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CHAPTER 9

Sequences, Series,
and Power Series

Introduction An infinite series is a sum that involves infinitely many terms. Since
addition is carried out on two numbers at a time, the evaluation of the sum of an
infinite series necessarily involves finding a limit. Complicated functions f(x)
can frequently be expressed as series of simpler functions. For example, many
of the transcendental functions we have encountered can be expressed as series of
powers of x so that they resemble polynomials of infinite degree. Such series can
be differentiated and integrated term by term, and they play a very important role
in the study of calculus.

By a sequence (or an infinite sequence) we mean an ordered list having a first

element but no last element. For our purposes, the elements (called terms) of a

sequence will always be real numbers, although much of our discussion could be

applied to complex numbers as well. Examples of sequences are:

{1, 2, 3, 4, 5, ...} the sequence of positive integers,

11 1 1 1
—~, —, ——, —, ... ¢ the sequence of positive integer powers of ——.

{ 248 16 } q P gerp 2
The terms of a sequence are usually listed in braces { } as shown. The ellipsis (.. .)
should be read “and so on.”

An infinite sequence is a special kind of function, one whose domain is a
set of integers extending from some starting integer to infinity. The starting in-
teger is usually 1, so the domain is the set of positive integers. The sequence
{a1, a2, a3, ag4, ...} is the function f that takes the value f(n) = a, at each posi-
tive integer n. A sequence can be specified in three ways:

(i) We can list the first few terms followed by . .. if the pattern is obvious.

(ii) We can provide a formula for the general term a, as a function of n.

(iii) We can provide a formula for calculating the term a, as a function of earlier
terms aj, a, ..., a,—1 and specify enough of the beginning terms so the
process of computing higher terms can begin.

In each case it must be possible to determine any term of the sequence, although it

may be necessary to calculate all the preceding terms first.

(Some examples of sequences)
@ (n}=1{1,2,3,4,5,..}

1\ 11 1 1
o {3 =125
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©)

n—1] _ 012 3 4
n |17 2345

@ {(=D)" Y ={cos((n = DHm)} = {1, =1, I, =1, 1, ...}

) _ 1,9 2536 4 }
(€) 27}_{_ 8 32 64" 128’

3 s\4
@ { ()G~ }

cos(nm/2) 1 1 1
(@) _—}_{ , _E’ 0,>,0, —-, 0, 8, 0, }

n 4’ 6’

h a=1, a1 =+v6+a, =123, ..)

In this case {a,} = {1, v/7, V6 + NSRS

Note that there is no obvious formula for a, as an explicit function of n here, but
we can still calculate a, for any desired value of n provided we first calculate
all the earlier values a», asz, ..., @,_1.

WDa=la=1Lar=a,+a,41, (n=1,2,3,..)

Here {a,} = {1, 1, 2, 3, 5, §, 13, 21, .. .}.
This is called the Fibonacci sequence. Each term after the second is the sum

of the previous two terms.
n

In parts (a)—(g) of Example 1, the formulas on the left sides define the general term
of each sequence {a,} as an explicit function of n. In parts (h) and (i) we say the
sequence {a,} is defined recursively or inductively; each term must be calculated
from previous ones rather than directly as a function of n.

The following definition introduces terminology used to describe various prop-

erties of sequences.

Terms for describing sequences

(a) The sequence {a,} is bounded below by L, and L is a lower bound for
{a,}, if a, > L for every n = 1, 2, 3, .... The sequence is bounded
above by M, and M is an upper bound, if a, < M for every such n.

The sequence {a,} is bounded if it is both bounded above and bounded
below. In this case there is a constant K such that |a,|] < K for every
n=1,2,3,.... (Wecantake K to be the larger of —L and M.)

(b) The sequence {a,} is positive if it is bounded below by zero, that is, if
a, > 0foreveryn =1, 2, 3, .. .; itis negative if a, < 0 for every n.

(c) The sequence {a,} is increasing if a, | > a, foreveryn =1, 2, 3, .. ;
it is decreasing if a,1; < a, for every such n. The sequence is said to
be monotonic if it is either increasing or decreasing. (The terminology
here is looser than that we have used for functions, where we would have
used nondecreasing and nonincreasing to describe this behaviour.)

(d) The sequence {a,} is alternating if a,a,,, < O foreveryn =1,2, ...,
that is, if any two consecutive terms have opposite sign. Note that this
definition requires a, # 0 for each n.
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IEET¥A (Describing some sequences)

(a) The sequence {n} = {1, 2, 3, ...} is positive, increasing, and bounded below.
A lower bound for the sequence is 1 or any smaller number. The sequence is
not bounded above.

n

— 1 2
(b) [n 1] = [O, 23 i—, } is positive, bounded, and increasing. Here O
is alower bound and 1 i

s an upper bound.

1\" 1 1 1 1 . .
(c) —= =4—-=, -, —=, —, ...; is bounded and alternating. Here
2 2°'4 8 16
—1/2 is a lower bound and 1/4 is an upper bound.
@ {(-=D"n} = {-1, 2, =3, 4, =5, ...} is alternating but not bounded either
above or below.

When you want to show that a sequence is increasing, you can try to show that
the inequality a,+; — a, > O holds for n > 1. Alternatively, if @, = f(n) for a
differentiable function f(x), you can show that f is a nondecreasing function on
[1, co[ by showing that f'(x)} > O there. Similar approaches are useful for showing
that a sequence is decreasing.

m Ifa, = ZL, show that the sequence {a,} is decreasing.
nt+1

X

o and

Solution Since a, = f(n), where f(x) =

@ HDA) —xx) 11— x?

’ = <0 forx >1,
) Sy Giype =0 forxz
the function f(x) is decreasing on [1, oo[; therefore, {a,} is a decreasing sequence.
||
2 1 9 25 36 49
The sequence Z—n = > 1, Ve 128’ } is positive and therefore

bounded below. It seems clear that from the fourth term on, all the terms are getting
smaller. However, a; > a; and a3 > as. Since a,4 < a, onlyif n > 3, we say that
this sequence is ultimately decreasing. The adverb ultimately is used to describe
any termwise property of a sequence that the terms have from some point on, but
not necessarily at the beginning of the sequence. Thus, the sequence

{n — 100} = {—=99, —98, ..., =2, —1,0, 1,2, 3, ...}

is ultimately positive even though the first 99 terms are negative, and the sequence
4 1 15 33
-1 " - (= 3’ 39 ) 2’ TTEY A Tt A e
R e R e
is ultimately alternating even though the first few terms do not alternate.

Convergence of Sequences

Central to the study of sequences is the notion of convergence. The concept of the
limit of a sequence is a special case of the concept of the limit of a function f(x)
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as x — 00. We say that the sequence {a,} converges to the limit L, and we write
lim,_, oo @y = L, provided the distance from a, to L on the real line approaches 0
as n increases toward oo. We state this definition more formally as follows:

INITION n Limit of a sequence
We say that sequence {a,} converges to the limit L, and we write
lim,_, o a, = L, if for every positive real number ¢ there exists an integer N
(which may depend on €) such thatif n > N, then |a, — L| < €.
This definition is illustrated in Figure 9.1.
Ya
L+e¢
L e Mt * e e -e--8
¢ | .
L—e¢ * | : : J —
e | e ; | ! ! ' I
o e . . i R
e e A
o I 1 ot T
o ob Lo A
P oo
P e
R R R N T R R R
X
Figure 9.1 A convergent sequence ! 2 3 4 N "

S CILT IR Show that lim,,, ip = ( for any real number ¢ and any p > 0.
n

Solution Lete > 0be given. Then

c . c
’—‘<e if n”>u,
n? €

that is, if n > N, the least integer greater than (|c|/€)!/?. By Definition 2,

. C
lim, 00 — = 0.
nb

_u

Every sequence {a,} must either converge to a finite limit L or diverge. That is,
either lim, . @, = L exists (is a real number) or lim,_, o a, does not exist. If
lim,—, 00 @, = 00, we can say that the sequence diverges to oo; if lim,,_, o a4, = —00,
we can say that it diverges to —oo. If lim,_, a» simply does not exist (but is not
oo or —o0), we can only say that the sequence diverges.

(Examples of convergent and divergent sequences)

(@) {(n — 1)/n} convergesto 1; lim, o (n — 1)/n = lim,, (1 — (1/n)) = 1.
(b) {n} =1{1,2,3,4,...} diverges to co.

(c) {—n}={-1,-2,-3,—4, ...} diverges to —oo.
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(d) {(<1)"} ={-1,1,~1,1,—1,...} simply diverges.
) {(—=D"n} ={-1,2,-3,4,-5,.. }diverges (but not to oo or —oc even though

lim, o |@n| = 00).
|

The limit of a sequence is equivalent to the limit of a function as its argument
approaches infinity:

If lim f(x) = Landa, = f(n), then lim a, = L.
X200 N> 00

Because of this, the standard rules for limits of functions (Theorems 2 and 4 of
Section 1.2) also hold for limits of sequences, with the appropriate changes of
notation. Thus, if {a,} and {b,} converge, then

lim (a; b)) = lim a, = lim b,,
R=>00 N0 H>200
lim ca, = ¢ lim a;,

n=>00 =00

lim a,b, = (lim a,)(lim b,),
N> OO RO R OO

aﬂ ﬂl—i')ngO a” 5 W
nh—{lolc P B 5 assuming nlin:ga b, #£0.
=200
g, < b, ultimately, then lim g, < limb,.
H=> 00 R 00

Ifa, < by < ¢, ultimately, and lim g, = L = lim ¢,, then lim b, = L.
R=FO0 n—>o0 H—>0Q

The limits of many explicitly defined sequences can be evaluated using these prop-
erties in a manner similar to the methods used for limits of the form lim, , o f(x)
in Section 1.3.

S ETUTILEW  Calculate the limits of the sequences

2 _ .,
(a){M}, (b)[COS"}, and () {v/n? +2n —n).

5n24+n-3 n

Solution

(a) We divide the numerator and denominator of the expression for a, by the
highest power of # in the denominator, that is, by n2:

o2 —n—1 . 2=/ —(1/n>H 2-0-0 2
lim ——— = lim — =2
nso08n24+n—3 a5+ (1/n)—(3/n?) 5+0-0 5

since lim,_, o 1/7 = 0 and lim,_,, 1/n> = 0. The sequence converges and
its limit is 2/5.

(b) Since |cosn| < 1 for every n, we have

1 cosn 1
n n n

for n>1.

Now, lim,_,o —1/n = 0 and lim,_,,, 1/n = 0. Therefore, by the sequence
version of the Squeeze Theorem, lim,_, o, {(cosn)/n = 0. The given sequence
converges to 0.
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(c) For this sequence we multiply the numerator and the denominator (which is 1)
by the conjugate of the expression in the numerator:

—_—

The sequence converges to 1.

1
EETETIRA Evaluae Jin ntan| (_)
n—00 n

Solution For this example it is best to replace the nth term of the sequence by the
corresponding function of a real variable x and take the limit as x — oco. We use
I’Hdpital’s Rule:

1 1
lim # tan™! (—) = lim x tan™! (-)
n—00 n X—00 X

X—=>00 1
X
1 ( 1) .,
— i AP ) L
X—>00 1 X—>00 1
_ (ﬁ) 1+

If {a,} converges, then {a,} is bounded.

PROOF Suppose lim,_, a, = L. According to Definition 2, for ¢ = 1 there
exists a number N such thatif n > N, then |a, — L| < 1; therefore |a,| < 1 + |L]
for such n. (Why is this true?) If K denotes the largest of the numbers |a,|,
laal, ..., lan],and 1 + |L|, then |a,| < K foreveryn =1, 2, 3, .... Hence {a,}
is bounded.

The converse of Theorem 1 is false; the sequence {(—1)"} is bounded but does not
converge.

The completeness property of the real number system (see Section P.1) can be
reformulated in terms of sequences to read as follows:

Bounded monotonic sequences converge

If the secjuencé {a;} is bounded above and is (ultimately) increasing, then
it converges. The same conclusion holds if {a,} is bounded below and is
(ultimately) decreasing.

Thus, a bounded, ultimately monotonic sequence is convergent. (See Figure 9.2.)




Figure 9.2
increasing sequence that is

An ultimately

bounded above
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Ya

There is a subtle point to note in
this solution. Showing that {a,}
is increasing is pretty obvious,
but how did we know to try and
show that 3 (rather than some
other number) was an upper
bound? The answer is that we
actually did the last part first and
showed that if lim«,, = a exists,
then a = 3. It then makes sense
to try and show that a, < 3 for
all n.

S ETLTIERE [ et a, be defined recursively by
an+1 =6+ a, n=1,2,3,..).

Show that lim,,_, , a,, exists and find its value.

ar =1,

Solution Observethata, = 6+ 1 = /7 > a;. If ap+1 > ai, then

Atz = /6 + ary1 > /6 + ax = a4, so {a,} is increasing, by induction. Now
observethata; = 1 < 3. If ¢ < 3, thenayy; = /6 +ar < ~/6+3 =3, s0
a, < 3 for every n by induction. Since {a,} is increasing and bounded above,
lim,_, » a, = a exists, by completeness. Since +/6 + x is a continuous function of
x, we have

a = lim a,4; = lim /6 + a, =\/6+ lim a, = V6 + a.
n—>00 n—>oo n—oo

Thusa? = 6+a,ora’—a—6 = 0, or (@ — 3)(a +2) = 0. This quadratic has roots
a =3 and a = —2. Since a, > 1 for every n, we must have a > 1. Therefore,
a=3and lim, ,ya, =3.

1 n
S EGERN Does {(1 + —) } converge or not?
n

Solution 'We could make an effort to show that the given sequence is, in fact, in-
creasing and bounded above. (See Exercise 32 at the end of this section.) However,
we already know the answer. By Theorem 6 of Section 3.4,

. "
Iim{14+—-) =e¢ =e.
n—o0 n

'HEOREM e If {a,} is (ultimately) increasing, then either it is bounded above, and therefore

convergent, or it is not bounded above and diverges to infinity.
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The proof of this theorem is left as an exercise. A corresponding result holds for
(ultimately) decreasing sequences.

The following theorem evaluates two important limits that find frequent appli-
cation in the study of series.

(a) If|x| < I,then lim x" =0.
n—>0oC
(b) If x is any real number, then lim Al 0.

n—oo p!
PROOF For part (a) observe that
lim In|x|" = lim nln|x| = —o0,
n—>00 n—>o0

since In |x| < O when |x| < 1. Accordingly, since e* is continuous,

lim [x|" = lim ™" = elimmowlnlx™ —
n—>oco n—>00

Since —|x|" < x" < |x|", we have lim,_, ., x" = 0 by the Squeeze Theorem.

For part (b), pick any x and let N be an integer such that N > [x|. If n > N

we have
X x| xllxl I
n! 1 2 3 "N—-1NN+1"""n
L N T
(N-=D!N NN N
_ M T (Y
T N=D!\N - N’
R
where K = — is a constant that is independent of n. Since

(N=-DI!\ N
|x|/N < 1, we have lim,,_, o (|x|/N)" = 0 by part (a). Thus lim,_, |x"/n!| =0,
so lim, o x"/n! = 0.

. . 344" 45"
3TN Find lim,,, o —5—n+—
. . 34445 ) 3\" 4\"
Solution lim S = lim [(—) + (—) + 1] =0+0+1=1,by
n—o00 n n— 00 5 5
Theorem 3(a).
||

] Exercises 9.1
In Exercises 1-13, determine whether the given sequence is (a) 1 2n? 2 2n
bounded (above or below), (b) positive or negative (ultimately), “laZ+1 n?4+1

(¢) increasing, decreasing, or alternating, and (d) convergent,
divergent, divergent to 0o or —oo. 3 {4 =t } 4 { 1 ]




2 _ n
5. 11 6. |
n T’
e (=D"n
on (n1)2
9 = 10.
n”} 2n)!
11 [ncos(ﬂ)} 12. [Sm"}
2 n

13. {1. 1, =2,3,3, -4,5,5 -6, ...}

In Exercises 14-29, evaluate, wherever possible, the limit of the
scquence {a,}.

5—2n 2_4
14. = —— 15. =
dp 3n 7 ap P
16 " 17 (-1 "
. = — ., = (—
ay I’l3 1 n n3 1
2 n —n
_2 1 -
18. a, = ﬂ 19. a, = ¢ ¢
I —n—3n2 el 4 e n
—3\"
20. a;, = nsin — 21. a, = (n )
n n
22 " 23 Ti-vn
LAy = — .y = Vn —/n
"Tin(n+ 1) "
24. a, =n~+/n?—4n
25. a, =Vn?+n—Vn?-1
—1 n ! 2
26. a,;, = " 27, a, = (n )
n+1 2n)!

28.
30.

=31,

* 32,

=33,

34.
35.
x 36.
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2An n
n2 T
anp = 29. apn = ————=—
n! 1422

Leta; = 1and ayq1 = /1 +2a, (n=1,2,3,...). Show
that {a,} is increasing and bounded above. (Hint: show that
3 is an upper bound.) Hence, conclude that the sequence
converges, and find its limit.

Repeat Exercise 30 for the sequence defined by a; = 3,
a1 = /15 4+ 2a,,n =1, 2, 3, .... This time you will
have to guess an upper bound.

n

1 1
leta, =1+ — sothatlna,,:nln(l-l——).Use
n n

properties of the logarithm function to show that (a) {a,} is
increasing and (b) ¢ is an upper bound for {a,}.

Prove Theorem 2. Also, state an analogous theorem
pertaining to ultimately decreasing sequences.

If {|an|} is bounded, prove that {a,} is bounded.

Iflim, & |a,| = 0, prove that lim, . a, = 0.

Which of the following statements are TRUE and which are

FALSE? Justify your answers.

(a) If limy,_ 00 an = 00 and limy,—, o0 by, = L > 0, then
lim,_, oo apb, = 00.

(b) If lim;_ o0 @y = 00 and limy, . ¢ b, = —00, then
limy,—, oo (an + by) = 0.

(c) If lim,, s 00 ap = 00 and limy,— o0 by, = —00, then
limy,_, o0 apby, = —00.

(d) If neither {a,} nor {b,} converges, then {a,b, } does not
converge.

(e) If {|a,|} converges, then {a,} converges.

