paper
with ends joined together to form a loop, but with one end given a half twist before
the ends are joined, has only one side (make one and see), so it cannot be oriented.
(See Figure 15.28.) If a nonzero vector is moved around the band, starting at point
P, so that it is always normal to the surface, then it can return to its starting position
pointing in the opposite direction.

Z
4

The Flux of a Vector Field Across a Surface

Suppose 3-space is filled with an incompressible fluid that is flowing around with
velocity field v. Let S be an imaginary, smooth, oriented surface in 3-space. (We
called S imaginary because it does not provide a barrier to the motion of the fluid.
It is fixed in space, not moving with the fluid, and the fluid can move freely through
it.) Let us calculate the rate at which fluid flows across S. Let 4.5 be a small area
element at point P on the surface. The fluid crossing that element between time
t and time ¢ 4 dt occupies a cylinder of base area d S and height |v(P)|dt cos®,
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where 6 is the angle between v(P) and the normal N(P). (See Figure 15.29.) This
cylinder has (signed) volume v(P) e N (P)dS dt. The rate at which fluid is crossing
dSisv(P)e N(P)dS, and the total rate at which it is crossing S is given by the
surface integral

//VoNdS or f/vodS,
S S

where we use dS to represent the vector surface area element Nds.

Flux of a vector field across an oriented surface

Given any continuous vector field F, the integral of the normal component of
F over the oriented surface S,

//FoNdS or //Fods,
S S

is called the flux of F across S.

When the surface is closed, the flux integral can be denoted by

#F.Nds or #F.ds.
S S

In this case we refer to the flux of F out of S if N is the unit exterior normal, and
the flux into S if N is the unit interior normal.

m Find the flux of the vector field F = mr/|r]® out of a sphere S of
radius a centred at the origin. (Here r = xi + yj + zk.)

Solution Since F is the field associated with a source of strength m at the origin
(which produces 4rm units of fluid per unit time at the origin), the answer must
be 47m. Let us calculate it anyway. We use spherical coordinates. At any point
r on the sphere, with spherical coordinates [a, ¢, 8], the unit outward normal is
f = r/|r|. Since the vector field is F = mf/a” on the sphere, and since an area
element is dS = a’ sin ¢ d¢ d6, the flux of F out of the sphere is

(mA . 27 b4 )
—2r> eTasingdpdd =m do singde = 4mm.
s \a 0 0

Calculate the total flux of F = xi 4+ yj + zk outward through the
surface of the solid cylinder x2 4+ y? < a? —h <z < h.

Solution The cylinder is shown in Figure 15.30. Its surface consists of top and
bottom disks and the cylindrical side wall. We calculate the flux of F out of each.
Naturally, we use cylindrical coordinates.
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x N = -k
Figure 15.30 The three components
of the surface of a solid cylinder with

their outward normals

On the top disk we have z = A, N = K, and dS = r dr dO. Therefore, F o NdS =
hr dr d9 and

R 27 a
// FoNdS:h/ def rdr = mah.
top 0 0

On tpe bottom disk we have z = —h, N = —k, and dS = rdr df. Therefore,
FeNdS = hrdrdf and

/f FoNdS:// FeNdS = ma’h.
bottom top

On the cylindrical wall FA= acosfBi+asinfj+ zk, N = cos@i+ sin j, and
dS =ad0dz. Thus, FeNdS = a?d6 dz and

R 2 h
// FoNdS:aZ/ d@/ dz = 4wa’h.
cylwall 0 —h

The total flux of F out of the surface S of the cylinder is the sum of these three
contributions:

# F e NdS = 67a%h.
S

__=u

Let S be a smooth, oriented surface with a one-to-one projection onto a domain D
in the xy-plane, and with equation of the form G(x, y, z) = 0. In Section 15.5 we
showed that the surface area element on S could be written in the form

VG
dS =|—|dxdy,
\Gs Ty

and hence surface integrals over S could be reduced to double integrals over the
domain D. Flux integrals can be treated likewise. Depending on the orientation of
&, the unit normal N can be written as

N — & E
VG|

Thus, the vector area element dS can be written

5 , VGix, v,z o

PR e
Gy, o

The sign must be chosen to give S the desired orientation. If G3 > 0 and we want

the positive side of Sto face upward, we should use the “+” sign. Of course, similar

formulas apply for surfaces with one-to-one projections onto the other coordinate

planes.
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Find the flux of zi + x?k upward through that part of the surface
z = x% + y? lying above the square R definedby —1 <x <land —1 <y < 1.

