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TO JOAN, NANCY, AND JOHN



PREFACE

Even though some books need none, it has become conventional to write a
preface. Many people have to be thanked for thier assistance in preparing the
manuscript or in reading the proof—but such prefaces need not be read! Another
kind of preface, however, which is sometimes not written, should be read, since
it explains the sort of background which is assumed and for whom the book is
intended.

BACKGROUND. No specific assumptions are made, but a student should
have had a preliminary course in synthetic and also in analytical plane
geometry. Permutations and combinations will come to the fore in Chapters 2
and 4, and a general feeling for algebraic processes is important throught.

A course such as the one presented here is preliminary in Toronto to several
more detailed and systematic courses in algebra and in geometry for those
students who specialize in mathematics. Students who specialize in physics or
in chemistry, however, may not meet these ideas again until they are brought
face to face with their applications, and in such a context the practical aspects of
the problem are all-important. Although a knowledge of the calculus is
desirable, as the Appendix makes clear, it is not essential for understanding the
ideas described here.

AIMS OF THE COURSE. This then was the problem—to give an introductory
course in modern algebra and geomety—and I have proceeded on the
assumption that neither is complete without the other, that they are truly two
sides of the same coin.

In seeking to coordinate Euclidean, projective, and non-Euclidean geometry
in an elementary way with matrices, determinants, and linear transformations,
the notion of a vector has been exploited to the full. There is nothing new in this
book, but an attempt has been made to present ideas at a level suitable to first-
year students and in a manner to arouse their interest. For these associations of
ideas are the stuff from which modern mathematics and many of its applications
are made.

The course has been given for three successive years, and my thanks are due
to three successive classes of mathematics, physics, and chemistry students who
have helped me to coordinate my ideas concerning the appropriate material and
the order of its presentation. Neither of these factors need be fixed and additions
or alterations can easily be made, but the underlying pattern of a linear
transformation and its geometrical interpretation in different contexts remains
the thread which connects the different topics. The brief introduction of a
quadratic transformation in Chapter 8 only serves to emphasize the pattern!



A WORD TO STUDENTS. I have tried to keep the presentation as informal as
possible in an attempt to arouse and maintain interest. Some of your established
ideas may be challenged in Chapter 8 but this is all part of the process! The
exercises have been constructed to illustrate the subject in hand and sometimes
to carry the ideas a little further, but emphasis by mere repetition has been
avoided. This matter of exercises is important. You should work at them
contemplatively and expect to be frustrated sometimes, for this is the only way
to make the ideas your own.

G. DE B. ROBINSON
University of Toronto
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VECTOR GEOMETRY



1

LINES AND PLANES

1.1 COORDINATE GEOMETRY
The study of geometry is essentially the study of relations which are suggested
by the world in which we live. Of course our environment suggests many
relations, physical, chemical and psychological, but those which concern us
here have to do with relative positions in space and with distances. We shall
begin with Euclidean geometry, which is based on Pythagoras’ theorem:

The square on the hypotenuse of a right-angled triangle is equal to the
sum of the squares on the other two sides.

The statement of this fundamental result implies a knowledge of length and
area as well as the notion of a right angle. If we know what we mean by length
and may assume its invariance under what we call “motion,” we can construct a
right angle using a ruler and compass. We define the area of a rectangle as the
product of its length and breadth. To be rigorous in these things is not desirable
at this stage, but later on we shall consider a proper set of axioms for geometry.

While the Greeks did not explicitly introduce coordinates, it is hard to
believe that they did not envisage their usefulness. The utilization of coordinates
was the great contribution of Descartes in 1637, and to us now it is a most
natural procedure. Take an arbitrary point O in space, the corner of the room,
for instance, and three mutually perpendicular coordinate axes. These lines
could be the three lines of intersection of the “walls” and the “floor” at O; the
planes so defined we call the coordinate planes. In order to describe the
position of a point X, we measure its perpendicular distances from each of these
three planes, denoting the distances x1, x2, x3 as in Figure 1.1 It is important to
distinguish direction in making these measurements. Any point within the
“room” has all its coordinates (x1, x2, x3) positive; measurements on the
opposite side of any coordinate plane would be negative. Thus the following
eight combinations of sign describe the eight octants of space about O:



FIG. 1.1

We may describe the points on the “floor” by saying that x3 = 0; this is the
equation of this coordinate plane. Limiting our attention to such points, we have
plane geometry. If we call the number of mutually perpendicular coordinate axes
the dimension of a space, then a plane has two dimensions and the position of
each point is given by two coordinates, while space as we have been describing
it has three dimensions.