An infinite series, usually just called a series, is a formal sum of infinitely many

terms; for instance

s

atat+ay+as+---

is a series formed by adding the terms of the sequence {a,}. This series is also

denoted ) "7, a,:

X
Zan=a1+az+a3+a4+---
n=1

For example,

i1—1+1+1+1+
“~n 2 3 4
&\ (=1)! 11 1 1
— = - - — == — ...
2 271 272787 16

n=1
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It is sometimes necessary or useful to start the sum from some index other than 1:

o0
Za”=1+a+a2+a3+---

n=0
S~inn 2 In3  In4

Note that the latter series would make no sense if we had started the sum from
n = 1; the first term would have been undefined.

When necessary, we can change the index of summation to start at a different
value. This is accomplished by a substitution as illustrated in Example 3 of Sec-
tion 5.1. For instance, using the substitution n = m — 2, we can rewrite Y _,~ | a, in
the form Y . a,,_». Both sums give rise to the same expansion

o0 o0
E an=a1+a2+a3+~~=g Am—2.
m=3

n=1

Addition is an operation that is carried out on two numbers at a time. If we want to
calculate the finite sum

a+a; +as,

we could proceed by adding a; + a; and then adding a3 to this sum, or else we
might first add a> + a3 and then add a; to the sum. Of course, the associative law for
addition assures us we will get the same answer both ways. This is the reason the
symbol a; + a3 + a3 makes sense; we would otherwise have to write (a; + @2) + as
or a) + (az + az). This reasoning extends to any sum a; + a; + - - - + a, of finitely
many terms, but it is not obvious what should be meant by a sum with infinitely
many terms:

aytata+as+---.

We no longer have any assurance that the terms can be added up in any order to
yield the same sum. In fact, we will see in Section 9.4 that in certain circumstances,
changing the order of terms in a series can actually change the sum of the series.
The interpretation we place on the infinite sum is that of adding from left to right,
as suggested by the grouping

(a1 +ax) +az) tag) +as)+---.
‘We accomplish this by defining a new sequence {s,}, called the sequence of partial
sums of the series 2311 a, so that s, is the sum of the first # terms of the series:
St =a)
S =8 +tar=a+a
ss=ntai=a +a+as

n
Sp = Spal + 4y =a1+a2+a3+~~-+an=2aj.
j=1
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We then define the sum of the infinite series to be the limit of this sequence of partial
sums.

IDEFINITION B Convergence of a series
We say that the series Y - | a, converges to the sum s, and we write

o0

E a, =S,

n=1
o . . 00
iflim,_, o 5, = 5, Where s, is the nth partial sum of > " | a,:

n
S =a1t+ax+az+---+a, = § a;.
j=1

Thus, a series converges if and only if the sequence of its partial sums converges.

Similarly, a series is said to diverge to infinity, diverge to negative infinity, or
simply diverge if its sequence of partial sums does so. It must be stressed that the
convergence of the series Y .-, a, depends on the convergence of the sequence
{5.) = {Zj?zl a;}, not the sequence {a,}.

Geometric Series

Geometric series

A series of the form > %7, ar""! = a +ar + ar? + ar’ + - -, whose nth
term is @, = ar""!, is called a geometric series. The number a is the first
term. The number r is called the common ratio of the series, since it is the
value of the ratio of the (n + 1)st term to the nth term for any n > 1:

Anyl ar”

=——=1, n=1,23,....
a, arn!

The nth partial sum s, of a geometric series is calculated as follows:
sp=a+ar+ar’* +ar® 4. 4 ar"!
rs, = ar+ar’*+ar’+ .- +ar" ' +ar".

The second equation is obtained by multiplying the first by r. Subtracting these
two equations (note the cancellations), we get (1 —r)s, = a —ar”. If r £ 1, we
can divide by 1 — r and get a formula for s,,.

Partial sums of geometric series
If r = 1, then the nth partial sum of a geometric series Y oo ar"! is
Sp=a-+a+---+da=na. Ifr # 1, then

_ a(l—r")

sp=a+ar+ar*+---+ar"! 7
—r
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If a = O, then s, = 0 for every n, and lim,_, 5, = 0. Now suppose a # 0.
If |r| < 1, then lim,, o r® = 0, s0 lim,s00 8, = a/(1 —r). If r > 1, then
limy oo 7" = 00, and lim,, o0 8, = o0 if @ > 0, or lim,_, s, = —0c0 if a < 0.
The same conclusion holds if r = 1, since s, = na in this case. If r < —1,
lim, .« r" does not exist and neither does lim,,, «, 5,. Hence we conclude that

converges to 0 ifa=0
0 converges to ] ifIr] <1
— - ¥
Z“rn ! diverges to 6o ifr>1landa >0
n=1 diverges to =00 ifr>1anda <0
diverges ifr <—landa#0.

The representation of the function 1/(1 — x) as the sum of a geometric series,

]. o0
] =Zx”=l+x+x2+x3+--- for -1 <x <1,
—x

n=0

will be important in our discussion of power series later in this chapter.

(Examples of geometric series and their sums)

1 1 1 > 1\ 1 1
(a)1+5+z+§+"'=n2=;<5) =:I=2.Herea=1andr=§.
2
Since |r| < 1, the series converges.
e2 e3 x e\n—1 e
(b)n—e+———2+~~=2n(———) Herea =mandr = — —
T ~ b1 T
_ T ot
- 1— (_f_ T +e
The series converges since ‘—i‘ < 1.
i 4
o0
© 1422424224 ... = Z(ﬁ)”‘l. This series diverges to oo since
n=1
a=1>0andr =2 > 1.
[0,
@l-1+1-141—...= Z(—l)"—l. This series diverges since r = —1.
n=1

(e) Letx = 0.323232- .. = 0.32; then

o 32 2 _in 1\ 32 1 3
© 100 T 1002 100° ~ 4100 \ 100 S0, 1997

n=1
100

This is an alternative to the method of Example 1 of Section P.1 for representing
repeating decimals as quotients of integers.
||
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IEENTIE¥Y If money earns interest at a constant effective rate of 8% per year,
how much should you pay today for an annuity that will pay you (a) $1,000 at the
end of ¢ach of the next 10 years and (b) $1,000 at the end of every year forever?

Solutibn A payment of $1,000 that is due to be received n years from now has
e
lue $1,000 x (m) (since $A would grow to $A(1.08)" in n years).

N
Thus $1,000\payments at the end of each of the next n years are worth $s, at the
present time,

Sp = + : 2+ + LY
T 1.08  \1.08 1.08
1 N 1 2+ N 1 n—1
1.08 ' \1.08 1.08 .
(L "
_ 1,000 \1.08) _ 1,000 [1 ( 1 )}

rog 1 008 1.08
1.08

present

(a) The present value of 10 future payments is $s;9 = $6,710.08.
(b) The present value of future payments continuing forever is

. $1,000
1 = = $12,500.
$im s =505 =
||
Telescoping Series and Harmonic Series
m Show that the series
3 ! + ! + ! + ! +
nzln(n—l—l) 1x2 2x3 3x4 4x5
converges and find its sum.
. . 1 1 . .
Solution Since ——— = — — —— we can write the partial sum s, in the
nn+1) n n+1
form
= L L]
"T1x2 2x3 3x4 n—Dn  nmr+1)
(i 1 4 1 1 + 1 1 n
- 2 2 3 3 4) 7
+ 1 1 4 1 1
n—1 n n n+1
_q 1 n 1 1 + 1 1 1 1
a 2 2 3 3 n n n+1
1
=1-
n+1
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Figure 9.3 A partial sum of the

harmonic series

OREM 0

Therefore, lim,_, o s, = 1 and the series converges to 1:

ad 1

Z nn+ )

This is an example of a telescoping series, so called because the partial sums fold
up into a simple form when the terms are expanded in partial fractions. Other
examples can be found in the exercises at the end of this section. As these examples
show, the method of partial fractions can be a useful tool for series as well as for
integrals.

S'E WM Show that the harmonic series

il 14 = +1+1+
=n_ 3 4

diverges to infinity.

Solution If s, is the nth partial sum of the harmonic series, then

s—1+1+1+ -|-1
" 2 3 n

= sum of areas of rectangles shaded in Figure 9.3

1
> areaunder y = — from 1 ton + 1
x

n-+1 dx
= / — =In(n + 1).
1 X

Now lim,,_, , In{n + 1) = co. Therefore, lim,,_, », 5, = 00 and
> 1

1 1
Z o= 14 3 + 3 + .- diverges to infinity.

Like geometric series, the harmonic series will often be encountered in subsequent
sections.

Some Theorems About Series

If 77, a, converges, then lim,,_, o0 @, = 0.
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PROOF Ifs, =a;+a+---+a,, thens, — s, = a,. If Z:O:1 a, converges,
then lim,,_, o, 5, = § exists, and lim, o $,—| = 5. Hence lim, ,,ca, =s —s = 0.
.

Remark Theorem 4 is very important for the understanding of infinite series.
Students often err either in forgetting that a series cannot converge if its terms do
not approach zero or in confusing this result with its converse, which is false. The
converse would say that if lim,_,a, = 0, then Z;’;l a, must converge. The
harmonic series is a counterexample showing the falsehood of this assertion:

1 21
lim — =0 but E — diverges to infinity.
n=1 n

n—oo p

When considering whether a given series converges, the first question you should
ask yourself is: “Does the nth term approach 0 as n approaches oo?” If the answer
is no, then the series does not converge. If the answer is yes, then the series may or
may not converge. If the sequence of terms {a,} tends to a nonzero limit L, then
Y | a, diverges to infinity if L > 0 and diverges to negative infinity if L < 0.

| Example 5

oo
(a) Z_; 2n’1 ] diverges to infinity since lim,,_, o 2nn—_1 =1/2>0.
(b) X2 (—=1)"nsin(1/n) diverges since
1 in(1 i
lim ‘(—1)”nsin—’ — fim S0P SOX L,
n—00 n n—00 l/n =0+ X
|

The following theorem asserts that it is only the ultimate behaviour of {a,} that
determines whether ) - | a, converges. Any finite number of terms can be dropped
from the beginning of a series without affecting the convergence; the convergence
depends only on the tail of the series. Of course, the actual sum of the series
depends on all the terms.

Z;O: ; an converges if and only if Y .- . a, converges for any integer N > 1.

If {a,} is ultimately positive, then the series Y | a, must either converge (if its
partial sums are bounded above) or diverge to infinity (if its partial sums are not
bounded above).

The proofs of these two theorems are posed as exercises at the end of this section.
The following theorem is just a reformulation of standard laws of limits.

If Y 7, a, and Y o2 b, converge to A and B, respectively, then
(a) Zsi | ca, converges to ¢ A (where ¢ is any constant);

(b) 3.7 (a, £ by) convergesto A £ B;

(¢) ifa, <b,foralln=1,2,3,...,then A < B.
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[3'EY TN  Find the sum of the series Z

Solution The given series is the sum of two geometric series,

1 _+_ 2n+1

* ] & 1(1)"‘1 1/3 1
Z_=Z_ Z =—1'" _—_ and
Le3n L3 \3 1-(1/3) 2

o > 4 (2\""! 4/3
Z3n =;§(§) T 1-@3)

1 9
Thus its sum is 2 +4 = 2 by Theorem 7(b).

| Exercises 9.2

In Exercises 1-18, find the sum of the given series, or show that 15 i 1 16 i n
the series diverges (possibly to infinity or negative infinity). ) — m—1 : ftn+ 2
Exercises 11-14 are telescoping series and should be done by "= -
partial fractions as suggested in Example 3 in this section. el _12 X 9
17. X;n 18. nZ; pa
n— =

11
1.5 §+‘—+ E 3n
3 3 3 o 1\"!
23—+~ 4...=5"3({-2=
176 @’ 2_; ( 4)

0 1 x5
3. _— 4. —
Z 2+ 7[)2" Z 103n
n=>3 n=0
00

8

H
[}
]
Il
=

o0 [ o0
2k+3 i .
7 = 8. erf/zcos(jn)
=0 J=1
o0 o0
342" 3427
9. Z n+2 10. Z 3n+2
n=I1 n=0
oC
1 1 1 1
11. =
n;n(n—{—Z) 1><3+2><4+3x5+
o0
1 1 1 1
12. =
;(2n—1)(2n+1) l><3+3x5+5x7+
o0
1 1 1 1
13. =
;(Sn—2)(3n+l) 1><4+4><7+7><10+
14.
: Z: n+1)(n+2)
1 1 1

T1x2x3 T3x3xa T3xaxs "

19. Obtain a simple expression for the partial sum s, of the
series Zzozl (—1)", and use it to show that the series
diverges.

20. Find the sum of the series

1 1 !
1T T2 1253 T Tv2535a 7

21. When dropped, an elastic ball bounces back up to a height
three-quarters of that from which it fell. If the ball is
dropped from a height of 2 m and allowed to bounce up and
down indefinitely, what is the total distance it travels before
coming to rest?

22. If a bank account pays 10% simple interest into an account
once a year, what is the balance in the account at the end of
8 years if $1,000 is deposited into the account at the
beginning of each of the 8 years? (Assume there was no
balance in the account initiaily.)
* 23, Prove Theorem 5. * 24, Prove Theorem 6.

# 25, State a theorem analogous to Theorem 6 but for a negative
sequence.

In Exercises 26-31, decide whether the given statement is TRUE
or FALSE. If it is true, prove it. If it is false, give a
counterexample showing the falsehood.

*26. If a, = O for every n, then Z an converges.

#27. If Y ay converges, then Y _(1/a,) diverges to infinity.
*28. If ) an and ) b, both diverge, then so does Y (ay + by).
#29. If a, > ¢ > O for every n, then Z ay diverges to infinity.
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+30. If Y a, diverges and {b,} is bounded, then ) _ a,b, #31. Ifa, > 0and ) _ a, converges, then Y (a,)? converges.
diverges.

In the previous section we saw a few examples of convergent series (geometric and
telescoping series) whose sums could be determined exactly because the partial
sums s, could be expressed in closed form as explicit functions of n whose limits
as n — oo could be evaluated. It is not usually possible to do this with a given
series, and therefore it is not usually possible to determine the sum of the series
exactly. However, there are many techniques for determining whether a given
series converges and, if it does, for approximating the sum to any desired degree of
accuracy.

In this section we deal exclusively with positive series, that is, series of the
form

[0 9]
a,=a1+a+az+---,
n=1

where a, > 0 for all n > 1. As noted in Theorem 6, such a series will converge
if its partial sums are bounded above and will diverge to infinity otherwise. All
our results apply equally well to ultimately positive series since convergence or
divergence depends only on the fail of a series.

The Integral Test

The integral test provides a means for determining whether an ultimately positive
series converges or diverges by comparing it with an improper integral that behaves
similarly. Example 4 in Section 9.2 is an example of the use of this technique. We
formalize the method in the following theorem.

The integral test

Suppose that a, = f(n), where f is positive, continuous, and nonincreasing on an
interval [N, oo[ for some positive integer N. Then

Zan and /-oo f@)de
n=1 N

either both converge or both diverge to infinity.
PROOF Llets, =ay+ax+---+a,. Ifn > N, we have

Sn :sN+aN+1 +aypp+ -+ a,
=sy+ f(N+D+fIN+2D)+---+ f(n)
= sy + sum of areas of rectangles shaded in Figure 9.4(a)

SsN+/oof(t)dt.
N

If the improper integral |, 130 f(t)dt converges, then the sequence {s,} is bounded
above and ) 2 | a, converges.
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N N+IN+2N43 n X N N+IN+2 N+3 X

Figure 9.4 (@) (b)

Conversely, suppose that Y _o- | a, converges to the sum s. Then

o0
f f()dt = areaundery = f(t) above y =0froms=Ntot =00
N

< sum of areas of shaded rectangles in Figure 9.4(b)
=ay+aNy1 +anyz + -0

=5 —SN-1 <OQ,

so the improper integral represents a finite area and is thus convergent. (We omit
the remaining details showing that limg_, o, f 15 f (@) dt exists; like the series case,
the argument depends on the completeness of the real numbers.)

Remark Yf a, = f(n), where f is positive, continuous, and nonincreasing on
[1, oo, then Theorem 8 assures us that 3" a, and [ f(x) dx both converge or
both diverge to infinity. It does not tell us that the sum of the series is equal to the
value of the integral. The two are not likely to be equal in the case of convergence.
However, as we see below, integrals can help us approximate the sum of a series.

The principal use of the integral test is to establish the result of the following
example concerning the series > .-, n~?, which is called a p-series. This result
should be memorized; we will frequently compare the behaviour of other series
with p-series later in this and subsequent sections.

IEZUTIEE {p-series) Show that

= ©. 1 | convergesifp > 1
E nf= E — ; i . Lo
- nP | divergestoinfinityif p < 1.

n=l n=l

Solution Observe that if p > 0, then f(x) = x7 is positive, continuous, and
decreasing on [1, co[. By the integral test, the p-series converges for p > 1 and
diverges for 0 < p < 1 by comparison with floo x"Pdx. (See Theorem 2(a) of
Section 6.5.) If p < 0, then lim,_,»(1/n?) # 0, so the series cannot converge in
this case. Being a positive series, it must diverge to infinity.

Remark The harmonic series ) .. n~! (the case p = 1 of the p-series) is on
the borderline between convergence and divergence, although it diverges. While its
terms decrease toward O as n increases, they do not decrease fast enough to allow
the sum of the series to be finite. If p > 1, the terms of ) .- ; n™? decrease toward




Figure 9.5
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zero fast enough that their sum is finite. We can refine the distinction between
convergence and divergence at p = 1 by using terms that decrease faster than 1/#,
but not as fast as 1/n% forany ¢ > 1. If p > 0, terms 1/(n(ln n)") have this
property since In n grows more slowly than any positive power of n as n increases.
The question now arises whether Z:iz 1/(n(Inn)?) converges or not. It does,
provided again that p > 1; you can use the substitution # = Inx to check that

/‘ * dx / * du

> x(nx)? — Ji u?’

which converges if p > 1 and diverges if 0 < p < 1. This process of fine-tuning
Example 1 can be extended even further. (See Exercise 36 below.)

Using Integral Bounds to Estimate the Sum of a Series

Suppose thatay, = f(k)fork =n+1,n+2, n+3, ..., where f is a positive,
continuous function, decreasing at least on the interval [n, co[. We have:

s=si= ) fk)

k=n+1
= sum of areas of rectangles shaded in Figure 9.5(a)

/Oof(x)dx.