Solution For F(x,y,z) = z — x> — y* we have VF = —2xi — 2yj + k and
F; = 1. Thus,

dS = (=2xi — 2yj + K) dx dy,

and the required flux is

/f (zi+x°K) o dS = // (=2x (x> + y*) +x*) dx dy
S R

1 1
= / dx/ (x? = 2x3 = 2xy?) dy
-1 -1

1 ) 4
= 2x°dx = -.
1 3

(Two of the three terms in the double integral had zero integrals because of sym-

metry.)
- |

For a surface S with equation z = f(x, y) we have

and

AN LAY
1 e bl
\/ +(ax> +(8y>
37\ 2 3£\ 2
ds=,/1+ —f + ) dxdy,
ax dy
so that the vector area element on S is given by

dS=NdS=+ (—ﬁii— ?—{j-f—k dxdy.
dx dy

Again, the + sign corresponds to an upward normal.

For a general parametric surface r = r(u, v), the unit normal N and area
element d§ were calculated in Section 15.5:

arx or
N 5 3_U ar odr
= Z}:——, d = | — JR— .
N or or S % X ™ dudv
du oJv

Thus, the vector area element is

dS=NdsS=+ (f’—'lxﬁl—') dudv.
ou--ov
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ST CY: W Find the flux of F = yi — xj + 4k upward through S, where S is
the part of the surface z = 1 — x> — y? lying in the first octant of 3-space.

Solution The vector area element corresponding to the upward normal on S is

3z,
dS = (- Zi— 2§+ k) dxdy = 2xi+ 2yj + k) dx dy.
ax ay

The projection of S onto the xy-plane is the quarter-circular disk Q given by
x24+y?><1,x >0,and y > 0. Thus, the flux of F upward through & is

//FodS_—_//(Qxy—2xy+4)dxdy
S Q

=4 x (areaof Q) = .

m Find the flux of

2xi+2yj
FZ%JF_YJH(
x2+y?

downward through the surface S defined parametrically by
r:ucosvi+usinvj+u2k, O<u=<l, 0<v<2m).

Solution First we calculate dS:

ar . L.

— = cosvi + sinvj + 2uk

du

ar .. .

— = —usinvl + U cCos vj

av

Jr or 2 . 2 . .
— X — = —2u”cosvi — 2u” sinvj + uk.
du Jv

Since u > 0 on S, the latter expression is an upward normal. We want a downward
normal, so we use

dS = (2u? cos vi + 2u? sin vj — uk) du dv.

On S we have

Fo 2xi+ 2yj k= 2u cos vi + 2u sin vj Lk

= - ]

x2 4 y? u?

so the downward flux of F through & is

27 1
//FodS:/ dv/ (4u — u)ydu = 3m.
S 0 0




Exercises 15.6

1.

10.

11.

12.

13.

CHAPTER REVIEW 943

Find the flux of F = xi + zj out of the tetrahedron bounded
by the coordinate planes and the plane x + 2y + 3z = 6.

. Find the flux of F = xi + yj + zk outward across the sphere

24yry2=al

. Find the flux of the vector field of Exercise 2 out of the

surface of the rectangularbox 0 < x <a,0 <y < b,
0=<z=ec

. Find the flux of the vector field F = yi + zk out across the

boundary of the solid cone 0 < z < 1 — \/x2 4 y2.

. Find the flux of F = xi + yj + zk upward through the part

of the surface z = a — x2 — y? lying above the plane z = b,
where b < a.

. Find the flux of F = xi + xj + k upward through the part of

the surface z = x2 — y2 lying inside the cylinder
y= lying y

)c2+y2 =da>.

. Find the flux of F = y3i 4 z2j + xk downward through the

part of the surface z = 4 — x2 — y? that lies above the plane
z=2x+1.

. Find the flux of F = z2k upward through the part of the

sphere x% + y? + 2% = 42 in the first octant of 3-space.

. Find the flux of F = xi + yj upward through the part of the

surface z = 2 — x? — 2y? that lies above the xy-plane.

Find the flux of F = 2xi + yj 4+ zk upward through the
surfacer = uzvi+uv2j+v3k, O<u=<l,0=<v<l).
Find the flux of F = xi + yj + z%k upward through the
surface ucosvi+usinvj+uk, O<u<2,0<v<m).
Find the flux of F = yzi — xzj + (x2 + y?)k upward
through the surface r = ¢ cosvi + ¢ sinv j + u k, where
O<u<landO <v <.

Find the flux of F = mr/|r|3 out of the surface of the cube
—a<x,y,z=<a.

Chapter Review

* 14,

15.

16.

17.

* 18,

Find the flux of the vector field of Exercise 13 out of the box
1 <x,y,z <2. Note: This problem can be solved very
easily using the Divergence Theorem of Section 16.4; the
required flux is, in fact, zero. However, the object here is to
do it by direct calculation of the surface integrals involved,
and as such it is quite difficult. By symmetry, it is sufficient
to evaluate the net flux out of the cube through any one of
the three pairs of opposite faces; that is, you must calculate
the flux through only two faces, say z = 1 and z = 2. Be
prepared to work very hard to evaluate these integrals!
When they are done you may find the identities

2a
and
1 — a2>
arctana + arctan { —
a

useful for showing that the net flux is zero.