1.2 EQUATIONS OF A LINE
If we assume that a line is determined uniquely by any two of its points, it is
natural to seek characterizing properties dependent on these two points only. To
this end we refer to Figure 1.2, assuming X to have any position on the line ZY,
and complete the rectangular parallelepiped as indicated. If the coordinates of
the points in question are

and if XA, AB, AC are parallel to the coordinate axes with XD parallel to ZP,
then from similar triangles,

It follows from this proportionality that if we set ZX = τZY, then



so that, in terms of coordinates,

These equations may be rewritten thus:

in which form they define the coordinates of X as linear functions of the
parameter τ. Clearly, if τ = 0 then X = Z, and if τ = 1 then X = Y.

If we set

then l1, l2, l3 are called the direction numbers of the line l. If X and X′ are any
two distinct points on l, then

so that numbers proportional to l1, l2, l3 are determined by any two distinct
points on l. Two lines whose direction numbers are proportional are said to be
parallel. We can summarize these results by writing

It follows that we may write the equations of l in the symmetric form

or

but it should be emphasized that these are valid only if all the denominators are
different from zero , i.e., provided the line l is not parallel to one of the
coordinate planes. As will appear in the sequel, it is the parametric equations
1.22 which are most significant. Moreover, they generalize easily and provide
the important link between classical geometry and modern algebra.



FIG. 1.2

Let us now assume that ZY makes angles θ1, θ2, θ3 with ZQ, ZR, ZS, i.e.,
with Ox1, Ox2, Ox3. One must be careful here to insist on the direction being
from Z to Y; otherwise the angles θi might be confused with π – θi. With such a
convention,

and λ1, λ2, λ3 are called the direction cosines of the line l. By Pythagoras’
theorem, ZP2 = ZQ2 + ZR2, so that

Thus, given l1, l2, l3, we have



and parallel lines make equal angles with the coordinate axes.
Clearly, λ1, λ2, λ3 may be substituted for l1, l2, l3 in 1.232, and we may

write the first set of equations of 1.22 in the form

EXERCISES
1. Find the equations, in parametric and symmetric form, of the line joining the

two points Y(1, –2, –1) and Z(2, –1, 0).
Solution. The parametric equations of the line in question are, by 1.22,

and in the symmetric form 1.231,

2. What are the direction cosines of the line in Exercise 1? Write the equations
of the line in the form 1.27.

3. Find parametric equations for the line through the point (1, 0, 0) parallel to
the line joining the origin to the point (0, 1, 2). Could these equations be
written in the form 1.232?

4. Find the equations of the edges of the cube whose vertices are the eight points
(±1, ±1, ±1), as in Figure 5 of Chapter 4.

5. Find the direction cosines of the edges of the regular tetrahedron with
vertices

1.3 VECTOR ADDITION



The notion of a vector in three dimensions, or 3-space, can be introduced in two
ways:

(i) A vector is a directed line segment of fixed length.
(ii) A vector X is an ordered* triple of three numbers (x1, x2, x3), called the

components of X.
It is important to have both definitions clearly in mind. If we write a small

arrow above the symbols to indicate direction, then this is determined for V = 
 in Figure 2 by the components

also, the length of ZY or the magnitude of V is given by

The position of a vector is immaterial, so we may assume it to have one end
“tied” to the origin. Sometimes a vector is called “free” if it can take up any
position, but this distinction is not made in either (i) or (ii). In this sense a
vector is more general than any particular directed segment, and could be
described as an equivalence class† of directed segments.

That the two definitions (i) and (ii) are equivalent follows from the theorem:

1.32 Two vectors are equal if and only if their components are equal.
Proof. Since the components (υ1, υ2, υ3) determine the magnitude and direction
of a vector V, the condition is certainly sufficient. Conversely, if |U| = |V| then

and if U and V have the same direction, we must have

so that k2 = 1. It follows that k = 1 and the two vectors must coincide.
Following this line of thought, we denote the vector with components (ku1,

ku2, ku3) by kU so that

k may be any real number, and |k| is k taken positive. In particular, k may be
zero, in which case kU is the zero vector 0 with components (0, 0, 0). Evidently
the magnitude of 0 is zero and its direction is undefined.