A

n+l n4+2 n+3 X n  n+l n+2 a43 X

(a) (b)

Similarly,
s — s, = sum of areas of rectangles in Figure 9.5(b)

o]

> fx)dx.
n+1

If we define
[o.¢]
A= [ s,
n
then we can combine the above inequalities to obtain
AnJrl 5 § — 85y S An’
or, equivalently:

Sn T Anp1 <85 <sp+ A,
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The error in the approximation s & s, satisfies 0 < s — s, < A,. However, since s
must lie in the interval [s, + A, .1, s, + A,], we can do better by using the midpoint
s of this interval as an approximation for s. The error is then less than half the
length A, — A,y of the interval:

A better integral approximation

The error |s — s} in the approximation

A A o
SR SE =5, + ———"—’L—%U where A, = [ fx)dx,
n
An _An-H

satisfies - - |s =~ 5%} <

2

(Whenever a quantity is known to lie in a certain interval, the midpoint of that
interval can be used to approximate the quantity, and the absolute value of the error
in that approximation does not exceed half the length of the interval.)

Find the best approximation s} to the sum s of the series Y o | 1/n?,
making use of the partial sum s, of the first n terms. How large would » have to be
to ensure that the approximation s & s has error less than 0.001 in absolute value?
How large would n have to be to ensure that the approximation s ~ s, has error
less than 0.001 in absolute value?

Solution Since f(x) =1 /x2 is positive, continuous, and decreasing on [1, o[
foranyn =1, 2, 3, ..., we have

sn+An+l szsn+Ana

where

The best approximation to s using s, is

. 1( 1 1) 2n+1
Sp=Set t-)=sm+t—
n

2\n+1 2n(n + 1)
1 1 1 2n +1
+4 9+ +n2+2n(n+1)

The error in this approximation satisfies

| *|<1<1 1 1 < 0.001
s—5 o = .001,
" n n+1 2n(n+1)

provided 2n(n 4+ 1) = 1/0.001 = 1,000. It is easily checked that this condition is
satisfied if n > 22; the approximation

. 11 45
sy =14+ -+ -+ + m

ity ;T




Theorem 9 does not say that if ¥_ a,
converges, then > b, converges. It
is possible that the smaller sum
may be finite while the larger one is
infinite. (Do not confuse a theorem
with its converse.)
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will have error with absolute value not exceeding 0.001. Had we used the approxi-
mation s & s, we could only have concluded that

1
0<s—s, <A,=- <0.001,
n

provided n > 1,000; we would need 1,000 terms of the series to get the desired
accuracy.

Comparison Tests

The next test we consider for positive series is analogous to the comparison theorem
for improper integrals. (See Theorem 3 of Section 6.5.) It enables us to determine
the convergence or divergence of one series by comparing it with another series that
is known to converge or diverge.

A comparison test

Let {a,} and {b,} be sequences for which there exists a positive constant K such
that, ultimately, 0 < a,, < Kb,.

(a) If the series > oo | b, converges, then so does the series Y .- | .
(b) If the series Y .- a, diverges to infinity, then so does the series Y - | b,.

PROOF Since a series converges if and only if its tail converges (Theorem 5), we
can assume, without loss of generality, that the condition 0 < @, < Kb, holds
foralln > 1. Lets, =a+ay+---+a,and S, = b, + by + -+ b,. Then
sn < KS,. If Y b, converges, then {S,} is convergent and hence is bounded by
Theorem 1. Hence {s,} is bounded above. By Theorem 6, 3 a, converges. Since
the convergence of Y _ b, guarantees that of )_ a,, if the latter series diverges to
infinity, then the former cannot converge either, so it must diverge to infinity too.

m Do the following series converge or not? Give reasons for your
answer.

< = 3 41 <
. nre —
@ gy ® ;n3+1 (© ;mn

Solution In each case we must find a suitable comparison series that we already
know converges or diverges.

(a) Since 0 <

1 1
< > forn=1,2,3, ..., andsince Y -, > is a conver-

also converges by comparison.

2" 4+ 1

gent geometric series, the series > o

1
n=lon 41
3n+1 .3
(b) Observethat P behaves like — for large n, so we would expect to compare
n n

the series with the convergent p-series Y .. n=2. We have, forn > 1,

3n+1 3n + 1 3n+1 3+1 4
= «c 44— =
nd4+1 w3+1 m34+1 w3 w3 w2 w2 r2

Thus, the given series converges by Theorem 9.
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I .. 1

(c) Forn=2,3,4,...,wehave 0 < Inn < n. Thus — > —. Since Y oo, —

Inn  n n

diverges to infinity (it is a harmonic series), so does Y o, nn by comparison.
n

The following theorem provides a version of the comparison test that is not quite as
general as Theorem 9 but is often easier to apply in specific cases.

A limit comparison test

Suppose that {a,} and {b,} are positive sequences and that

li

n
m — =1L,
n—>oo b,

where L is either a nonnegative finite number or +oc.
(a) If L < ooand ) ., b, converges, then Y .- | a, also converges.
(b) If L > 0and } .2, b, diverges to infinity, then so does Y .- | a,.

PROOF If L < oo, then for » sufficiently large, we have b, > 0 and

0< —<L+1,

SEES

$0 0 < a, < (L + 1)b,. Hence Y, a, converges if Y .. b, converges, by
Theorem 9(a).

If L > 0, then for n sufficiently large

a L
b, — 2
Therefore, 0 < b, < (2/L)ay, and Y -, a, diverges to infinity if Y o=, b, does,
by Theorem 9(b).
S CIUTIEEY Do the following series converge or not? Give reasons for your
answers.
= 1 X n+5
a , b —_—
(@) ny‘:ll—f—ﬁ ®) ;n3—2n+3

Solution Again we must make appropriate choices for comparison series.
(a) The terms of this series decrease like 1/./n. Observe that

1
1
L=tim A g Y L
n—00 L n—>ool+ﬁ n—>00 (1/ﬁ)+1
Jn
. . o 1 . . .
Since the p-series Y .- | — diverges to infinity (p = 1/2), so does the series
n

PR

, by the limit comparison test.

1
1+ /n
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(b) For large n, the terms behave like /5>, so let us compare the series with the
p-series Y oo 1/n?, which we know converges.
n+35
R 3 2
3 _ n’ + 5n
= lim £ =22+3 _ i — =
n— oo n—>00 N 21’! + 3
n?
—~ n+5
Since L < oo, the series Z B —mi3 also converges by the limit compar-
=1
ison test.
||

In order to apply the original version of the comparison test (Theorem 9) suc-
cessfully, it is important to have an intuitive feeling for whether the given series
converges or diverges. The form of the comparison will depend on whether you
are trying to prove convergence or divergence. For instance, if you did not know
intuitively that

o0
2:: 100n + 20 000

would have to diverge to infinity, you might try to argue that

1

- forn=1,2 3, ...
1007 + 20,000 orn

While true, this doesn’t help at all. 32 1/n diverges to infinity; therefore
Theorem 9 yields no information from this comparison. We could, of course,
argue instead that

1 1
>
100n 4 20,000 — 20,100n

ifn>1,

and conclude by Theorem 9 that > -, (1/(100n + 20,000)) diverges to infinity by
comparison with the divergent series ) .-, 1/n. Aneasier way is to use Theorem 10
and the fact that

1
L= lim 100n+20000 _ " _ 1 4
nooo 1 n—>00100n + 20,000 — 100

n

However, the limit comparison test Theorem 10 has a disadvantage when compared
to the ordinary comparison test Theorem 9. It can fail in certain cases because the
limit £, does not exist. In such cases it is possible that the ordinary comparison test
may still work.

1 + sinn
m Test the series Z ~———— for convergence.
n=1
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Solution Since

14 sinn
2
lim —2 = lim (1 + sinn)
n—»o n—>00
n?

does not exist, the limit comparison test gives us no information. However, since
sinn < 1, we have

0< 1+ sinn <

> forn=1,2,3,....
n

2
n2
The given series does, in fact, converge by comparison with 300 | 1/n?, using the

ordinary comparison test.
|

The Ratio and Root Tests
The ratio test

a R
Suppose that @, > 0 (ultimately) and that p = lim ot exists or is +o00.
n—o00 @,

(@) If0 < p < 1,then Y > a, converges.
(b) If 1 < p < o0, then lim,,_, .o @, = 00 and Z;’;l ay, diverges to infinity.

(c) If p = 1, this test gives no information; the series may either converge or
diverge to infinity.

PROOF Here p is the lowercase Greek letter rho, (pronounced “roe”).

(a) Suppose p < 1. Pick a number r such that p < r < 1. Since we are given
that lim,_, o dn41/an = p, we have a,1/a, < r for n sufficiently large; that
18, ay4 < ra, forn > N, say. In particular,

an+1 < ray
2
any2 S rany1 <roan

3
an+3 < rany2 <r-any

ansk <rfay  *=0,1,2,3,..)

Hence, Y7 . a, converges by comparison with the convergent geometric series
2, k. Ttfollows that 30 a, = Y-V a, + 3°%° | a, must also converge.
(b) Now suppose that p > 1. Pick a number r such that 1 < r < p. Since
lim, o0 dnt1/an = p, We have a,y1/a, > r for n sufficiently large, say for
n > N. We assume N is chosen large enough that ay > 0. It follows by an
argument similar to that used in part (a) that ayx > rfay fork =0, 1,2, ...,

and since r > 1,1lim,_,, a, = 00. Therefore Zf,ozl an diverges to infinity.
(¢) If p is computed for the series ) .o | 1/nand Y .o, 1/n% we get p = lineach
case. Since the first series diverges to infinity and the second converges, the

ratio test cannot distinguish between convergence and divergence if p = 1.

=




SECTION 9.3: Convergence Tests for Positive Series 543

All p-series fall into the indecisive category where p = 1, as does Y .| d, Where
a, is any rational function of n. The ratio test is most useful for series whose
terms decrease at least exponentially fast. The presence of factorials in a term also
suggests that the ratio test might be useful.

[3'CI MW Test the following series for convergence:
[o0]

>, 99" 2 1’ > n! (2n)!
@ Y = O ;2— © ;n— d) ; .

n=1 (n')z

Solution We use the ratio test for each of these series.

99 t! 99" 99
(a)p:limi/——lim 1=0<1.

nsoo (n+ 1!/ n!  nsocon+

o]
Thus )", _,(99"/n!) converges.

o+’ [R5 1 /n+1) 1
(b),oznll)n(;low §=nli>n;o§ ; :§<1.

Hence Y., (n%/2") converges.
. (n+ 1! n! . (n+ D" ) no\"
© p=lim ———— / — =1lim ——— = 1i
n—>o0 (n + 1)n+1 nt n—oo (n + 1)n+1n! n>oco \ 4+ 1

1 1

— 1\"
By
n

Thus Y °7 (n!/n") converges.

(@ = lim (2(”“))’/(2")! _ jim @D+

AT D) ATy b

Thus Z:o:l (2n)!/(n!)? diverges to infinity.

The following theorem is very similar to the ratio test but is less frequently used.
Its proof is left as an exercise. (See Exercise 37.) For examples of series to which
it can be applied, see Exercises 38 and 39.

The root test

Suppose that @, > 0 (ultimately) and that 0 = lim,, o (a,)'/* exists or is +o0.
(@ If0 <o <1,then ) 7 a, converges.
(b) If 1 < o < 00, then lim,,_, o @, = o0 and Z:O:I a, diverges to infinity.

(c) If o = 1, this test gives no information; the series may either converge or
diverge to infinity.

]

Using Geometric Bounds to Estimate the Sum of a Series
Suppose that an inequality of the form

Ofakark
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holdsfork =n+1,n+2,n+3,...,where K and r are constants and r < 1. We
can then use a geometric series to bound the tail of 3.~ ; a,

o0 [0 ¢]
O0<s—s, = Z ar < Z Kr*

k=n+1 k=n+1
=Kr"T'Q4+r4+r24-.9)
Krn+1
T 1—r"

Since r < 1, the series converges and the error approaches 0 at an exponential rate
as n increases.

m In Section 9.6 we will show that
[e,2]

1+1+1 1+ 1
€ = — — — — J—
0! 20 3 —=n!

(Recall that 0! = 1.) Estimate the error if the sum s, of the first n terms of the series
is used to approximate e. Find e to 3-decimal-place accuracy using the series.

Solution 'We have

11 1 1
S=ntutata Tt e oo
SR R I I I

276" 24 = D)1

(Since the series starts with the term for n = 0, the nth term is 1/(n — 1)!.) We can
estimate the error in the approximation s = s, as follows:

1 1 1 1
O<s—s5,=—

bt arot T aent T T

1 1 1 i
_E(Hnﬂ+(n+1)(n+2)+(n+1)(n+2)(n+3)+"')

1 1 1 1
<—\|1+ +
n!( n+1 (n+1)2+(n+1)3+ )
sincen+2 >n41,n4+3 > n+ 1, and so on. The latter series is geometric, so

1 1 n+1
O<s—5, < — = .
n!l_ 1 nin

n+1

If we want to evaluate e accurately to 3 decimal places, then we must ensure that
the error is less than 5 in the fourth decimal place, that is, that the error is less than
0.0005. Hence we want

11 1
nt — < 0.0005 = .
n n! 2,000
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Since 7! = 5,040, but 6! = 720, we can use n = 7 but no smaller. We have

11 1 1
,+ tatsita

e~ 1+4+1+ 3 51T 6

2!
1 1 1 1 1
=245+t ort Top T g~ 2718

to 3 decimal places.
26 120 ~ 720
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It is appropriate to use geometric series to bound the tails of positive series whose
convergence would be demonstrated by the ratio test. Such series converge ulti-

mately faster than any p-series Y .o, n~?, for which the limit ratio is p = 1.

In Exercises 1-26, determine whether the given series converges
or diverges by using any appropriate test. The p-series can be
used for comparison, as can geometric series. Be alert for series
whose terms do not approach 0.

X1

Ly Y
n=1

11.

13.

15.

17.

19.

21.

in2+l
nd+1

n=1

10.

12.

14.

16.

18.

20.

22.

o0

@2n)!
23, Z e

n=1

[e.¢] 2n
25. )" PR
n=4

24 i 1+n!
) (1 +n)!
n=1
15 n
n
26. X;,,n,,;
n=

n
nt -2 In Exercises 27-30, use s, and integral bounds to find the
smallest interval that you can be sure contains the sum s of the
n series. If the midpoint s, of this interval is used to approximate
n2+n+1 s, how large should r be chosen to ensure that the error is less
than 0.0017?
1 © %
" +5 27. Zk4 ZS'ZF
k=1 k=1
In(3 A — 3 _
n(3n) 29 ;km 30 ;k2+4
1+n For each positive series in Exercises 31-34, find the best upper
p pp
2+n bound you can for the error s — s, encountered if the partial sum
sn is used to approximate the sum s of the series. How many
n? terms of each series do you need to be sure that the
1+ nyn approximation has error less than 0.001?
1 31. — 32. —_—
ki1 — Dt
ninn(inlnn)? = 2K GO
0 2}1 [o ¢} 1
1+ (D" 33. 3. —
= 2 oy 2
oC
n* 35. Use the integral test to show that Z 5 converges.
1
’ Show that the sum s of the series 1s less than 77 /2.
(2n)'6" * 36. Show that Zn:3(1 /(nInn(Inlnn)P) converges if and only
Gn)! if p > 1. Generalize this result to series of the form
10027 = 1
N r; n(inn)(Inlnn) - - - (Inj n)(Inj 41 n)}P’
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* 37.

38.

= 39,

40.

=41,

* 42,

x 43,
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where Injn = Inlnlnln- - -Ina.

jln's
Prove the root test. Hint: mimic the proof of the ratio test.
2n+1

x>
Use the root test to show that Z
n=1

Use the root test to test the following series for convergence:

converges.
nﬂ

Y 2

i(n:l—l)n ’

n=1
Repeat Exercise 38, but use the ratio test instead of the root
test.

) 0 22n (n ')2
Try to use the ratio test to determine whether E —_—
= @2n)!

converges. What happens? Now observe that

22(n)?  [2n(2n —2)(2n —4) -6 x 4 x 2]

2n)! " 2n@2n—1D@2n—2)---4x3x2x1

2n 2n —2 4 2
= x XX = X —.
2n—-1" 2n-3 31
Does the given series converge? Why or why not?
o~ (2!
Determine whether the series Z —— converges.
221 (n!)2

n=1

Hint: proceed as in Exercise 41. Show that a, > 1/(2n).

(a) Show that if k£ > 0 and # is a positive integer, then

1(1 + k)"
< — .
"%

(b) Use the estimate in (a) with 0 < k < 1 to obtain an
upper bound for the sum of the series Z;’;O n/2". For

* 44,

what value of k is this bound least?

(¢) If we use the sum s, of the first n terms to approximate
the sum s of the series in (b), obtain an upper bound for
the error s — s, using the inequality from (a). For given
n, find k to minimize this upper bound.

(Improving the convergence of a series) We know that
Zf,il 1/(n(n + 1)) = 1. (See Example 3 of Section 9.2.)

Since

1 1 1
— =————+¢,, Where ¢, =——"—,
n2 nnr+1 " T R2(n+ 1)
[e.e] 1 >0
we:haveX:n—2 = 1+ch.
n=1 n=t

The series Z;’;l ¢, converges more rapidly than does
Zzozl 1/n? because its terms decrease like 1/n3. Hence,
fewer terms of that series will be needed to compute

Zf,o:1 1/n% to any desired degree of accuracy than would be
needed if we calculated with "°°  1/n? directly. Using
integral upper and lower bounds, determine a value of n for
which the modified partial sum s,; for the series ZZOZI Cn
approximates the sum of that series with error less than
0.001 in absolute value. Hence, determine Zﬁil 1/n% to
within 0.001 of its true value.

(The technique exibited in this exercise is known as
improving the convergence of a series. It can be applied to
estimating the sum Y _ a,, if we know the sum ) b, and if
a, — by = ¢, where |c,| decreases faster than |a,| as n
tends to infinity.)

Allof the series Y .- | a, considered in the previous section were ultimately positive;
that is, @, > 0 for n sufficiently large. We now drop this restriction and allow
arbitrary real terms a,. We can, however, always obtain a positive series from any
given series by replacing all the terms with their absolute values.