2arctana = arctan (

14
2

Define the flux of a plane vector field across a piecewise
smooth curve. Find the flux of F = xi + yj outward across

2 and

(a) the circle x2 + y2 =a
(b) the boundary of the square —1 < x,y < 1.
xi+ yj
two curves in the previous exercise.

Find the flux of F = — inward across each of the

If S is a smooth, oriented surface in 3-space and N is the
unit vector field determining the orientation of S, show that
the flux of N across S is the area of S.

The Divergence Theorem presented in Section 16.4 implies
that the flux of a constant vector field across any oriented,
piecewise smooth, closed surface is zero. Prove this now for
(a) a rectangular box and (b) a sphere.

Key Ideas

¢ What do the following terms and phrases mean?

<&

<
<
<&
<&
<&
<&
<&

a vector field ¢ a scalar field

a field line © a conservative field
a scalar potential © an equipotential
a source ¢ a dipole
a connected domain ¢ a simply connected domain
a parametric surface ¢ an orientable surface
the line integral of f along curve C

the line integral of the tangential component of F along C

¢ the flux of a vector field through a surface

How are the field lines of a conservative ficld related to its
equipotential curves or surfaces?

How is a line integral of a scalar field calculated?

How is a line integral of the tangential component of a
vector field calculated?

When is a line integral between two points independent of
the path joining those points?

How is a surface integral of a scalar field calculated?

How is the flux of a vector field through a surface calcu-
lated?
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CHAPTER 15 Vector Fields

Review Exercises

1
1. Find / — ds, where C is the curve
cy

10.

. Find

v=t, y=2 z=¢€" (-1<t<l1).

. Let C be the part of the curve of intersection of the surfaces

z = x+y%and y = 2x from the origin to the point (2, 4, 18).

Evaluate | 2ydx +xdy +2dz.
C

. Find // xdS, where § is that part of the cone z =
S

minthe region 0 < x < 1 — y2,

xyzdS over the part of the plane x + y +z =1

S
lying in the first octant.

. Find the flux of x2yi — 10xy2j upward through the surface

=0y, 0<x<1,0<y<1.

. Find the flux of xi 4+ yj + zk downward through the part of

the plane x 4+ 2y + 3z = 6 lying in the first octant.

. A bead of mass m slides down a wire in the shape of the curve

x=asint, y=uacost, z=bt,

where 0 <t < 6m.
(2) What is the work done by the gravitational force
F = —mgk on the bead during its descent?

(b) What is the work done against a resistance of constant
magnitude R which directly opposes the motion of the
bead during its descent?

. For what values of the constants a, b, and ¢ can you determine

the value of the integral / of the tangential component of
F = (axy+3y2)i+ (x> +3xz+by’2)j+ (bxy +cy )k

along a curve from (0, 1, —1) to (2, 1, 1) without knowing
exactly which curve? What is the value of the integral?

. LetF = (x2/y)i+ vj + k.

(a) Find the field line of F that passes through (1, 1, 0) and
show that it also passes through (e, e, 1).

(b) Find / F e dr, where C is the part of the field line in (a)
C

from (1, 1, 0) to (e, e, 1).

Consider the vector fields

F=(4+x)"i+ (xe® 4+ 2y)j — 22k,
G =1+ )i+ (xe’™ + 22)j — 2yk.

11.

12.

(a) Show that F is conservative by finding a potential for it.

(b) Evaluate / G e dr, where C is given by
C

r=(1-teit+1j+2tk, 0<t<1),
by taking advantage of the similarity between F and G.

Find a plane vector field F(x, y) that satisfies all of the fol-
lowing conditions:

(i) The field lines of F are the curves xy = C.

(i) |F(x, y)| = 1if (x, y) # (0, 0).
(i) F(L, 1) = G- )/v2.
(iv) F is continuous except at (0, 0).
Let S be the part of the surface of the cylinder y2 + z% = 16
that lies in the first octant and between the planes x = 0 and

x = 5. Find the flux of 3z2xi — xj — yk away from the x-axis
through S.

Challenging Problems

1.

Find the centroid of the surface

r = (2 + cosv)(cos ui + sinuj) + sin vk,

where 0 < u < 27 and 0 < v < 7. Describe this surface.

. A smooth surface § is given parametrically by

r = (cos2u)(2 + vcosu)i
+ (sin2u)(2 + vcosu)j + v sin uk,

where 0 < 4 < 27 and —1 < v < 1. Show that for every
smooth vector field F on S,

//FoNdS:O,
S

where N = N(u, v) is a unit normal vector field on S that
depends continuously on (u, v). How do you explain this?
Hint: try to describe what the surface S looks like.

. Recalculate the gravitational force exerted by a sphere of

radius a and areal density o centred at the origin on a point
mass located at (0, 0, b) by directly integrating the vertical
component of the force due to an area element d.S, rather
than by integrating the potential as we did in the last part of
Section 15.5. You will have to be quite creative in dealing
with the resulting integral.