We define the sum



of two vectors U and V to be the diagonal of the parallelogram formed by U and
V. Alternatively, we may define W by means of the formulas

It will be sufficient to consider these definitions in the plane where a vector is
defined by two components only. We take the vectors U(u1, u2) and V(υ1, υ2)
and complete the parallelogram, as in Figure 1.3; it follows immediately that the
components of W satisfy the relation 1.33. But there is more to be learned from
the figure. For example, we arrive at the same result whether we go one way
around the parallelogram or the other way around, so that

FIG. 1.3

and vector addition is commutative. This is also a consequence of the
commutativity of addition as applied to the components in 1.33. Finally, by
reversing the direction of U we obtain the vector –U so that

where 0 is the zero vector. The other diagonal of the parallelogram is the vector
–U + V, as indicated.

Consider now the similarity between the formulas 1.33 defining vector
addition and the parametric equations of a line in 1.27. If we denote by Z the
vector  with components (z1, z2, z3) and by Λ the vector with components
(λ1, λ2, λ3), then the relations 1.27 are the scalar equations equivalent to the
vector equation



It follows that the notion of a vector is of central significance in Euclidean
geometry. As the title of this book suggests, our purpose is to develop these
ideas in several different contexts. Some of these contexts are officially
“algebraic” while others are “geometric,” but with this thread to guide us, we
shall see their interrelations and why it is that mathematics is a living subject,
changing and progressing with the introduction of new ideas.

FIG. 1.4

EXERCISES
1. Show that the following vectors are equal:  where O is the origin,

A is the point (2, –3, 1), P is the point (4, –6, 2), Q is the point (–7, 3, 1), and
R is the point (–5, 0, 2).

2. Find the components of the vectors  where A is the point (1, 2, 3),
B is the point (–2, 3, 1), and C is the point (3, –2, –4), and show that

3. Determine the length and the direction cosines of the vector  in Exercise 2.
What would be the components of a parallel vector of unit length?

4. If U, V, W are three arbitrary vectors, show that



(the associative law of addition).
5. Prove that the medians of any triangle ABC are concurrent.

Solution. If D is the midpoint of BC, then . Since the
centroid G divides AD in the ratio 2:1,

Since this result is symmetric in A, B, C, the medians must be concurrent in G.

1.4 THE INNER PRODUCT
In the preceding section we defined the multiplication of a vector U by a scalar
k. Such multiplication is called scalar multiplication and it is obviously
commutative,

There is another kind of multiplication of vectors which is of great
importance. To define it we use the generalized Pythagorean theorem to yield

so that



FIG. 1.5

Substituting from 1.31 and simplifying, we have

where cos φ1, cos φ2, cos φ3 are the direction cosines of XY, and cos ψ1, cos
ψ2, cos ψ3 are those of XZ. Since it is important to have a convenient
expression for the sum of products appearing in 1.44, we define the inner or
scalar product of the vectors U, V to be

where U has components (u1, u2, u3) and V as components (υ1, υ2, υ3).
All these formulas are valid also in the plane, but in this case a vector U has

only two components (u1, u2), and the angles φ1, φ2 between U and the
coordinate axes are complementary. Thus cos φ2 = sin φ1, so that

and it is convenient to write the equation of a line (note that there is now only
one equation),

in the form



Rather than try to visualize a space of more than three dimensions, one
should think of a vector V as having n components (υ1, υ2, …, υn). The sum of
two vectors, W = U + V, is defined by the equations

and the vector kV has components (kυ1, kυ2, … kυn) for any real number k.
Through use of Pythagoras’ theorem, the distance between two points Z(z1,

z2, … zn) and Y(y1, y2, … yn) is given by the relation

All that we have said generalizes so that

and

In Particular,

and such a space is still called Euclidean, of n dimensions.
Finally, inner multiplication is commutative, and since

it is also distributive. In such a relation it is not necessary to refer to the
dimensionality of the space in which the vectors lie. We consider this “abstract”
approach to vectors in the following section.