The series Y oo,
verges.

Absolute convergence

ay is said to be absolutely convergent if Y > | |a,| con-

The series




Although absolute convergence
implies convergence, convergence
does not imply absolute
convergence.
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converges absolutely since

i1—1+1+1+1+
- n2 4 9 16

converges. It seems reasonable that the first series must converge, and its sum s
should satisfy —S < s < S. In general, the cancellation that occurs because some
terms are negative and others positive makes it easier for a series to converge than
if all the terms are of one sign. We verify this insight in the following theorem.

If a series converges absolutely, then it converges.

PROOF Let Z;’; | an be absolutely convergent, and let b, = a, + |a,| for each
n. Since —|a,| < a, < |an|, we have 0 < b, < 2|a,| for each n. Thus 3 o2 b,
converges by the comparison test. Therefore, Y vo | an = D vei by — Y pey |Gl
also converges.

Again you are cautioned not to confuse the statement of Theorem 13 with the
converse statement, which is false. We will show later in this section that the
alternating harmonic series

(-t 1 11 1
T atan gt

converges, although it does not converge absolutely. If we replace all the terms by
their absolute values, we get the divergent harmonic series

il 14 = +1+1+
- = = 00.
—n 3 4

Conditional convergence

If Y2, a, is convergent, but not absolutely convergent, then we say that it is
conditionally convergent or that it converges conditionally.

The alternating harmonic series is an example of a conditionally convergent series.

The comparison tests, the integral test, and the ratio test, can each be used
to test for absolute convergence. They should be applied to the series > < | |a,|.
For the ratio test we calculate p = lim,_ o |@yt1/a,|. If p < 1, then Zn:] a,
converges absolutely. If p > 1, then lim,_, |a,] = 00, so both > - |a,| and

0 . . - . o0
> =i an must diverge. If p = 1, we get no information; the series y .~ | a, may
converge absolutely, it may converge conditionally, or it may diverge.
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m Test the following series for absolute convergence:

N (—1) ! 2. ncos(nm)
(a) ——, (b ;—2—

~ 2n —1
Solution
—1n! 1 1 . . .
(a) lim u— — = lim " = — > 0. Since the harmonic series
n—oo | 2n—1 n n—>oo 2n — 1 2

3> (1/n) diverges to infinity, the comparison test assures us that )2 ((—=1)"~!/(2n—
1)) does not converge absolutely.

b _ 1 (n+1Dcos((n+ )mr) [ncos(nm)| 5 n+l 1 <1

®) p = nLngo 2n+l1 2n o nlglo 2n 2 ’

(Note that cos(nr) is just a fancy way of writing (—1)".) Therefore (ratio test)
Z;’;l ((n cos(n))/2") converges absolutely.

The Alternating Series Test

We cannot use any of the previously developed tests to show that the alternating
harmonic series converges; all of those tests apply only to (ultimately) positive
series, so they can test only for absolute convergence. Demonstrating convergence
that is not absolute is generally harder to do. We present only one test that can
establish such convergence; this test can only be used on a very special kind of
series.

The alternating series test
Suppose that the sequence {a,} is positive, decreasing, and converges to 0, that is,

suppose that
(i) a, >0forn =1, 2,3, ...,
(i) ay+1 <ayforn=1, 2,3, ...,and

(iil) lim,_ s a, = 0.
Then the alternating series

o0
-1
(- 'a,=a—ay+azs—as+as—---

n=1

converges.

PROOF Since the sequence {a,} is decreasing, we have ay,,1 > as,+,. Therefore
S2n42 = Son + Q2n41 — G242 > S forn =1, 2, 3, .. ; the even partial sums {s,}
form an increasing sequence. Similarly 55,11 = $2,1 — d2, + @2n41 < S20—1, 50 the
odd partial sums {s,,_;} form a decreasing sequence. Since s, = $2,_1 — d2p, <
Son—1, We can say, for any n > 1, that

Read this proof slowly and think
about why each statement is true.

$2 584 <86 < <8 <Sop-1 SSom3 =0 <85 <53 <510

Hence, 55 is a lower bound for the decreasing sequence {s2,_1}, and s; is an upper
bound for the increasing sequence {s,}. Both of these sequences therefore converge
by the completeness of the real numbers:

lim $3,_1 = Sodq; lim 3, = Seven-
n—o n—oo
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Now az, = $op—1 — 821, 50 0 = liMp—s 00 @2, = liMyos 00 (S20—1 — 520) = Sodd — Seven-
Therefore sogg = Seven = §, say. Every partial sum s, is either of the form s,,_; or
of the form s,,. Thus, lim, _, , 5, = s exists and the series Z(—l)”_lan converges
to this sum s.

Remark Note that the series Z;’;l (—1)""'a, begins with a positive term, a;. The
conclusion of Theorem 14 also holds for the series ZZ": | (=1)"a,, which starts with
a negative term, —a;. (It is just the negative of the first series.) The theorem also
remains valid if the conditions that {a,} is positive and decreasing are replaced by
the corresponding ultimate versions:

(i a,>0 and (i)a,y <a, forn=N,N+1,N+2,....

Remark The proof of Theorem 14 shows that every even partial sum is less than
or equal to s and every odd partial sum is greater than or equal to s. (The reverse
is true if (—1)" is used instead of (—1)*~1.) That is, s lies between s,, and either
S2n_1 OF $2,+1. It follows that, for odd or even n,

I8 — Sul < [Sng1 — Sul = @ne1.
This proves the following theorem.

Error estimate for alternating series

If the sequence {a, } satisfies the conditions of the alternating series test (Theorem 14),
so that the series Y .- ,(—=1)""a, (or }_>_ ; (—1)"a,) converges to the sum s, then
for any n > 1, the nth partial sum s, of the series satisfies

Is = sp| < |anial-

That is, the size of the error involved in using s, as an approximation to s is less
than the size of the first omitted term.

="
1427

o0
How many terms of the series are needed to compute
y p
—1

the sum of the series with error less than 0.001?

Solution This series satisfies the hypotheses for Theorem 15. If we use the partial
sum of the first # terms of the series to approximate the sum of the series, the error
will satisfy

1

error| < |first omitted t =—.
! | < |first omitted term)| T
This error is less than 0.001 if 1 4+ 2"*! > 1,000. Since 2!1° = 1,024, n + 1 = 10
will do; we need 9 terms of the series to compute the sum to within 0.001 of its

actual value.
|

When determining the convergence of a given series, it is best to consider first
whether the series converges absolutely. If it does not, then there remains the
possibility of conditional convergence.
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m Test the following series for absolute and conditional convergence:
= (=)t cos(nm) (="
—

@ > : (b){_; — (c); -

n=1

Solution The absolute values of the terms in series (a) and (b) are 1/n and
1/(Inn), respectively. Since 1/(Inn) > 1/n, and > 2 1/n diverges to infinity,
neither series (a) nor (b) converges absolutely. However, both {1/x} and {1/(Inn)}
are positive, decreasing sequences that converge to 0. Therefore, both (a) and (b)
converge by Theorem 14. Each of these series is conditionally convergent.

Series (c) is absolutely convergent because [(—1)""!/n*| = 1/n* and Y27 1/n*
is a convergent p-series (p = 4 > 1). We could establish its convergence using
Theorem 14, but there is no need to do that since every absolutely convergent series
is convergent (Theorem 13).

_u

X (x — 5"
S ETLTIY- N For what values of x does the series Z (—T) converge abso-
— n

n=1
lutely? converge conditionally? diverge?

Solution For such series whose terms involve functions of a variable x, it is
usually wisest to begin testing for absolute convergence with the ratio test. We have

(x _ 5)n+1 (x _ 5)"
(n + 1)2n+1 n2n
The series converges absolutely if |(x — 5)/2| < 1. This inequality is equivalent to

|x — 5| < 2 (the distance from x to 5 is less than 2), thatis,3 < x < 7. If x < 3 or
x > 7, then |(x — 5)/2| > 1. The series diverges; its terms do not approach zero.

n

= lim
n—oopn + 1

p = lim

n—o0

x—5 _
5| =

x—5
|-

If x = 3, the series is Zf’ozl ((=1)"/n), which converges conditionally (it is an
alternating harmonic series); if x = 7, the series is the harmonic series Z:OZI 1/n,
which diverges to infinity. Hence, the given series converges absolutely on the open
interval 13, 7[, converges conditionally at x = 3, and diverges everywhere else.

_u

o0 n
m For what values of x does the series Z(n+ 1)? (L> converge
= x+2

absolutely? converge conditionally? diverge?

Solution Again we begin with the ratio test.

n+1 n
2 x 2 x
(n+2) <——x+2> /(n+1) (x—+2>

. (n +2>2
= lim
n»oo \ p+1

The series converges absolutely if |x|/|x + 2| < 1. This condition says that the
distance from x to O is less than the distance from x to —2. Hence x > —1. The
series diverges if |x|/|x + 2| > 1, thatis, if x < —1. If x = —1, the series
is Y7 o(—=1)*(n + 1), which diverges. We conclude that the series converges
absolutely for x > —1, converges conditionally nowhere, and diverges for x < —1.

_=u

p = lim
n—oo

x
x+2

x | xl
42| |jx+2
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When using the alternating series test, it is important to verify (at least mentally)
that all three conditions (i)—(iii) are satisfied. (As mentioned above, conditions (i)
and (ii) need only be satisfied ultimately.)

[3CT TR Test the following series for convergence:
-1 n—1" 1" 7 ,
() ’?:1( ) "

® 1 1-1—1 ! +1 —i( D" 'a,, where
43 16 5 = "

_J1y/n if n is odd,
n=11/n if n is even.

Solution

(a) Here, a, = (n + 1)/n is positive and decreases as n increases. However,
lim, .o a, = 1 # 0. The alternating series test does not apply. In fact, the
given series diverges because its terms do not approach 0.

(b) This series alternates, a, is positive, and lim,—, o a, = 0. However, {a,} is not
decreasing (even ultimately). Once again, the alternating series test cannot be
applied. In fact, since

1 1 1
—_——— e — e —— — converges, and

4 16 (2n)?
1+1+1+ + L + diverges to infinit
— —_ e een 1 €S 10 1 s
3°5 2n —1 & m

it is readily seen that the given series diverges to infinity.

Rearranging the Terms in a Series

The basic difference between absolute and conditional convergence is that when
a series Y - a, converges absolutely, it does so because its terms {a,} decrease
in size fast enough that their sum can be finite even if no cancellation occurs due
to terms of opposite sign. If cancellation is required to make the series converge
(because the terms decrease slowly), then the series can only converge conditionally.

Consider the alternating harmonic series

This series converges, but only conditionally. If we take the subseries containing
only the positive terms, we get the series

i lyly
375777

which diverges to infinity. Similarly, the subseries of negative terms
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diverges to negative infinity.

If a series converges absolutely, the subseries consisting of positive terms and
the subseries consisting of negative terms must each converge to a finite sum. If a
series converges conditionally, the positive and negative subseries will both diverge,
to oo and —oo, respectively.

Using these facts we can answer a question raised at the beginning of Sec-
tion 9.2. If we rearrange the terms of a convergent series so that they are added in
a different order, must the rearranged series converge or not, and if it does will it
converge to the same sum? The answer depends on whether the original series was
absolutely convergent or merely conditionally convergent.

Convergence of rearrangements of a series

(a) If the terms of an absolutely convergent series are rearranged so that addition
occurs in a different order, the rearranged series still converges to the same sum
as the original series.

(b) If a series is conditionally convergent, and L is any real number, then the terms
of the series can be rearranged so as to make the series converge (conditionally)
to the sum L. It can also be rearranged so as to diverge to oo or to —oo, or just
to diverge.

Part (b) shows that conditional convergence is a rather suspect kind of convergence,
being dependent on the order in which the terms are added. We will not present a
formal proof of the theorem but will give an example suggesting what is involved.
(See also Exercise 30 below.)

In Section 9.5 we will show that the alternating harmonic series
e n—1
-1 1 1 1 1 t 1
s -4y
n; n 2 + 3 4 + 5 6 + 7

converges (conditionally) to the sum In2. Describe how to rearrange its terms so
that it converges to 8 instead.

Solution Start adding terms of the positive subseries

1+ ! + ! +
35 ’
and keep going until the partial sum exceeds 8. (It will, eventually, because the

positive subseries diverges to infinity.) Then add the first term —1/2 of the negative
subseries

This will reduce the partial sum below 8 again. Now resume adding terms of the
positive subseries until the partial sum climbs above 8 once more. Then add the
second term of the negative subseries and the partial sum will drop below 8.
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Keep repeating this procedure, alternately adding terms of the positive subseries to
force the sum above 8 and then terms of the negative subseries to force it below
8. Since both subseries have infinitely many terms and diverge to oo and —oo,
respectively, eventually every term of the original series will be included, and the
partial sums of the new series will oscillate back and forth around 8, converging to
that number. Of course, any number other than 8 could also be used in place of 8.

||
| Exercises 9.4
Determine whether the series in Exercises 1-12 converge 2 i x" 2 Z (4x + 1)
absolutely, converge conditionally, or diverge. ‘ —~ 2" Inn ) — n3
00 -1 o0
=1 1" 0 n 3 n
1. e 2. o (2x +3) 1 1
R 2 i B ) S “ 2\t
n= n=
© sy 2n * 25. Does the alternating series test apply directly to the series
cos(nm) (=1
3. Z ey, 4. Z - 3%, (1/n) sin(ns/2)? Determine whether the series
n=1 n=1 converges.
X (12— 1) X (—2)n % 26. Show that the series Z;:O:I ap converges absolutely if
5. N S 6. Z py a, = 10/n? for even n and a, = —1/10n3 for odd n.
n= n=1 # 27. Which of the following statements are TRUE and which are
X (—1yn © ., FALSE? Justify your assertion of truth, or give a
7. py 8. Z 2l counterexample to show falsehood.
n=1 n=0 (a) If Y02 | an converges, then Y oo (—1)"a, converges.
0 0 Wy 20n2 —~n—1 1 2. 100 cos(nm) (b) If Zzozl ay, converges and Z:ozl (—1)"a, converges,
;(_ n34+n24+133 Z 2n+3 then Z:ozl ap converges absolutely.
o o (c) If Zf‘il a, converges absolutely, then
n! sin(n + 1/2)m
1. (—100)" 12. Z Inlnn Z:il (—=1D"ay converges absolutely.
! o . n=10 . * 28. (a) Use a Riemann sum argument to show that
For the series in Exercises 1316, find the smallest integer n that
ensures that the partial sum s, approximates the sum s of the n
series with error less than 0.001 in absolute value. Inn! > / Intdt =nlnn—n+1.
1
s _1\n
13> -yt 1. 3 &Y
n=1 n?+1 =0 @n)! nlx"
(b) For what values of x does the series Z:il —
15 Xw:(_ -1 n 16 i ~ 3" converge absolutely? converge conditionally? diverge?
: « on ) 0(— ) n (Hint: First use the ratio test. To test the cases where
h= n=

Determine the values of x for which the series in Exercises

p = 1, you may find the inequality in part (a) useful.)
o (2n)ix"

17-24 converge absolutely, converge conditionally, or diverge. %29, For what values of x does the series Zn 1 m
= 2°"(n!

" i o 18 i (x —2) ;;nverge ;bsolgtel};i; C(;rls\/erge conditionally? diverge?

Sy . - 2o int: see Exercise 42 of Section 9.3.

"= n= * 30. Devise procedures for rearranging the terms of the

0 00 n alternating harmonic series so that the rearranged series

x — 1 1 3x 42 .

19. ;(_1)" (2 n ; 20. ; 1 ( = ) (a) diverges to oo, (b) converges to —2.
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ITION

This section is concerned with a special kind of infinite series called a power series,
which may be thought of as a polynomial of infinite degree.

Power series
A series of the form

o
Zan(x —c) ' =ap+a1(x —c) +ax(x —c)2 + az(x — c)3 + .-
n=0

is called a power series in powers of x — ¢ or a power series about the point
x = c¢. The constants ag, a1, dz, . .. are called the coefficients of the power
series.

Since the terms of a power series are functions of a variable x, the series may or
may not converge for each value of x. For those values of x for which the series
does converge, the sum defines a function of x. For example, if —1 < x < 1, then

1

l+x+x2+x3+... = )
1—-x

The geometric series on the left side is a power series representation of the function
1/(1 — x) in powers of x (or about the point x = (). Note that the representation
is valid only in the open interval ]—1, 1{ even though 1/(1 — x) is defined for all
real x except x = 1. For x = —1 and for |x| > 1 the series does not converge, so it
cannot represent 1/(1 — x) at these points.

The point c is the centre of convergence of the power series Y - a,(x — ¢)".
The series certainly converges (to ap) at x = c. (All the terms except possibly
the first are 0.) Theorem 17 below shows that if the series converges anywhere
else, then it converges on an interval (possibly infinite) centred at x = ¢, and it
converges absolutely everywhere on that interval except possibly at one or both of
the endpoints if the interval is finite. The geometric series

T+x+x>+x>+--
is an example of this behaviour. It has centre of convergence ¢ = 0, and converges

only on the interval |—1, 1[, centred at 0. The convergence is absolute at every
point of the interval. Another example is the series

A | x—-5 (x-52 (x-=5)73
—5) =
n;nzn(x FE e T T

which we discussed in Example 4 of Section 9.4. We showed that this series con-
verges on the interval [3, 7[, an interval with centre x = 5, and that the convergence
is absolute on the open interval 13, 7[ but is only conditional at the endpoint x = 3.

For any power series > .- a, (x — ¢)" one of the following alternatives must hold:
(i) the series may converge only at x = ¢,

(ii) the series may converge at every real number x, or
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(iii) there may exist a positive real number R such that the series converges
at every x satisfying |[x — ¢| < R and diverges at every x satisfying
|x —¢| > R. In this case the series may or may not converge at either of
the two endpointsx =c — Randx = c + R.

In each of these cases the convergence is absolute except possibly at the endpoints
x =c¢ — Rand x = ¢ + R in case (iii).

PROOF We observed above that every power series converges at its centre of
convergence; only the first term can be nonzero so the convergence is absolute. To
prove the rest of this theorem, it suffices to show that if the series converges at any
number xo 7% ¢, then it converges absolutely at every number x closer to ¢ than xg
is, that is, at every x satisfying |x — ¢| < |xo — ¢|. This means that convergence at
any xp # ¢ implies absolute convergence on ]Jc — xo, ¢ + xo[, so the set of points x
where the series converges must be an interval centred at c.

Suppose, therefore, that Zf;o an(xo—c)" converges. Thenlima,(xo—c)" = 0,
S0 |a, (xog—c)"| < K forall n, where K is some constant (Theorem 1 of Section 9.1).
Ifr =[x —cl|/lxp — ¢| < 1, then

D lanx — )" =Y lan(xo — )"
n=0 n=0

Thus Y77, a,(x — c)" converges absolutely.

x—cl

Xp—C

By Theorem 17, the set of values x for which the power series Z;.f:o a,(x — o)
converges is an interval centred at x = ¢. We call this interval the interval of
convergence of the power series. It must be of one of the following forms:

(i) the isolated point x = ¢ (a degenerate closed interval [c, c]),
(i) the entire line ]—o0, o[,

(iii) a finite interval centred at c:
[c—R,c+R],or[c—R,c+R[,or]lc—R,c+Rl],or]c -~ R,c+ RJ.

The number R in (iii) is called the radius of convergence of the power series. In
case (i) we say the radius of convergence is R = 0; in case (ii) it is R = oc.

The radius of convergence, R, can often be found by using the ratio test on the

power series: if
= (lim ) [x —c|
n—>o0

exists, then the series ) - a,(x — ¢)" converges absolutely where p < 1, that is,
where

|x—c|<R=1/ lim
n—>00

The series diverges if |[x — ¢| > R.

Anp1 (x — )1 Ant1

an

p = lim
n—0o0

ap(x —c)"

An41

Aan

Radius of convergence

ni

exists or is 0o, Then the power series

Suppose that L = lim,,_,

: 2 Sy
> oipan(x — ¢)” has radius of convergence R = 1/L. (If L = 0, then
R=o0;if L =00, then R =0.)
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m Determine the centre, radius, and interval of convergence of

i 2x + 5)"
— 2+ 13

Solution The series can be rewritten

2 (5) i (+3)

n=0
The centre of convergence is x = —5/2. The radius of convergence, R, is given by
2 n+1 1
1 (") 2 2 nt+l 2
— =L =lim & 5n+1)+1 =1im——n—+——=—.
R 2 1 3(n+1)2+1 3
3) n2+1

Thus R = 3/2. The series converges absolutely on ]—-5/2 — 3/2, =5/2 + 3/2[=
1—4, —1[, and it diverges on ]—oco, —4[ and on }—1, cof. At x = —1 the series
is 300 1/(n% + 1); at x = —4itis Y oo o(—1)"/(n* + 1). Both series converge
(absolutely). The interval of convergence of the given power series is therefore
[—4, —1].

m Determine the radii of convergence of the series
00 n o0
x
J— (=
(a) 20 - and (b) Eon.x .
n=| n=

Solution

(a) L = |lim ! 1 =1im—L=1im ! = 0. Thus R = oc.
n+1)!/) n! (n+ 1) n+1
This series converges (absolutely) for all x. The sum is ¢*, as will be shown in
Example 1 in the next section.
(n + 1)!
n!
This series converges only at its centre of convergence, x = 0.

(b) L = |lim

‘:lim(n—{—l):oo.ThusR:O

Algebraic Operations on Power Series

To simplify the following discussion, we will consider only power series with x = 0
as centre of convergence, that is, series of the form

o0
apx" = ap+aix + ax? +azxd +---.
n=0

Any properties we demonstrate for such series extend automatically to power series
of the form )2 a,(y — ¢)" via the change of variable x = y — c.

First we observe that series having the same centre of convergence can be added
or subtracted on whatever interval is common to their intervals of convergence. The
following theorem is a simple consequence of Theorem 7 of Section 9.2 and does
not require a proof.
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Let Y o2 yapx" and Y 2 b, x" be two power series with radii of convergence R,
and Ry, respectively, and let ¢ be a constant. Then

(i) >_02,(ca,) x" has radius of convergence R,, and

o0 xX
Z(ca,,) x"=c Zan x"
n=0

n=0

wherever the series on the right converges.

(i) Z:io (a, + b,) x" has radius of convergence R at least as large as the smaller
of R, and R, (R > min{R,, Rp}), and

o0 oo o0
Z(a,, +b)x" = Zanx” + Zb,,x”
n=0 n=0 n=0

wherever both series on the right converge.

The situation regarding multiplication and division of power series is more com-
plicated. We will mention only the results and will not attempt any proofs of our
assertions. A textbook in mathematical analysis will provide more details.

Long multiplication of the form

(@0 + ayx + ax® + - Y(bo + brx + bpx* + )
= agho + (aob1 + arbo)x + (aobs + arby + azbo)x* + - - -

leads us to conjecture the formula
o Nz S0
Z apx” } Z b.x" ) = Zc,,x",
n=0 n=0 n=0
where

s ;
Ch=aphy + aibyy+ oo aby = Zajb,,_j.
=0

The series Y . c,x" is called the Cauchy product of the series > oo, a,x" and

Y oo bax™. Like the sum, the Cauchy product also has radius of convergence at
least equal to the lesser of those of the factor series.

|_Example 3 BRI

1 o0
_— = 2 3 e e == n
l_x—1+x+x +x7 4+ —Ezox

holds for —1 < x < 1, we can determine a power series representation for 1 /(1 —x)?
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by taking the Cauchy product of this series with itself. Since a, = b, = 1 for
n=0,1,2,..., wehave

CnZXn:lzn—i—l
=0

and

1

= 1+ 2+ 37 A =) (1
(1'_-x) =0

which must also hold for —1 < x < 1. The same series can be obtained by direct
long multiplication of the series:

1 + x + xX + x* +

x 1 + x + x2 4+ x3 4+
I+ x 4+ x2 4+ x3 4+

x + x2 + ¥ o+

x2 4+ x4+

x3 o+

1 + 2x + 3x* + 4x3 +

Long division can also be performed on power series, but there is no simple rule
for determining the coefficients of the quotient series. The radius of convergence
of the quotient series is not less than the least of the three numbers R;, R», and R3,
where R; and R; are the radii of convergence of the divisor and dividend series and
R3 is the distance from the centre of convergence to the nearest complex number
where the divisor series has sum equal to 0. To illustrate this point, observe that 1
and 1 — x are both power series with infinite radii of convergence:

1=140x+0x*+0x+---  forallx,
l—x=1— x+0x2+0x*+... for all x.
Their quotient, 1/(1 — x), however, only has radius of convergence 1, the distance

from the centre of convergence x = O to the point x = 1 where the denominator
vanishes:

i =14x+x24+x>+.-- for |x| < 1.
—x

Differentiation and Integration of Power Series

If a power series has a positive radius of convergence, it can be differentiated
or integrated term by term. The resulting series will converge to the appropriate
derivative or integral of the sum of the original series everywhere except possibly
at the endpoints of the interval of convergence of the original series. This very
important fact ensures that, for purposes of calculation, power series behave just like
polynomials, the easiest functions to differentiate and integrate. We formalize the
differentiation and integration properties of power series in the following theorem.
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Term by term differentiation and integration of power series

If the series Z;’;O a,x" converges to the sum f(x) on an interval ]—-R, R[, where
R > 0, that is,

o0
f@ =Y ax"=a+ax+ax’*+tax*+-.-, (=R <x <R),
n=0

then f is differentiable on ]—R, R[ and

o0
)"()C):X:nanx"_1 =a, + 2ax +3asx>+ -+, (—R < x < R).
n=1

Also, f is integrable over any closed subinterval of ]—R, R, and if |x| < R, then

* b a al ar
tdt: " n+l= —_— 2 — 3
/Of() §n+1x a0x+2x+3x+

PROOF Let x satisfy —R < x < R and choose H > O such that |x| + H < R.
By Theorem 17 we then have!

oo
D laal(x| + H)" = K < co.
n=1
The Binomial Theorem (see Section 9.9) shows thatif n > 1, then
", /n
x4+ =x"4+nx""'h+ ( ) x" kR

Therefore, if |h| < H we have

n

I(x+h)n_xn_nxn—lh|= (I’l) xn—khk
= Nk
N n _e It
< n k_Hk
< ;(k) "
h)? &
< (”) x|+ HF
H? &=~ \k
|h|?
= F(|x|+H)”.
Also
nel; _ nlx*'H 1 n
|nx sz §E(|x|+H) )
Thus

Ina,x" "' < =) laul(x] + H)" = — < oo,
n=1 H nz=; H

! This proof is due to R. V§borny, American Mathematical Monthly, April 1987.
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so the series fo__l na,x"~! converges (absolutely) to g(x), say. Now

x+h)— flx X g (x + h)" — apx" — nax" " 'h
f+h) f()_g(x)’: 5
h —~ h
1 o0
< — S aul(x + h)" —x" —nx""h|
1] ;

> K |h|
< m;mnlw +H)" < 7

Letting h approach zero, we obtain | f'(x) — g(x)| < 0, so f'(x) = g(x), as
required.
Now observe that since |a,/(n + 1)| < |ay|, the series

o0

a
h(x) = anlx"“

n=0

converges (absolutely) at least on the interval ]—R, R[. Using the differentiation
result proved above, we obtain

h(x) = Zanx” = f(x).
n=0

Since #(0) = 0, we have
X

= h(x),
0

/x f@dt = /x K (t)dt =h(t)
0 0

as required.

Together, these results imply that the termwise differentiated or integrated series
have the same radius of convergence as the given series. In fact, as the following
examples illustrate, the interval of convergence of the differentiated series is the
same as that of the original series except for the possible loss of one or both endpoints
if the original series converges at endpoints of its interval of convergence. Similarly,
the integrated series will converge everywhere on the interval of convergence of
the original series and possibly at one or both endpoints of that interval, even if the
original series does not converge at the endpoints.

Being differentiable on ]—R, R[, where R is the radius of convergence, the
sum f(x) of a power series is necessarily continuous on that open interval. If the
series happens to converge at either or both of the endpoints —R and R, then f is
also continuous (on one side) up to these endpoints. This result is stated formally
in the following theorem. We will not prove it here; the interested reader is referred
to textbooks on mathematical analysis for a proof.

Abel’s Theorem

The sum of a power series is a continuous function everywhere on the interval of
convergence of the series. In particular, if } °2 / a, R" converges for some R > 0,
then

o0 o
3 n ¥
hrlrel E a,x" = E a,R",
x—R—
n=0 n=0
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andif Y 7, a,(—R)" converges, then

o
lim a,,x _Zan( R)".

x—— R+

The following examples show how the above theorems are applied to obtain power
series representations for functions.

ISENTCY: M Find power series representations for the functions
1 1

(a) (I—_x)z’ (b) m, and (C) 111(1 + x)
by starting with the geometric series
o0
Zx” 14+x+x>4+x3 4 (-l<x<l)
n=0

and using differentiation, integration, and substitution. Where is each series valid?

Solution
(a) Differentiate the geometric series term by term to obtain

nx" =14 2x +3x2 +4x3 - (-1<x<1).
1—x)2

This is the same result obtained by multiplication of series in Example 3 above.
(b) Differentiate again to get, for —1 <x < 1,

2 o0
a5y :Zn(n—l)x"_2=(1 X2+ 2x3)x+Gx x>+
n=2
Now divide by 2:

1 -1
—3=Z”(_”_)x"—2=1+3x+6x2+10x3+-~ (=l <x <.
1 -x) o 2

(c) Substitute —¢ in place of x in the original geometric series:

1 o0
1—_H=Z(—1)"t"=1—t+12—t3+t4—--- (=1 <1<1).
n=0

Integrate from O to x, where |x| < 1, to get

In(1 +x) = X I—H—Z( 1)"/ " dt

n+1 2 3 4

—Z< Do =TT - (Clexs)
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Note that the latter series converges (conditionally) at the endpoint x = 1 as well as
on the interval —1 < x < 1. Since In(1 + x) is continuous at x = 1, Theorem 20
assures us that the series must converge to that function at x = 1 also. In particular,
therefore, the alternating harmonic series converges to In2:

Use the geometric series of the previous example to find a power
series representation for tan~! x.

Solution Substitute —¢2 for x in the geometric series. Since 0 < ¢> < 1 whenever
—1 <t < 1, we obtain

1

m=1—12+t4—t6+t8—--. (—-—1<t<1)

Now integrate from 0 to x, where |x| < 1:

tan~"! /X di /X(l Pt =548 ydt
X = — — — —_—
o 1+172 0
PRI R L
=x—?+?—~—7—+3—-~
i 2n+1
=) (=D (-1<x <.
o 2n+1
However, note that the series also converges (conditionally)at x = —1 and 1. Since

tan~! is continuous at +1, the above series representation for tan~! x also holds for
these values, by Theorem 20. Letting x = 1 we get another interesting result:

Tl o1
4 375 779 T

Again, however, this would not be a good formula with which to calculate a
numerical value of 7. (Why not?)

_u

0 2
(S'ETLTNN  Find the sum of the series Z ;—n by first finding the sum of the
n=1

power series

oo
anx" =x+4x*+9x3 +16x4+ .- ..
n=1
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Solution Observe (in Example 4(a)) how the process of differentiating the geo-
metric series produces a series with coefficients 1, 2, 3, .... Start with the series
obtained for 1/(1 — x)? and multiply it by x to obtain

0 X

nx"=x+2x2+3x3+4x4+-~=(1—_x—)2.

n=1
Now differentiate again to get a series with coefficients 12, 22, 32, ...:

> d X 1+x
2. n-1 2 3

=144 9 16 = - .

ngzlnx +4x +9x“+ 16x° + Pl Tl g

Multiplication by x again gives the desired power series:

o0

1
S " =x+4x 4+ 907 162"+ = xd+x)
p (1 —x)°

Differentiation and multiplication by x do not change the radius of convergence, so
this series converges to the indicated function for —1 < x < 1. Putting x = 1/2,
we get

N[ =
X
N W

o 2

n=1

OO0 | e

-

The following example illustrates how substitution can be used to obtain power
series representations of functions with centres of convergence different from 0.

S CTLICW N Find a series representation of f(x) = 1/(2 + x) in powers of
x — 1. What is the interval of convergence of this series?

Solution Letr=x —1sothatx =t + 1. We have

24x 3+t 31+£
3
—11 t+t2 t3+ l1<t/3<1
T3\ 3T mTom T l=¢3<1)
o0 tn
= ;(_1)" T (-3 <t<3)
=
_ZO(—) pYes (—2 <x < 4).

Note that the radius of convergence of this series is 3, the distance from the centre
of convergence, 1, to the point —2 where the denominator is 0. We could have
predicted this in advance.
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Maple Calculations

Maple can find the sums of many kinds of series, including absolutely and con-
ditionally convergent numerical series and many power series. Even when Maple
can’t find the formal sum of a (convergent) series, it can provide a decimal ap-
proximation to the precision indicated by the current value of its variable Digits,
which defaults to 10. Here are some examples.

> sum(n"4/2°n, n=1..infinity);

> sum(l/n"2, n

150

1..infinity);

1

6

> sum{exp(-n"2), n=0..infinity);

> evalf(%);

[ )
§ —n
n=0 ‘

1.386318602

> f = x -> sum{x"(n-1)/n, n=1..infinity);
Xy (n—1)
fi=x—
n=1 n
> £(1); £(-1); £(1/2);
oo}
In(2)
2 In(2)

LExercises 9.5

Determine the centre, radius, and interval of convergence of each
of the power series in Exercises 1-8.

o] o2 00
1. _ 2. 3n(x+ D"
01 x+2\" - (=)'
3-2;( ! sy,
n=1 n=1
o 00 o
3
5.8 ndox -3y 6. Zn—3(4—x)"
n=0 n=1
oC oo
1+5" 4x — D
7.3 U0 g Y G
n' n
n=0 n=1

9. Use multiplication of series to find a power series
representation of 1/(1 — x)? valid in the interval ]—1, 1[.

10. Determine the Cauchy product of the series
l+x+x24x3+ - and1 —x+x%2 —x3+.... On what
interval and to what function does the product series
converge?

11. Determine the power series expansion of 1/(1 — x)2 by
formally dividing 1 — 2x + x2 into 1.

Starting with the power series representation

1
—— =1+x+xi 3+

(-1l <x <),
1—x

determine power series representations for the functions
indicated in Exercises 12-20. On what interval is each
representation valid?

12. T % in powers of x 13. m in powers of x
14. in powers of x 15. In(2 — x) in powers of x
1+ 2x
1, L
16. — in powers of x — 1 17. — in powers of x + 2
X X
18. 22 in powers of T £
X in powers of x . in powers of x
T+x P -2z P

20. Inx in powers of x — 4

Determine the interval of convergence and the sum of each of the

series in Exercises 21-26.
X

21— dx + 1657 — 6457+ = Y (—1)"(4x)"
n=0
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#23,
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ol 2 4 6 8 0 n,2n
2 3 n X X X X (—1) X
= 2. 1 X _ X oy 2r
34+4x 4+ 5x° +6x7 + Z;(n+3)x ® 2+3 4+5 2 P
1 x %2 i O Use the technique (or the result) of Example 6 to find the sums of
-t -+ —+--= the numerical series in Exercises 27-32.
3 4 5 6 fn+t 3
= o] o0
2 3 n n+tl
Ix3=2x4r+3x 56 —4x 68 4 27.2;3,, 28.20 -
= n=\
=3 D+ D+ "
n=0 2 i (n+1)2 3 i (—1)"n(n +1)
* . * . —_—
o0 " big
2 +4x% +6xt +8x0 41058+ .- =ZZ(n+1)x2” n=0 n=1
=0 o0 (_l)n—l o 1
31 ; = 32. nZ; —

If a power series Y .- ; a,(x — ¢)" has a positive radius of convergence R, then the
sum of the series defines a function f (x) on the interval Jc — R, c + R[. We say that
the power series is a representation of f(x) on that interval. What relationship
exists between the function f(x) and the coefficients ag, a;, aa, ... of the power
series? The following theorem answers this question.