EXERCISES
1. Prove that if the vectors U and V are perpendicular, then U·V = 0, and

conversely.
2. Prove that each face of the regular tetrahedron in Exercise 5 of Section 1.2 is

an equilateral triangle, (a) by finding the lengths of the edges and (b) by
finding the angles between the edges.

3. Show that if W is perpendicular to U and also to V, then W is perpendicular



to any vector aU + bV. How would such a vector aU + bV be related to U
and V? Draw a figure to illustrate the following solution.
Solution. If W·U = 0 and W·V = 0, then

The vector aU + bV would be obtained by first constructing aU collinear with U
and bV collinear with V and then finding the diagonal of the parallelogram
formed by aU and bV.
4. If we denote the vector  in Figure 5 by W, then W = U – V. Derive the

relation 1.42 by calculating the inner product W·W.
5. Prove the two following inequalities:

1.5 LINEAR DEPENDENCE
As the simplest example of this important concept, let us consider a space of n
dimensions and points

one on each coordinate axis. If we denote the vector i by Ei, then it is an easy
extension of the ideas of the preceding section to write any vector X(x1, x2, …
xn) in the form

The vector X is said to be linearly dependent on the basis vectors Ei (i = 1, 2,
… n).

More generally, we shall say that vectors U, V, … W are linearly
dependent if there exists a set of constants a, b, … c, not all zero, such that

If no such constants exist then the vectors U, V, … W are said to be linearly
independent.

As we have mentioned before, a vector equation 1.51 or 1.52 is equivalent
to, or is a short-hand way of writing, a set of n scalar equations. For example,
the scalar equations corresponding to 1.52 are



while those corresponding to 1.52 are

We shall develop the notion of a basis in subsequent chapters, but the
vectors Ei are particularly important; not only are they pairwise orthogonal,
i.e., perpendicular, but they are also normal, i.e., of unit length. We express
both these facts by writing

In 3-space it is sometimes convenient to use the notation x1 = x, x2 = y, x3 = z,
in which case we write E1 = i, E2 = j, E3 = k. The advantage of the suffix
notation, however, is that it extends to any number of dimensions.

It is interesting to see that we could have approached our subject from a
purely abstract point of view, defining an abstract vector space υ as a set of
vectors A, B, C, … with the property of addition such that:

(i) If A and B are vectors in υ so also is A + B
(ii) A + B = B + A (commutative law of addition)
(iii) (A + B) + C = A + (B + C) (associative law of addition)
(iv) There exists a vector in υ called the zero vector 0 such that A + 0 = A =

0 + A
(v) With every vector A in υ is associated a vector –A such that

(vi) With every real number k and vector A in υ is associated a vector kA =
Ak such that k1A + k2A = (k1 + k2)A and k1(k2A) = k1k2A. We assume that 1A =
A for all A.

1.54 Definition The number of linearly independent vectors in υ is called the
dimension of υ.

We may introduce the notion of an inner product A·B by assuming this
operation to satisfy the further axioms

(vii) A·B = B·A (commutative law of inner multiplication)



(viii) A·(B + C) = A·B + A·C (distributive law)
(ix) (kA·B) = (A·kB) = k(A·B)
(x) For any vector A in υ, A·A is a real positive number or zero.
(xi) A·A = 0 implies that A = 0.

Thus we may set |A|2 = A·A and call |A|  0 the magnitude of A. Similarly, for
any two vectors A, B we may define

thus avoiding the use of components at all. However, the geometrical definitions
given in Section 3 provide the most familiar realization of a vector space υ and
the only one with which we shall be concerned.

EXERCISES
1. If A and B have coordinates (–1,2,0) and (2,1,–1) respectively, express the

vector  in terms of the basis vectors i, j, k.
2. Find the lengths of the two diagonals of the parallelogram formed by the

vectors  and  in Exercise 1.
3. Prove that the two vectors U = i – 8j + 2k and V = 6i + 2j + 5k are

orthogonal, and find |U| and |V|.
4. Find X perpendicular to 3i – j + 2k and 2i + 5j + 7k, and such that |X| = 2.
5. In the regular tetrahedron with vertices A(1,–1,–1), B(–1,1,–1), C(–1,–1,1),

D(1,1,1), prove that the vectors , ,  are linearly independent.
6. Express the vector  in Exercise 5 as a linear combination of the vectors 

and . Express each of these vectors in terms of the basis vectors i, j, k, and
show that the same relation holds.
Solution. The components of the vectors in question are

so that  =  – . In terms of i, j, k,

and clearly the same relation holds good.
7. If the centroid G of the tetrahedron in Exercise 5 is defined by the equation



find the coordinates of G.
8. Prove that the lines joining the midpoints of opposite edges of any tetrahedron

concur in the centroid of the tetrahedron.
9. Prove that the lines joining the vertices to the centroids of opposite faces

concur in the centroid of the tetrahedron.