Suppose the series

fO =) ax—o)" =ao+a(x —c) +arxx —c)’ +as(x —c)’ + -
n=0

convergesto f(x) forc — R < x < ¢+ R, where R > 0. Then

FWy
sE

o fork:(}, 1.2, 3,

PROOF This proof requires that we differentiate the series for f(x) term by term
several times, a process justified by Theorem 19 (suitably reformulated for powers
of x —c):

flx) = Znan(x —o)" M =ay +2a(x —¢) + 3a3(x — )P+ ---

n=1
fx) = Zn(n — Dan(x — )" 2 =2a, + 6a3(x — ¢) + 12as(x —c)* + - -
n=2

o0
fP@ =) n =D~ —k+Daytx — )"
n=k
(k+ D! (k +2)!
TR T
Each series converges forc — R < x < ¢ + R. Setting x = ¢, we obtain
F®(c) = k'ay, which proves the theorem.

=klay + apy2(x —c)* -
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Theorem 21 shows that a function f (x) that has a power series representation with
centre at ¢ and positive radius of convergence must have derivatives of all orders in
an interval around x = ¢, and it can have only one representation as a power series
in powers of x — ¢, namely

'@,

X )
£r.oN \ f (C) ™ AN L FlUAN (v — ) Y —{’\24—

Taylor and Maclaurin series
If f(x) has derivatives of all orders at x = ¢ (i.e., if f®(c) exists for
k=0,1,2,3,...), then the series
|
N fO(e)
k!

(x — o)t
k=0

7" 3)
ORI SO

o SRR

=f@+ fllox—-o+

is called the Taylor series of f about x = ¢ (or the Taylor series of f in
powers of x — ¢). If ¢ = 0, the term Maclaurin series is usually used in place
of Taylor series.

Note that the partial sums of such Taylor (or Maclaurin) series are just the Taylor
(or Maclaurin) polynomials studied in Section 4.8.

The Taylor series is a power series as defined in the previous section. Theorem 17
implies that ¢ must be the centre of any interval on which such a series converges,
but the definition of Taylor series makes no requirement that the series should con-
verge anywhere except at the point x = ¢ where the series is just f(0)+0+4+0+-- -
The series exists provided all the derivatives of f exist at x = c¢; in practice this
means that each derivative must exist in an open interval containing x = ¢. (Why?)
However, the series may converge nowhere except at x = ¢, and if it does converge
elsewhere, it may converge to something other than f(x). (See Exercise 40 at the
end of this section for an example where this happens.) If the Taylor series does
converge to f(x) in an open interval containing c, then we will say that f is analytic
atx =c.

Analytic functions

A function f(x) is analytic at x = ¢ if f(x) is the sum of a power series
in powers of x — ¢ having positive radius of convergence. (The series is its
Taylor series.) If f is analytic at each point of an open interval I, then we say
it is analytic on the interval 7.

Most, but not all, of the elementary functions encountered in calculus are analytic
wherever they have derivatives of all orders. On the other hand, whenever a power
series converges on an open interval containing ¢, then its sum f(x) is analytic at
¢, and the given series is the Taylor series of f(x) about x = c.
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Maclaurin Series for Some Elementary Functions

Calculating Taylor and Maclaurin series for a function f directly from Definition 8
is practical only when we can find a formula for the nth derivative of f. Examples
of such functions include (ax + b)", e**? In(ax + b), sin(ax + b), cos(ax + b),
and sums of such functions.

I  Find the Taylor series for e* about x = c. Where does the series
converge to e*? Where is ¢* analytic? What is the Maclaurin series for e*?

Solution Since all the derivatives of f(x) = e* are ¢*, we have £ (c) = ¢ for
every integer n > 0. Thus the Taylor series for ¢* about x = ¢ is

o € n c c e 2 e 3
Z——(x—c) =+ —o)+x—o)+=x—c)y+--.
— n! 2! 3

The radius of convergence R of this series is given by
1 ¢ 1)! ! 1
L [T DN iy i =0.
R noox e/n! nsoo (n+1)! nocon+1

Thus the radius of convergence is R = oc and the series converges for all x.

Suppose the sum is g(x):
c c e 2 e 3

gr)=e'tefx -+ ko) + mlx—o) -

By Theorem 19, we have
, ¢ eC eC 5
gx)=0+e +52(x—6)+§3(x—6) +---
! . !
=ec+ec(x—c)+5(x—c)2+~~ =gx).

Also, g(c) = e+ 0+ 0+ --. = ¢°. Since g(x) satisfies the differential equation
g'(x) = g(x) of exponential growth, we have g(x) = Ce*. Substituting x = ¢

gives e = g(c) = Ce, so C = 1. Thus the Taylor series for e* in powers of x — ¢
converges to ¢ for every real number x:

00

¥ S 8 .
e = ng(x o)
e %(x—c)z—}- g—'(x — P 4. (forall x).

In particular, setting ¢ = 0 we obtain the Maclaurin series for e*:

Ooxrx, | x2 x3
x_ i, " o
e -§n1~1+x+ 4

51t 3 Hw (forall x).
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m Find the Maclaurin series for (a) sinx and (b) cos x. Where does
each series converge?

Solution Let f(x) = sinx. Then we have f(0) = 0 and

f'(x) =cosx =1
f(x) = —sinx f'0)y=0
fO) = —cosx o0 = -
F®x) =sinx @0 =0
FOx) =cosx P =1

Thus, the Maclaurin series §or sinx 1s5
g(x)—0+x+0——+0+—+0—.--

31 5!
X X o~ (D" o
_x—§+§—ﬁ+---—;mx .

We have denoted the sum by g(x) since we don’t yet know whether the series
converges to sin x. The series does converge for all x by the ratio test:

(=D 2n+1)+1
1 2 13}
lim |2+ D+ D! — lim DY e
n—oo (-—1) 2n+1 n—00 (2n + 3)'
2n+ 1!
[x)?

lim —— '
TN 2nt3)2nt2)
Now we can differentiate the function g(x) twice to get

2 4 6

x x x
g(x)"l‘§+z—a+
§ [ B _
g'x)= —x+§—~§+——--——g(x).

Thus, g(x) satisfies the differential equation g”(x) 4+ g(x) = 0 of simple harmonic
motion. The general solution of this equation, as observed in Section 3.7, is

g(x) = Acosx 4+ Bsinx.

Observe, from the series, that g(0) = 0 and g’(0) = 1. These values determine that
A=0and B = 1. Thus, g(x) = sinx and g’(x) = cos x for all x.

We have therefore demonstrated that

( 1)n 2n+1__ x3 xS x’l
sinx = E (2n+1)' -x—3—1-+757-7‘—+ (forallx),
o 7 2 4 6
o D" 5 . X xoXx
COsx = E -@‘;ﬁx —01-—'&“"'{-?—‘5-{-' (for all x).
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Theorem 21 shows that we can use any available means to find a power series
converging to a given function on an interval, and the series obtained will turn
out to be the Taylor series. In Section 9.5 several series were constructed by
manipulating a geometric series. These include:

Some Maclaurin series
T &= e .
=Zx”:l+x+x2+x3+.~ (-l<x <1
X Lpyrel 2 3 x4
In(1+x)=z~(——’;)-—~x”»x—%—+£3——~z+n~ (—l<x<1)
Cme=l
o0 n 3 5 7
e ED g Y X Cl<x<
- x“‘“gzm—‘}x‘ sAogtgr gt Clersl

These series, together with the intervals on which they converge, are frequently
used hereafter and should be memorized.

Other Maclaurin and Taylor Series

Series can be combined in various ways to generate new series. For example, we
can find the Maclaurin series for e™* by replacing x with —x in the Maclaurin series
for e*:

00 n 2 3
&y 2 x
ez Tx —I—X“I"é—;"?"—}' (forall x).

The series for e* and ¢~ can then be subtracted or added and the results divided by
2 to obtain Maclaurin series for the hyperbolic functions sinh x and cosh x:

. e e 00 x2n+1 x3 xS

smhx=~——2,———~=§m=x+~3—!-+§?+m(forallx)
X 4o e xZn x2 x4

COth_':_"z"_:;(zn)!:HET“LZT""”' (for all x).

Remark Observe the similarity between the series for sin x and sinh x and between
those for cos x and cosh x. If we were to allow complex numbers (numbers of the
formz = x +iy, wherei> = —1 and x and y are real; see Appendix I) as arguments
for our functions, and if we were to demonstrate that our operations on series could
be extended to series of complex numbers, we would see that cos x = cosh(ix) and
sinx = —i sinh(ix). In fact,

i

e =cosx +isinx and e " =cosx —isinx,
50

eix + e—ix ) eix _ e—ix
COSX = ———— and siny = ————
2 2i
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Such formulas are encountered in the study of functions of a complex variable;
from the complex point of view the trigonometric and exponential functions are
just different manifestations of the same basic function, a complex exponential
e’ = e*™. We content ourselves here with having mentioned the interesting
relationships above and invite the reader to verify them formally by calculating
with series. (Such formal calculations do not, of course, constitute a proof, since
we have not established the various rules covering series of complex numbers.)

(a) We substitute —x2/3 for x in the Maclaurin series for ¢*:

2 1 2\2 2\ 3
- L . W
¢ 3+2!(3 n\3) 7

a 1
- Z(—l)" x*  (for all real x).
= 3np!

(b) For all x # 0 we have

P 243 245
sin x 1<x2_(x) +(x) _)

x x 31 51

xS 4n+l

i

Note that f(x) = (sin(x?))/x is not defined at x = O but does have a limit
(namely 0) as x approaches 0. If we define f(0) = O (the continuous extension
of f(x) to x = 0), then the series convergesto f(x) for all x.

(c) We use a trigonometric identity to express sin’ x in terms of cos 2x and then

use the Maclaurin series for cos x with x replaced by 2x.

5 1—cos2x 1 1(1_(2x)2 (2x)4_ )

sin“x = ———=-— =
2 2 2 2! 41
_1 2x)*  (2x)* n (2x)®
“2\ 4! 6!

o0 22n+1
= Z(—l)n m x2"+2 (fOI' all real x).
"0 n !

_n

Taylor series about points other than O can often be obtained from known Maclaurin
series by a change of variable.

S ETLTIW: B Find the Taylor series for In x in powers of x — 2. Where does the
series converge to Inx?

Solution Note thatif t = (x — 2)/2, then

1nx=1n(2+(x—2))=ln[2< x_z)]:ln2+ln(1+t).
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We use the known Maclaurin series for In(1 + ¢):
Inx =In2 +In(1 4+ ¢)

2 t3 t4
:1n2+t—5+§“z—"'

-2 —2)? -2) —2)4
it G2 G=D -2

2 2 x 22 3x23 4 x 24

= (!
=ln2+z > (x —2)".
n=1

n

Since the series for In(1 + ¢) is valid for —1 < ¢ < 1, this series for In x is valid for

—1 < (x —2)/2 < 1,thatis, for0 < x < 4.
u

Find the Taylor series for cos x about the point x = 7 /3. Where is
the series valid?

Solution We use the addition formula for cosine:

( d +n) ( 7T)cosn sin( n)sinn
=c ——+ =}=cos|x — — _— - — —
cosx os (x 3 3 3 3 3 3

A T ]
[e-3 56
L)1

This series representation is valid for all x. A similar calculation would enable us
to expand cos x or sin x in powers of x — ¢ for any real c; both functions are analytic
at every point of the real line.

Sometimes it is quite difficult, if not impossible, to find a formula for the general
term of a Maclaurin or Taylor series. In such cases it is usually possible to obtain the
first few terms before the calculations get too cumbersome. Had we attempted to
solve Example 3(c) by multiplying the series for sin x by itself we might have found
ourselves in this bind. Other examples occur when it is necessary to substitute one
series into another or to divide one by another.

3 ETNIEY  Obtain the first three nonzero terms of the Maclaurin series for
(a) Incos x, and (b) tan x.

Solution

XZ )C4 x6
(a) lncosx=ln<1+(——2—!+4_!_a+...)>
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x2  x* xS 1 /x* x°
=TT tm 0" ‘5(:‘5&* )
1 x6
+.§(_§+...)_
%2 xt x®
T2 12 s

Note that at each stage of the calculation we kept only enough terms to ensure
that we could get all the terms with powers up to x°. Being an even function,
Incosx has only even powers in its Maclaurin series. We cannot find the
general term of this series, and only with considerable computational effort can
we find many more terms than we have already found. We could also try to
calculate terms by using the formula a; = f%® (0)/k! but even this becomes
difficult after the first few values of k.

(b) tanx = (sinx)/(cosx). We can obtain the first three terms of the Maclaurin
series for tan x by long division of the series for cos x into that for sin x:

TR
X -_— -— X
3 15
x2 x4 x3 .xs

1 - = r _ X X
> t o 6 T 120
x3 xs

x - ? + —22 -
x3 )CS

3 " % 7
x3 .xs

3 "6 7
2x°
15
2x3
15

1 2
Thus t = 3 S
us tan x x+3x +15x+

Again, we cannot easily find all the terms of the series. This Maclaurin series
for tanx converges for |x| < m/2, but we cannot demonstrate this fact by the
techniques we have at our disposal now. Note that the series for tanx could
also have been derived from that of Incos x obtained in part (a) because we have

d
tanx = ——— Incosx.
dx

LExercises 9.6

Find Maclaurin series representations for the functions in 1. &1 2. cos(2x?)
Exercises 1-14. For what values of x is each representation .
valid? . P ! 3. sin(x — 7w /4) 4. cos(2x — )

5. x2sin(x/3) 6. cos2(x/2)




7. sinxcosx 8. tan~!(5x?)

3
9, 1+ X 10. In(2 + x2)
1+ x2
1. % 12. (2 — 1)/x?
14+x

13. coshx —cosx 14. sinhx — sinx

Find the required Taylor series representations of the functions in
Exercises 15-26. Where is each series representation valid?

15. f(x) = e % about the point x = —1
16. f(x) = sinx about the point x = 7 /2
17. f(x) =cosx inpowersof x —

18. /(x) =Inx in powers of x — 3

19. f(x) = In(2 + x) in powers of x — 2
20. f(x) = e in powers of x + 1

21. f(x) =sinx — cosx about x = %
22. f(x) = cos? x about x = %

23. f(x) = 1/x% in powers of x + 2

4. f(0) = —

1+x
25. f(x) =xInx in powers of x — 1

in powers of x — 1

26. f(x) = xe* in powers of x + 2

Find the first three nonzero terms in the Maclaurin series for the
functions in Exercises 27-30.

27. secx 28. secxtanx
29. tan~l(e* — 1) 30. 0™ x _ |

# 31. Use the fact that (+/1 + x)2 = 1 + x to find the first three
nonzero terms of the Maclaurin series for /1 + x.
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32. Does csc x have a Maclaurin series? Why? Find the first
three nonzero terms of the Taylor series for csc x about the
point x = 7 /2.

Find the sums of the series in Exercises 33-36.

4 6 8
2 X X XL
33. 14x +E+ T +4! +

9 x5 x21 X27

X
x4 T5Ix16 Tix6d 9x2s6
2 4 6 8
X X X X
3s. 1+’3—!+'5—!+ﬁ+§!-+"'

1 1 1
36. 1
IR S TRV TR S Ti
37. Let P(x) = 1 + x + x2. Find (a) the Maclaurin series for

P(x) and (b) the Taylor series for P(x) about x = 1.

Verify by direct calculation that f(x) = 1/x is analytic at
x = a foreverya #0.

%34, 3~

= 38,

* 39, Verify by direct calculation that In x is analytic at x = a for

every a > 0.

+ 40. Review Exercise 41 of Section 4.3. It shows that the function

¥ ifx #£0

f(x):{o ifx =0

has derivatives of all orders at every point of the real line,
and f® (0) = 0 for every positive integer k. What is the
Maclaurin series for f(x)? What is the interval of
convergence of this Maclaurin series? On what interval does
the series converge to f(x)? Is f analytic at x = 0?

* 41, By direct multiplication of the Maclaurin series for ¢* and

e¥ show that e*e¥ = e**7.

Approximating the Values of Functions

We saw in Section 4.8 how Taylor and Maclaurin polynomials (the partial sums of
Taylor and Maclaurin series) can be used as polynomial approximations to more
complicated functions. In Example 4 of that section we used the Lagrange remainder
in Taylor’s Formula to determine how many terms of the Maclaurin series for ¢*
are needed to calculate e! = e correct to t3 decimal places. (We will reconsider
Taylor’s Formula in the next section.) For comparison, we obtained the same result
in Example 7 in Section 9.3 by using a geometric series to bound the tail of the

series for e.

The following example shows how the error bound associated with the al-
ternating series test (see Theorem 15 in Section 9.4) can also be used for such
approximations: when the terms a, of a series (i) alternate in sign, (ii) decrease
steadily in size, and (iii) approach zero as n — 00, then the error involved in using
a partial sum of the series as an approximation to the sum of the series has the same
sign as, and is smaller in absolute value than, the first omitted term.
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IEEIEEE Find cos 43° with error less than 1/10,000.

Solution 'We give two alternative solutions:
Method 1. We can use the Maclaurin series:

43 o BT 1 (43 2+1 437\*
CoSEo =780 T 1 T 21\ 180 41 \ 180 :

Now 437 /180 ~ 0.75049 - - - < 1, so the series above must satisfy the conditions
then the error E will satisfy

| < 1 (43;1 2"< 1
= @2n)! \ 180 eyl

The error will not exceed 1/10,000 if (2n)! > 10,000, so n = 4 will do (8! =
40,320).

0edF A ] 1 /437 2+ 1 /437\* 1 /437\® 073135
C ~ — — —— - ~ (.
21\ 180 41 \ 180 6! \ 180

Method II. Since 43° is close to 45°, we can do a bit better by using the Taylor
series about x = 77/4 instead of the Maclaurin series:

c0s43° = cos (z - f—)

4 90
cosn osn+'n'nn
= — cos — + sin — sin —
4 g0 T My

SHCHEREEES
b4 1 /N3
+<9_0—§(9_0) +>]
Since
1 1
a(%)4<5(§6>3<m%6’

we need only the first two terms of the first series and the first term of the second
series:

1 b 4 1 /m\2
3 — (14 Z — 2 (Y ) ~0.731358 - - .
cos ﬁ( 9 2(90>)

(In fact, cos 43° = 0.7313537 - - )
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When finding approximate values of functions, it is best, whenever possible, to use a
power series about a point as close as possible to the point where the approximation
is desired.

Functions Defined by Integrals

Many functions that can be expressed as simple combinations of elementary func-
tions cannot be antidifferentiated by elementary techniques; their antiderivatives
are not simple combinations of elementary functions. We can, however, often find
the Taylor series for the antiderivatives of such functions and hence approximate
their definite integrals.

m Find the Maclaurin series for
E(x) = f e dt,
0

and use it to evaluate E (1) correct to 3 decimal places.

Solution The Maclaurin series for E(x) is given by

x ) t4 t6 t8
E(x)=/0 (l—t +5_§+?ﬁ—'”) di

I I t’ I *
=lr— — — — ..
( 3 52 " 7x3 T oxal )0
x3 x3 x’ x° o x 2t
=X — — —_ —_— e == _1”_—’
3+5X2! 7X3!+9X4! ngo( )(2n+1)n!

and is valid for all x because the series for e is valid for all . Therefore,

1 1 1
EMHy=1—-+—= -
W 3+5X2! 7><3!+
1 1 1 —1)*!
~1l—-=+ =D

3t sxa Txn T T i hm—nr

We stopped with the nth term. The etror in this approximation does not exceed
the first omitted term, so it will be less than 0.0005, provided (2n + 1)n! > 2,000.
Since 13 x 6! = 9,360, n = 6 will do. Thus,

1 1 1 1 1
) 3 + 10 42+2l6 1,320 747,

rounded to three decimal places.

Indeterminate Forms

Examples 1 and 2 of Section 4.9 showed how Maclaurin polynomials could be used
for evaluating the limits of indeterminate forms. Here are two more examples, this
time using the series directly and keeping enough terms to allow cancellation of the
[0/0] factors.
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€* = D In(1 +x%
(1 —cos3x)?

—sinx
m Evaluate (a) lim x——3—— and (b) lim
x>0 X x—>0

Solution
. X —sinx 0
@M= |0
x3 %
X — (x y + 5‘ bt )
= lim 3
x—>0 X
x} %
= lim 313!
x—=0 X

(€ = DIn(1 +x%) 0
®) il—rf(l) (1 —cos 3x)? [6]
(2x)?

(2x)3 3 x6

x—0 (3)6)2 (3x)4 2
(1_<1_ TR —>>

(1 + 2x) +

_ 2x4 - 2x5 +
09 L 3 2
2 4
(Ex T )
i 242+ 2 8
_xLO 9 342 2 22—81.
5_4_!x +... 2

You can check that the second of these examples is much more difficult if attempted
using I'Hopital’s Rule.

_u
| Exercises 9.7
. . . 1+x x
Use Maclaurin or Taylor series to calculate the function values _ Int _ 2
indicated in Exercises 1-12, with error less than 5 x 10~ in 15. K(x) = /1 —1 dt 16. L) = 0 cos(t) di
absolute value. 7. M * tan—12
. X) =
1. %2 2. 1/e y 12
3. ! 4. sin(0.1) 18. Find L(0.5) correct to 3 decimal places, with L defined as in
5. cos5° 6. 1n(6/5) Exercise 16.
. 9 8. sin80° 19. Find I(1) correct to 3 decimal places, with 7 defined as in
» In(0.9) - S Exercise 13.
9. cos 65° 10. tan~'0.2
11. cosh(1) 12. In(3/2) Evaluate the limits in Exercises 20-25.
Find Maclaurin series for the functions in Exercises 13-17. sin(x2) 1 —cos(x?)
20. lim — 21. lim ——=
x—0 sinhx x=0 (1 — cos x)?

A,
13. 1(x)=/ S0
0 t

Tl —1
14. J(x)=/ dt
0 t
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_ 2 i — 3si sin(sin x) — x . sinhx —sinx
2. fim (e —1—1x) 23, fim 2sin3x — 3sin2x 2. lim ( .X) 25. lim
—0x2 — In(1 + x2) x>0 5x —tan—!5x x—0 x(cos(sinx) — 1) x—0 coshx —cosx

Theorem 10 of Section 4.8 (Taylor’s Theorem with Lagrange remainder) provides
a formula for the error involved when the Taylor polynomial

(k)
e )—Zf © o

of a function f(x) about x = ¢ is used to approximate f(x) for values of x # c.
Specifically, it states the following:

Taylor’s Theorem with Lagrange remainder

If the (n + 1)st derivative of f exists on an interval containing ¢ and x, and if P,(x)
is the Taylor polynomial of degree n for f about the point x = ¢, then Taylor’s
Formula

f(x) = P,(x) + E,(x)

holds, where the error term E, (x) is given by

)

E,(x —— x - nl
ey i & ot
for some X between cand x. (E,(x) is called the Lagrange remainder in Taylor’s

Formula.)

Observe that the Lagrange form of the remainder, E, (x), looks just like the (n+ 1)st
degree termin P, (x), except that c in "1 (c) has been replaced by an unknown
number X between ¢ and x. The cases n = 0 and n = 1 of Taylor’s Formula
with Lagrange remainder are just the Mean-Value Theorem (Theorem 11 of Section
2.6) and the error formula for linear approximation (Theorem 9 of Section 4.7),
respectively.

Use Taylor’s Theorem to determine how many terms of the Maclau-
rin series for cos x are needed to calculate cos 10° correctly to 5 decimal places.

Solution Being an even function, f(x) = cosx has only even degree terms in its
Maclaurin series. The Maclaurin polynomials P», and P, for f(x) are therefore
equal:
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n

-1 ..
Py (x) = Popy1(x) = Z (_)_xzj

@)
)C2 x4 (_l)n
1— 4+ = —... 2n
2! + 4! + @2n)!

It makes good sense to use the remainder E»,; rather than the remainder E,; it is
likely to be smaller and therefore assure us of more accuracy for any given value of
n. Since f@*2(x) = (=1)"* cosx, we have, for some X between 0 and x,

2
(—l)n-HCOSX ma2| |x|2n+

[E2nq1(x)| = n 1) x S sl

For x = 10° = n/18 ~ 0.174533 < 0.2 radians, we will have 5 decimal place
accuracy if

0.22n+2

This is satisfied if n = 2 (0.26/6! < 9 x 107%), but not n = 1. Thus,

cos 10° = cos % ~1— % (118)2 + % (%)4 ~ 0.98481

to 5 decimal places.
_u

Using Taylor’s Theorem to Find Taylor and Maclaurin Series

If a function f has derivatives of all orders, then we can write Taylor’s Formula for
any n:

f(x) = Py(x) + E.(x).

If we can show that lim,,_, o, E,(x) = 0 for all x in some interval /, then we are
entitled to conclude, for x in I, that

2 %)
o= tim P =Y L o,
k=0 .

that is, we will have expressed f(x) as the sum of an infinite series of terms which
are multiples of positive integer powers of x — ¢, and the series converges for all x
in I. This series is the Taylor series representation of f in powers of x — ¢ (or the
Maclaurin series if ¢ = 0).

Use Taylor’s Theorem to find the Maclaurin series for f(x) = e*.
Where does the series converge to f(x)?

Solution Since ¢* is positive and increasing, X < e"¥! for any X < |x|. Since
F®(x) = e* for any k we have, taking ¢ = 0 in the Lagrange remainder in Taylor’s
Formula,
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(n+ 1)
X 1
|x|n+1 < e|x| |X|n+
(n+1)! (n+1)!

for any real x, as shown in Theorem 3(b) of Section 9.1. Therefore,

(n+1)
|E,(x)| = 'f——@x"“‘

< — Qasn —> oo

k x2 x3

o0
X
o — =1 —_ 4 — cee,
¢ kZ:;:kz AR TR T

and the series converges to e* for all real numbers x.

Taylor's Theorem with Integral Remainder

The following theorem is another version of Taylor’s Theorem, where the remainder
in Taylor’s Formula is expressed as an integral.

Taylor’s Theorem with integral remainder

If the (n + 1)st derivative of f exists on an interval containing ¢ and x, and if P, (x)
is the Taylor polynomial of degree n for f about the point x = ¢, then the remainder
E,(x) = f(x) — P,(x) in Taylor’s Formula is given by

B =

PROOF We start with the Fundamental Theorem of Calculus written in the form
X
fo) = F©+ f £ dt = Pox) + Egla).

(Note that the Fundamental Theorem is just the special case n = 0 of Taylor’s
Formula with integral remainder.) We now apply integration by parts to the integral,
setting
U=f®, dv =di,
dU = f"(t) dt, V==x-1.
(We have broken our usual rule about not including a constant of integration with

V. In this case we have included the constant —x in V in order to have V vanish
when ¢ = x.) We have

f=rf-fO&-1

) +/ x—0f"@)dt

— FO+ OG-0+ / =) f" () di

= Pi(x) + Ei(x).
We have thus proved the case n = 1 of Taylor’s Formula with integral remainder.

Let us complete the proof for general n by mathematical induction. Suppose
that Taylor’s Formula holds with integral remainder for some n = k:

f(x) = Pe(x) + Ex(x) = Pe(x) + % f (x =k & (@) d.




580 CHAPTER 9 Sequences, Series, and Power Series

Again we integrate by parts. Let

_ BAY -
U = f(k+1)(t), dv = (.x t) dt,

dU = f**2 (1) dt, V=

k+1
—1 .
pa

We have

f(x)=Pk(x)+k_! P

(k+1) 1 x
](ck ¥ 1()C!) (=)™ + *k+1D)! / (= 5 0y

= Pip1(x) + Epy1(x).

1 3 f(k'H)(t)(x _ t)k+1
k+1

t=x x kL £ (k42)
+ / (x — O fHEI (1) dt)
t=c c

= P(x) +

Thus Taylor’s Formula with integral remainder is valid for n = k + 1 if it is valid
for n = k. Having been shown to be valid for n = 0 (and » = 1), it must therefore
be valid for every positive integer » for which E,(x) exists.

Remark Using one or the other of the versions of Taylor’s Theorem given in this
section, all the basic Maclaurin and Taylor series given in Section 9.6 can be verified
without having to use the theory of power series.

| Exercises 9.8

1. Estimate the error if the Maclaurin polynomial of degree 5 8 ¢ 9. 2*
for sin x is used to approximate sin(0.2).
2. Estimate the error if the Maclaurin polynomial of degree 6 10. cosx 11. sinx
for cos x is used to approximate cos(1).
3. Estimate the error if the Maclaurin polynomial of degree 4 12. sin?x 13. !
for e is used to approximate %3, 4 N | 1—x
) . . 14. In(1 Use the int inder.
4. Estimate the error if the Maclaurin polynomial of degree 2 * n(x +x) (Use the integral remainder.)
for sec x is used to approximate sec(0.2). * 15, 273 (Use Exercise 13.)
X
5. Estimate the error if the Maclaurin polynomial of degree 3 Use Taylor’s Formula to obtain the Taylor series indicated in
for In(cos x) is used to approximate In(cos 0.1). Exercises 16-21.
6. Estinllute the error if the Taylor p(;llynomial of degree 3 for 16. for ¢* in powers of x — a
tan™" x i fx—1i imat
tjﬁf‘ 5 19119p0wers o s used to approximate 17. for sin x in powers of x — (7/6)
7. Estimate the error if the Taylor polynomial of degree 4 for 18. for COS% in powers of x — (z/4) _ )
In x in powers of x — 2 is used to approximate In(1.95). %19, for Inx in powers of x — 1 (Use the integral remainder.)
Use Taylor’s Formula to establish the Maclaurin series for the #20. for Inx in powers of x — 2

functions in Exercises 8—15. 21. for 1/x in powers of x 4+ 2 (Use Exercise 13.)
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m Use Taylor’s Formula to prove the Binomial Theorem: if n is a

positive integer, then

nn -~ i)an_zxz

2 +otnax" 4 x"

a+x) = @ +nalx +

S
2;(15)“” o,

n n!
where (k) = (n———k)Tk_‘
Solution Let f(x) = (a + x)". Then

n!

oD (a+x)"!

flx)y=n@+x)"" =

f%m=~1l~m—nm+xwﬁ= (a+x)"?

(n— D! (n—2)!

n!

G @t Osksm.

P =

. n! _
In particular, f™(x) = o (a + x)"™" = n!, a constant, and

f(k)(x) =0 forall x, if k > n.

!
For 0 < k < n we have f ® ) = (—n—k—)—' a"k, Thus, by Taylor’s Theorem with
n—k)!
Lagrange remainder,

PO Y NS Al C.
(a+x)—f(x)—k2=;: T !

n ! . n ~
=Z(n__nwa kxk+0=Z(Z) at ki,

k=0 k=0

This is, in fact, the Maclaurin series for (a + x)", not just the Maclaurin polynomial
of degree . Since all higher-degree terms are zero, the series has only finitely many
nonzero terms and so converges for all x.

Remark If f(x) = (a + x)", where a > 0 and r is any real number, then
calculations similar to those above show that the Maclaurin polynomial of degree
nfor f is

s e r =D =2 (r—k+ 1)
P.(x)=d + kz_; ] a kxk.
However, if r is not a positive integer, then there will be no positive integer n
for which the remainder E,(x) = f(x) — P,(x) vanishes identically, and the
corresponding Maclaurin series will not be a polynomial.
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The Binomial Series

To simplify the discussion of the function (¢ + x)” when r is not a positive integer,
we take ¢ = 1 and consider the function (1 + x)". Results for the general case
follow via the identity

(a+x) =a" (1+§>r,

valid for any a > 0.
If r is any real number and x > —1, then the kth derivative of (1 4 x)" is

rr=Dr=2)--(r—k+1) 1 +x)F, (k=1,2,..)).

Thus, the Maclaurin series for (1 4+ x)" is

s

X r(r—Dr—2)---(r—k+1)
1+ Z i x*

k=1
which is called the binomial series. The following theorem shows that the binomial
series does, in fact, converge to (1 + x)" if |x| < 1. We could accomplish this by
writing Taylor’s Formula for (1 + x)" with ¢ = 0 and showing that the remainder
E,(x) = 0asn — o0o. (We would need to use the integral form of the remainder
to prove this for all |x| < 1.) However, we will use an easier method, similar to the
one used for the exponential and trigonometric functions in Section 9.6.

The binomial series
If |x| < 1, then

rir=10 5 r(r=1)r-2)
ok 3! ks
:1+Zr(r~1)(r~—221~~(r—n+1)xn

(T+x)Y =1+rx+

(-1 <x <1).

n=1

PROOF If |x| < 1, then the series

f(x):1+Zr(i’—1)(r—2)...(r_n+1)xn
n=1

n!

converges by the ratio test, since

r(r—l)(r—2)---(r—n—l—l)(r—n)xn_H
Pl =D =2-—n+D_,
n! *
—n
= lim x| = x| < L.
n>ooln 4+ 1

Note that f(0) = 1. We need to show that f(x) = (1 + x)" for |x| < 1.
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By Theorem 19, we can differentiate the series for f(x) termwise on |x| < 1
to obtain

r(r-—1)(r—2)-~~(r—n+1)xn_1
(n—1!

re =D —2)---(r—n)
n!

I
gk

f'x)

3
Il
-

x",

M

Il
=}

n

We have replaced n with n + 1 to get the second version of the sum from the first
version. Adding the second version to x times the first version, we get

(1+x)f/(x)=zr(r_ Dr=2---¢=n x"

!
=0 n:

i r(r— D@ —2)-- (r—n+1)x"
o (n—1)

x" [(r —n) +n]

n!

+§:r(r—1)(r—2) (r—n+1)

=r f(x).
The differential equation (1 + x) f'(x) = rf (x) implies that

d fx) _d +x) fx) —r(1+x)" 1 f(x)
dx (1+x)y A+ x)*

=0

for all x satisfying |x| < 1. Thus, f(x)/(1 4+ x)" is constant on that interval, and
since f(0) = 1, the constant must be 1. Thus f(x) = (1 4+ x)".

= J

Remark For some values of r the binomial series may converge at the endpoints
x = lorx = —1. As observed above, if r is a positive integer, the series has only
finitely many nonzero terms, and so converges for all x.

1
m Find the Maclaurin series for .
v1+x
Solution Herer = —(1/2):

1

=(1+x)"""
1+x

b))

Ix3 , 1x3x5

— —_— 3 P
=1- 21~ E TR
0 1x3x5% % (2n—1)
n n
1+Z;( D T X"
n=

This series converges for —1 < x < 1. (Use the alternating series test to get the
endpoint x = 1.)
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m Find the Maclaurin series for sin™! x.

Solution Replace x with —¢? in the series obtained in the previous example to
get

(—l<t<l)

1 v1x3x5x--x@2n—1) ,
=14 2
V1-1¢? ; 2'n!

Now integrate ¢ from 0 to x:

*odt x X Ix3x5x---x2n—-1)
inlx=| — = 1 ) dt
sin” " x ./0 T /0 ( +Z il

n=1
=x+§’:lx3x5x~--x(2n——l) il
o 2'p1(2n + 1)
FES RN (-1 1)
=x+—=—+—=x e —1<x<1).
6 40
=
| Exercises 9.9
Find Maclaurin series representations for the functions in where each element with value > 1 is the sum of the two
Exercises 1-6. Use the binomial series to calculate the answers. diagonally above it.
L VT+x 2. xv/1—x * 8. (An indugtivg proof of the Binomial Theorem) Use
mathematical induction and the results of Exercise 7 to
3 VIt x 4. 1 prove the Binomial Theorem:
Va4 x2
5. (1-x)72 6. (14+x)73
o . o . @+by =Y (7)o kot
+ 7. (Binomial coefficients) Show that the binomial coefficients prd k
n n—1 nY\ n-2,2 ny 43,3 n
ny n! =a" +na b+<2)a b+(3)a b+ -+ b".
kK] 7 kl(n—k
satisty
" N * 9, (The Leibniz Rule) Use mathematical induction, the
() (0) = ( ) = 1 for every . and Product Rule, and Exercise 7 to verify the Leibniz Rule for

the nth derivative of a product of two functions:

n
i
(i) if 0 < k < n, then (kL) + (Z) - (”: )

n
II:IOHOWZ that, f,(:r fixed n znl, the binomial coefficients ( fg)(n) — Z (Z) f(n—k) g(k)
, s A are the elements of the nth k=0

(o) (1)) ()
row of Pascal’s triangle: = fWg 4 pf=Dg' 4 <;>f(n—2)g//

1 1 + <’3l)f(”*3)g(3) +ooo 4 [,

1 2 1
1 3 3 1
1 4 6 4 1
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In Section 3.7 we developed a recipe for solving second-order, linear, homogeneous
differential equations with constant coefficients:

ay” + by +cy =0.