1.6 EQUATIONS OF A PLANE
Let us begin by writing the parametric equations 1.21 or 1.22 of a line in the
vector form

or

1.63 The vectors X – Z and Y – Z are linearly dependent if and only if the
points X, Y, Z are collinear.

If now X, Y, Z are not collinear, they will define a plane π; and if U is any
point in π we may complete the parallelogram as in Figure 1.6 and write

FIG. 1.6

or



Essentially, we have established a coordinate system in π with origin Z and
axes ZX and ZY. The equation of ZX is μ = 0 while that of ZY is λ = 0, and the
coordinates of U are (λ, μ). Note that these axes ZX and ZY need not be
orthogonal; all that we do require is that λ, μ be determined by lines parallel to
ZX and ZY. Since all these steps are reversible, we conclude that

1.66 The vectors U – Z, X – Z, and Y – Z are linearly dependent if and only if
the points U, X, Y, Z are coplanar.

However, we can approach the problem from quite a different point of
view. Let us assume that π passes through the point Z(z1, z2, z3) and is
perpendicular to a given vector U. Then if X is any point of π, the vector V = 

 is perpendicular to U so that U·V = 0, or

and this is the equation of π. Note that the normal vector U is not unique since
1.67 may be multiplied through by any constant k ≠ 0.

We conclude this discussion of planes in space by computing the
perpendicular distance p from a point X(x1, x2, x3) of general position to the
plane π with equation 1.67. If this distance is measured along a normal 
making an angle θ with , then

If the equation 1.67 had been simplified and written in the form

then we would have



The important question: What locus is represented by the general linear
equation with real coefficients? can be answered by first finding a point Z(z1,
z2, z3) whose coordinates satisfy the equation, and then rearranging it in the
form 1.67. We conclude from this and Section 1.2 that:

FIG. 1.7

1.69 Every linear equation in x1, x2, x3 represents a plane; two linear
equations represent the line of intersection of the two planes, unless the two
planes are parallel.

The determination of the parametric or symmetric form of the equations of a
line l, when l is defined by two linear equations, is illustrated by the following
example.
Example. Consider the intersection l of the two planes

In order to find a point on l we first look for the intersection of l with, say, the
plane x3 = 0, which yields the point Z(2, 1, 0). The direction numbers l1, l2, l3
of l must satisfy the two linear equations

which express the fact that l is orthogonal to the normal direction of each plane
containing it. Thus

so that the parametric equations of l may be written



and the symmetric equations

The direction cosines of l are –1/ , 3/ , 2/ .

EXERCISES
1. Find the equations of the faces of the tetrahedron with vertices

and their angles of intersection.
Solution. The equation of the face ABC may be taken to be

Substituting the coordinates of B and C,

so that the equation of ABC is

Similarly, the equation of the face ABD is

The angle θ between the faces will be the angle between their normals,
properly directed, so that

2. Find the equations of the faces of the octahedron with vertices



and the angles between faces which (a) intersect in an edge, (b) intersect in a
vertex. Which faces are parallel to one another?
3. (a) Give the components of vectors parallel to each of the edges of the

octahedron in Exercise 2.
(b) Express each of these vectors in terms of the basis vectors E1, E2, E3.

4. Show that the plane u1x1 + u2x2 + u3x3 + u4 = 0
(i) meets Oxi at a distance –u4/ui(i = 1, 2, 3) from 0
(ii) is parallel to Oxi if ui = 0
(iii) is perpendicular to Oxi if uj = uk = 0(j ≠ k ≠ i)
Generalize these statements to an Euclidean space of n dimensions.

* ‘Ordered’ in the sense that the order of the components x1, x2, x3 is important, so that
e.g. (x1, x2, x3) ≠ (x2, x1, x3).

† Relations which are reflexive, symmetric, and transitive are known as equivalence
relations, and the sets to which they apply, as equivalence classes. For a
discussion of these ideas see Birkhoff and MacLane, Survey of Modern Algebra.



2

DETERMINANTS AND LINEAR EQUATIONS

2.1 THE PROBLEM DEFINED
By introducing coordinates, Descartes aimed to make it possible to solve
geometrical problems “analytically.” Thus, as we saw in Chapter 1, the study of
lines and planes in space is translated into the study of simultaneous linear
equations. There are two important aspects of this problem which become
confused when the number of variables is small, namely, (a) the finding of
actual solutions of a given system of simultaneous equations, and (b) the
investigation of the properties of such solutions in general without explicitly
determining of them. Though we shall introduce the abbreviation known as a
determinant for a “multilinear” polynomial expression and use determinants to
solve systems of linear equations, the reader should be warned that the real
importance of determinants is theoretical rather than practical.

Let us begin with the simple case

If we multiply 2.111 by a22 and 2.112 by –a12 and add, we have

Similarly, if we multiply 2.111 by –a21 and 2.112 by a11 and add, we have

For convenience in writing the solution we set

called a determinant of order 2, so that



Observe that the determinant Δ1 (Δ2) is formed by replacing the first
(second) column of Δ by the vector (a10, a20). Geometrically, we have found
the point of intersection of two coplanar lines when Δ ≠ 0. If Δ = 0, the two
lines are parallel and so have no point of intersection unless they coincide.
Example. The two equations

have as solution

The two equations

represent parallel lines since Δ = 0; they have no solution and are said to be
inconsistent.

Let us now seek the solution of the three linear equations

To proceed systematically, we begin by reducing the problem to the case n
= 2 by eliminating x3, thus:

If we multiply the equation 2.134 by a33, 2.135 by a23, and subtract, we
obtain 2.136 multiplied by a13, but for the sake of symmetry we retain all three
equations. If now we eliminate x2 by multiplying 2.134 by –a32, 2.135 by a22,



2.136 by –a12, and add, we arrive at the equation

By a similar procedure we could obtain equations for x2 and x3.
Again, let us set

so that

As before, Δi is obtained by replacing the ith column of Δ by the vector (a10,
a20, a30).

It is important to observe that the groups of terms multiplying a11, a21,
a31 in 2.15 are just the second-order determinants obtained by crossing out
the row and column containing a11, a21, a31 in Δ multiplied by ±1. In fact,
we could multiply 2.131 by

2.132 by

2.133 by

and add to obtain 2.14 directly, since

The equation 2.161 leads to an inductive definition of a determinant of order
n which runs as follows:



2.17 Definition If A = (aij) is an n × n array or matrix, the minor Mij of an
element aij in |A| is the determinant of that (n – 1) × (n – 1) matrix obtained from
A by striking out the ith row and jth column, and the cofactor Aij is defined by
the equation

We define the determinant |A| of A by the relation

Since |A| has been defined in 2.12 for n = 2 and in 2.15 for n = 3, the inductive
definition is complete.

We summarize the method developed above, expressing the solution of a
system of n linear equations in n unknowns in

2.18 Cramer’s Rule The solution of n linear equations,

is given by the formulas

where Δ = |aij| ≠ 0, and Δi is obtained by replacing the ith column of Δ by the
vector

As in the case n = 2, we may interpret these results geometrically, but we
postpone this until we have developed the general properties of determinants
suggested above, proving Cramer’s rule in Section 2.3.

EXERCISES
1. Evaluate the following determinants by multiplying out all the terms in their

“expansions” according to 2.15 above:



2. Solve the simultaneous equations

(a) by elimination and (b) by determinants.
3. Have the equations

a solution? If not, show explicitly that they are inconsistent.

2.2 DETERMINANTS
There is another definition of a determinant which is important:

2.21 Definition If (aij) = A is an n × n “array” or matrix, then the determinant of
A is the expression

where π(1), π(2), …, π(n) is a permutation of 1, 2, …, n, sgn π = ±1 according
as π is even or odd, and the summation is over all n! such permutations.