Many of the second-order, linear, homogeneous differential equations that arise
in applications do not have constant coefficients. If the coefficient functions of
such an equation are sufficiently well behaved, we can often find solutions in the
form of power series (Taylor series). Such series solutions are frequently used to
define new functions, whose properties are deduced partly from the fact that they
solve particular differential equations. For example, Bessel functions of order v are
defined to be certain series solutions of Bessel’s differential equation

x2y// + xy/ + (x2 _ v2)y =0.

Series solutions for second-order homogeneous linear differential equations are
most easily found near an ordinary peint of the equation. This is a point x = a
such that the equation can be expressed in the form

Y+ px)y +49x)y=0,

where the functions p(x) and g (x) are analytic at x = a. (Recall that a function
f is analytic at x = a if f(x) can be expressed as the sum of its Taylor series in
powers of x — a in an interval of positive radius centred at x = a.) Thus we assume

px) =) palx —a)",

n=0

gx) =) galx —a)",
n=0

with both series converging in some interval of the forma — R < x < a + R.
Frequently p(x) and g(x) are polynomials, so are analytic everywhere. A change
of independent variable § = x — a will put the point x = a at the origin & = 0, so
we can assume that a = 0.

The following example illustrates the technique of series solution around an
ordinary point.
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m Find two independent solutions in powers of x for the Hermite
equation

y' —2xy +vy=0.
For what values of v does the equation have a polynomial solution?
Solution We try for a power series solution of the form

[o.@]
y:Zanx"-——a0+a1x+a2x2+a3x3+---, so that
n=0

o0
y = E na,x"!
n=1

o0 0
y'= ) on = Dax" =3 (1420 + Dans2x"
n=2 n=0

(We have replaced n by n + 2 in order to get x" in the sum for y”.) We substitute
these expressions into the differential equation to get

i(n +2)(n + Dayiox™ — 2 inanx" +v ianx” =0

n=0 n=1 n=0

o0
or 2a;+vap+ Z[(n +2)(n + Dapy2 — 2n — v)an]x" =0.
n=1

This identity holds for all x provided that the coefficient of every power of x
vanishes; that is,

vap . 2n —v)a,

N n = > =1929""
2 2= S " )

ay = —

The latter of these formulas is called a recurrence relation.

We can choose ag and a; to have any values; then the above conditions determine
all the remaining coefficients a,, (n > 2). We can get one solution by choosing,
for instance, ap = 1 and a¢; = 0. Then, by the recurrence relation,

a3 =0, as=0, a7=0, ---, and
v

az=—§

a4=(4—v)a2:_v(4—v) =_v(4——u)
4x3 2x3x4 4!

ag = 8 —v)ay _ _v(4—v)(8—v)
6x5 6!

The pattern is obvious here:

VA — v)(8 —v)---(4n —4—v)
ayy = — (2n)' . (n = 1,2, )
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One solution to the Hermite equation is

METELOIE dISU V&8s, 74 Y0 -2 fAe A

The second solution, y,, can be found in the same way, by choosing ap = 0
anda; = 1. Itis

L}

N2=-w(6-—Vv)---@n—-2-v) ,
)’2=x+z_; T D)1 x 2

and it is an odd polynomial of degree 2n + 1 if v = 4n + 2.

Both of these series solutions converge for all x. The ratio test can be applied
directly to the recurrence relation. Since consecutive nonzero terms of each series
are of the form a,x" and a,,x" 2, we calculate

2n — v ‘_0
n+2n+1D|

) an+2xn+2
p = lim
n—=>00

= |x|® lim
n—->00

. a
‘ = |x]? lim | ==
n—>0o0

ap X" "

for every x, so the series converges by the ratio test.
-

If x = a is not an ordinary point of the equation

Y+ p()y +q(x)y =0,
then it is called a singular point of that equation. This means that at least one of
the functions p(x) and g (x) is not analytic at x = a. If, however, (x — a) p(x) and
(x — a)*q(x) are analytic at x = a, then the singular point is said to be a regular
singular point. For example, the origin x = 0 is a regular singular point of Bessel’s
equation,

xzy// + xy/ + (x2 _ v2)y — 0,
since p(x) = 1/xandg(x) = (x®2—v?)/x? satisfy xp(x) = 1 and x2g(x) = x*>—v?,
which are both polynomials and therefore analytic.

The solutions of differential equations are usually not analytic at singular points.
Howeyver, it is still possible to find at least one series solution about such a point.

The method involves searching for a series solution of the form x* times a power
series, that is,

[o.8] o0
y=(x—a¥ Za,,(x —a)' = Zan(x —a)ttH, where ag # 0.
n=0 =0

Substitution into the differential equation produces a quadratic indicial equation,
which determines one or two values of u for which such solutions can be found,
and a recurrence relation enabling the coefficients a, to be calculated for n > 1.
If the indicial roots are not equal and do not differ by an integer, two independent
solutions can be calculated. If the indicial roots are equal or differ by an integer,
one such solution can be calculated (corresponding to the larger indicial root),
but finding a second independent solution (and so the general solution) requires
techniques beyond the scope of this book. The reader is referred to standard
texts on differential equations for more discussion and examples. We will content
ourselves here with one final example.
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Find one solution, in powers of x, of Bessel’s equation of order
v = 1, namely,

X2y +xy + (P =1Dy=0

Solution We try

o0

y= Za xﬂ+n
n=0
o0

Y = (n+maxtt!
n=0
o0

Y=Y (A m (et n = Dagx

]
Il
=}

Substituting these expressions into the Bessel equation, we get

oo

Sl mGtn =1+ (e +n) = 1)anx” +ax™2 | =0
0

3
Il

e

o0
[(M +n)? — l]anx” + Y anx" =0
n=2

1l
=}

n

(12 = Dao + ((+ 1% = Darw + [ (e + 1) = ey + a2 5" =0.
n=2

All of the terms must vanish. Since ag # 0 (we may take ap = 1) we obtain

pr—1=0, the indicial equation
[+ 1)? = 1]a =0
ay_2 .
ap=——, n > 2). the recurrence relation
(w+n)?—1 ( )

Evidently u = £1; therefore a; = 0. If we take v = 1, then the recurrence relation
is a, = —an—2/(n)(n + 2). Thus,

a3 =0, as=0, a;=0,

—1 1 ~1
=S BT axaxdax6 T 20xaAx4x6x6x8

Again the pattern is obvious:

="

@ = St + )Y

and one solution of the Bessel equation of order 1 is

i D"
< 22nl(n + 1)! '

By the ratio test, this series converges for all x.
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Remark Observe that if we tried to calculate a second solution using u = —1 we
would get the recurrence relation

an-2
nn—2)°

a, =

and we would be unable to calculate a;. This shows what can happen if the indicial
roots differ by an integer.

lExercises 9.10

1. Find the general solution of y” = (x — 1)y in the form of a

power series y = ¥ - o an(x — 1)™.

2. Find the general solution of y” = xy in the form of a power

series y = ) . anx" with ag and a; arbitrary.

3. Solve the initial-value problem

y(0) =1

{y//+xy/+2y=0
y'(0) =2.

4. Find the solution of y” + xy’ + y = 0 that satisfies y(0) = 1

and y'(0) = 0.

Chapter Review

2

5. Find the first three nonzero terms in a power series solution
in powers of x for the initial-value problem
' + (sinx)y =0, y(0) = 1, y'(0) = 0.

6. Find the solution, in powers of x, for the initial-value
problem

A=x2y"—xy'+9y =0, y©0) =0, y©) =1

7. Find two power series solutions in powers of x for
3xy" +2y +y=0.

8. Find one power series solution for the Bessel equation of
order v = 0, that is, the equation xy” + y’ + xy = 0.

Key Ideas

o What does it mean to say that the sequence {a,}
¢ is bounded above? ¢ is ultimately positive?
¢ 1s alternating? ¢ is increasing?
© converges? < diverges to infinity?

o What does it mean to say that the series ) - | a,

o converges? ¢ diverges?

¢ 1s geometric? ¢ is telescoping?

¢ Is a p-series? © 1s positive?

© converges absolutely? ¢ converges conditionally?

¢ State the following convergence tests for series.
o the integral test ¢ the comparison test
¢ the limit comparison test ¢ the ratio test
¢ the alternating series test
¢ How can you find bounds for the tail of a series?
¢ What is a bound for the tail of an alternating series?
¢ What do the following terms and phrases mean?

& a power series ¢ interval of convergence

¢ radius of convergence ¢ centre of convergence
¢ a Taylor series © a Maclaurin series
¢ a Taylor polynomial © a binomial series

¢ an analytic function
e Where is the sum of a power series differentiable?
o Where does the integral of a power series converge?
e Where is the sum of a power series continuous?
o State Taylor’s Theorem with Lagrange remainder.
o State Taylor’s Theorem with integral remainder.

o What is the binomial theorem?

Review Exercises

In Exercises 1-4, determine whether the given sequence does or
does not converge, and find its limit if it does converge.

L {(—1)"6"] ) {n100+2nn]
n! 2n

3 { ln"I } 4. {———(_1)n"2 }
tan”'n wn(n — 1)
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5. Letay > /2, and let

1
a,,+1:?§n‘+— for n=1,2,3, ...

a”

Show that {a,} is decreasing and that a,, > 72 forn > 1.
Why must {a,} converge? Find lim,_, o a,.
6. Find the limit of the sequence {InIn(n + 1) — Inlnn}.

Evaluate the sums of the series in Exercises 7-10.

o
7. sz(nfi)/Z

n=1

LA |
9.;’12

o0 gqn—1

8. ; T
1
10. ; ——3

_9
1

Determine whether the series in Exercises 11-16 converge or
divergc. Give reasons for your answers.

143"

n=l n=l1

n

TE N YR v S
,,Z.: (I + ) +n/n) Z (1+2")(1+nf)
5.3

"n+1
16.
2o Z(n+2)'+1

Do the series in Exercises 17-20 converge absolutely, converge
conditi(mally, or diverge?

(! — (—1)"

n==1 n=1

(— 1)" ! n2 cos(nm)
19. 20.
Z Inlnn Z 1+n3
For tht values of x do the series in Exerc1ses 21-22 converge
absolutely? converge conditionally? diverge?

21. Z W = z)n 2. i G2 —n2x)"
n=1

n=1
Determine the sums of the series in Exercises 23-24 to within

0.001.
1
24.
; 4+ n?

o

B.) 5
n=1

In Exercises 25-32, find Maclaurin series for the given functions.

State wherc each series converges to the function.

25, 26. —>
T 3-x T 3—x2
1-— —2x
27. In(e + x2) 28—
X

30. sin(x + (7/3))
32. A+x0)3

29, xcos®x

31 (8 + )13

Find Taylor series for the functions in Exercises 33-34 about the
indicated points x = c.

33. 1/x, c=mn/4

Find the Maclaurin polynomial of the indicated degree for the
functions in Exercises 35-38.

35. 42 degree 3

c=T 34. sinx + cosx,

36. sin(1 + x), degree 3
38. V1 +sinx, degree 4

39. What function has Maclaurin series

2 n.n
x X (=1)"x
1- = -_..._E A
2!+4! = (2n)!

37. cos(sinx), degree 4

40. A function f(x) has Maclaurin series

32 —l—}—an

Find £® (0) for all positive integers k.
Find the sums of the series in 41-44.

e
1422 +—+

= s 2
a S0 + ] 2. Y
n=0 " n=0 "
oS 0 2n—4
1 -D)'m
43. —_— . _—
3 ne” the Z 2n — 1!
n=1 n=2

x3 —38(x)

X
45. If S(x) = / sin(t?) dt, find lim .
x—0 X

0
(x — tan~"lx)(e?* — 1)
2 — 1 4 cos(2x)

46. Use series to evaluate lim
x—0 2x

. . . _ 4

47. How many nonzero terms in the Maclaurin series for e™ are
1/2 .

needed to evaluate fo/ e=*" dx correct to 5 decimal places?

Evaluate the integral to that accuracy.
48. Estimate the size of the error if the Taylor polynomial of

degree 4 about x = n/2 for f(x) = Insinx is used to
approximate Insin(1.5).

Challenging Problems

1. (A refinement of the ratio test) Suppose a, > 0 and
ny1/an > n/n+ 1 for all n. Show that ) - | a, diverges.
Hint: a,, > K /n for some constant K.
2. (Summation by parts) Let {z,} and {v,} be two sequences,
andlets, =Y ,_; v
(a) Show that Y J_, uxvk = Un1Sn+ D g_; (U — g1 Isn.
(Hint: write v, = §y — Sp—1, With 59 = 0, and rearrange
the sum.)

(b) If {u,} is positive, decreasing, and convergent to 0, and
if {v,} has bounded partial sums, |s,| < K for all
n, where K is a constant, show that Zf’il Up vy CON-
verges. (Hint: show that the series Zzozl (4p — Uny1)Sn
converges by comparing it to the telescoping series

Z:il(un — Upt1)-)



+* 3. Show that ZZOZI (1/n) sin(nx) converges for every x. Hini:
if x is an integer multiple of 7, all the terms in the series are
0 so there is nothing to prove. Otherwise, sin(x/2) # 0. In
this case show that

N

Z sin(nx) =

cos(x/2) — cos((N + 1/2)x)
2 sin(x/2)

n=1 7.

using the identity

cos(a — b) — cos(a + b)

sing sinb =
2

to make the sum telescope. Then apply the result of Exercise
2(b) with u, = 1/n and v, = sin(nx).

4. Let ay, ap, az, . .. be those positive integers that do not con-
tain the digit O in their decimal representations. Thus a; = 1,
ar=2,...a9 =9, a10=11, ... a13 = 19, a9 = 21,

1

...a9p = 99, ag;y = 111, etc. Show that the series
dan
n=1
converges and that the sum is less than 90. (Hint: How many i §
of these integers have m digits? Each term 1/a,, where a,
has m digits, is less than 107" +1)

. (Using an integral to improve convergence) Recall the error
formula for the Midpoint Rule, according to which

k+1/2 '
/ floydx — flk) =
k

—1/2

f"(©)
24

where k — (1/2) < ¢ <k + (1/2).

(a) If f”(x) is a decreasing function of x, show that
S+ H—=fe+D=<f©@=<fh-3-fk-3.

(b) If (i) f”(x) is a decreasing function of x,
(ii) f 133_1 P f(x)dx converges, and (iii) f'(x) — 0 as
x — 00, show that

/(N_l 00 o0
IT—Z—)E Z f(n)—/

n=N+1 N+1/2

f)dx < o

(¢) Use the result of part (b) to approximate Y oo | 1/n” to
within 0.001.

# 6. (The number e is irrational.) Start withe = >7 \ 1/n!.

(a) Use the technique of Example 7 in Section 9.3 to show
that for any n > 0,

1 1

0<e— _—‘< o
: nn
i=0’

(Note that the sum here has » 4+ 1 terms rather than n
terms.)
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(b) Suppose that e is a rational number, say e = M/N for
certain positive integers M and N. Show that

N (e - Zj’."zo(l/j!)) is an integer.

(¢) Combine parts (a) and (b) to show that there is an integer
between 0 and 1/N. Why is this not possible? Conclude
that ¢ cannot be a rational number.

Let
o) 2k
2Kk
f(x)—z(2k+l)!
k=0
_ 2 4 4 5 8 7
SEE RS st T

(a) Find the radius of convergence of this power series.
(b) Show that f/(x) = 1+ 2xf(x).

(c) What is j—x (e—xZ f(x))?

(d) Express f(x) in terms of an integral.

. (The number 7 is irrational) Problem 6 above shows how

to prove that e is irrational by assuming the contrary and
deducing a contradiction. In this problem you will show that
7 is also irrational. The proof for 7 is also by contradiction
but is rather more complicated, so it will be broken down into
several parts.

(a) Let f(x) be a polynomial, and let

g = f0) = f'® + [P0 - fO@ + -
> . .
=Y (=) F@ ).
=0
(Since f is a polynomial, all but a finite number of terms

in the above sum are identically zero, so there are no
convergence problems.) Verify that

d  , . .
E(g (x)sinx — g(x) cosx) = f(x)sinx,

and hence that
s
/ f(x)sinxdx = g(m) + g(0).
0

(b) Suppose that & is rational, say = = m/n, where m and
n are positive integers. You will show that this leads
to a contradiction and thus cannot be true. Choose a
positive integer k such that (wm)*/k! < 1/2. (Why is
this possible?) Consider the polynomial

dm =k 1 k) i
_—_— = — L m -J (—n)/x”'k.
k! k!Z(j

j=0

flx) =
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Show that 0 < f(x) < 1/2 for 0 < x < m, and hence
that

g
0 </ fx)sinxdx < 1.
0

Thus, 0 < g(m) + g(0) < 1, where g(x) is defined as in
part (a).
(¢) Show that the ith derivative of f(x) is given by

k
. 1 K\ i G
(i) ___2 k—jo_Nj_ N TR ki
W= (J)m ) Gre—or

j=0

(d) Show that £ (0) is an integer fori = 0,1,2, . ... (Hint:
Observe for i < k that £ (0) = 0, and for i > 2k that
FU(x) =0forall x. Fork < i < 2k, show that only one
term in the sum for f (i>(0) is not 0, and that this term
is an integer. You will need the fact that the binomial

coefficients <1;) are integers.)

(e) Show that f(m — x) = f(x) for all x, and hence that
f(i)(ﬂ) is also an integer for each i = 0, 1, 2, ....
Therefore, if g(x) is defined as in (a), then g(7) + g(0)
is an integer. This contradicts the conclusion of part (b)
and so shows that & cannot be rational.

. (An asymptotic series) Use integration by parts to show that

x N
/ eV gr = /% Z(—l)”(n — D"
0 n=2

X
+(—1)N+1N!/ tN eVt dr,
0

Why can’t you just use a Maclaurin series to approximate
this integral? Using N = 5, find an approximate value for
00'1 e~ Y1t dt, and estimate the error. Estimate the error for
N =10and N = 20.
Note that the series Z;’lozz(—l)” (n — D)'x™ diverges for any
x # 0. This is an example of what is called an asymptotic
series. Even though it diverges, a properly chosen partial
sum gives a good approximation to our function when x is
small.