Before we attempt to reconcile these two definitions we must make clear the
notion of the evenness or oddness of a permutation. To this end consider all 3!
arrangements of the symbols 1,2,3:

By comparison with the initial arrangement 123, we may construct for each
arrangement the permutation π which accomplishes the change, by starting with
any given symbol a and setting next on the right the symbol b into which a is
transformed by π, then setting next to b = π(a) the symbol c = π(b), and so on. In
due course, we return to a, completing the cycle. If this exhausts the symbols,
we have the desired permutation π. If not, we begin again with another symbol
not already considered and so construct all the cycles of π. If we do this for the
arrangements of 2.22 we obtain



or

Cycles of length one are usually omitted and the identity permutation is
represented by I.

It is often convenient to write a permutation π in two-rowed form, where
π(a) is placed immediately beneath a. Thus, the permutations 2.24 could also be
written

It is important that the order of writing the various columns of the two-rowed
form does not matter, so that permutations can be combined as in the following
paragraph.

Observe that the permutations (123) and (132) can be written as a sequence
of transpositions, i.e., cycles of length 2, in the following manner:

since it is customary to operate or multiply permutations from right to left. It
can easily be verified that

for any transposition t, since tt = I. Thus the number of transpositions in terms of
which (123) may be expressed seems to preserve its parity, though the
transpositions themselves may differ; certainly the number of such transpositions
is not unique.

2.25 Definition A permutation is said to be even or odd according as the number
of transpositions required to express it is even or odd.

If this definition is to be significant we must prove the following

2.26 Theorem The number of transpositions in terms of which a given
permutation π on n symbols may be expressed is always even or always odd.
Proof. Consider the general case and suppose that the permutation π operates on
the subscripts of x1, x2, …, xn. To prove the theorem we construct the function



and consider the effect of π on P. If π = (ij):

Since these are the only factors of P affected by π = (ij), we conclude that
π(P) = –P for any transposition π.

On the other hand, π(P) is well defined for any permutation π, so π(P) is
either P or –P. We conclude that π must always be expressible as a product of
an even or odd number of transpositions, as required.

With these explanations, our definition 2.21 of a determinant is complete,
and it agrees with that of the preceding section for n = 2,3. (Note that I, (123),
(132) are even while (12), (13), (23) are odd permutations, yielding the signs of
2.15 as written.) In order to identify the two definitions we observe that:

(i) No term in the expansion of |A| in 2.21 has two factors aij with the same
first or second suffixes, so that |A| is linear in the elements of any row or
column.

(ii) Since the π(1), π(2), … π(n) are just 1,2, … n rearranged, we could
equally well suppose the first suffixes to be arranged in natural order 1,2, … n
and the second suffixes permuted by the inverse permutation π–1 of π; for
example, if

then turned upside down,

Clearly ππ–1 = I = π–1π, and π–1 is even or odd when π is even or odd.
From (ii) we conclude that

where At is the transpose of the matrix A, obtained by writing the ith row of A
as the ith column of At.



The property (i) of |A| is more subtle. Certainly we can collect together those
terms in 2.211 which include a11 as a factor; the number of these is (n –1)! and
they are just those terms which make up M11 = A11 as defined in the preceding
section. Similarly, we may collect those terms in 2.211 which include a21 as a
factor; they will be distinct from those which include a11 by (i) and will make
up –M21. To prove this last statement it is sufficient to observe that, to obtain
the π’s corresponding to terms containing a21 as a factor, we need only operate
on those π’s corresponding to terms containing a11 as a factor by the
transposition (12), and this accounts for the minus sign. By 2.171,

Again, we collect the terms containing a31 as a factor; they are distinct by (i)
and make up M31 = A31, and so on. We conclude that

as before.
The argument of the preceding paragraph is quite general, and by introducing

an extra transposition we can shift the first column into the second column
position or, by a further transposition, into the third column position, and so on,
leaving the minors of the elements in the column unchanged. Otherwise
described, one can think of moving aij, into the position of a11, leaving its
minor unchanged. Since this same process can be applied to both the rows of A
and those of At, i.e., the columns of A, the number of transpositions is

and since (–1)i+j = (–1)i+j–2, we have explained the significance of 2.171.
Moreover, we have generalized 2.28 so that we have the following important
result:

2.3 EVALUATION OF A DETERMINANT
While the definition 2.21 of |A| is theoretically significant, n! therein increases
so rapidly that to evaluate an n × n determinant by calculating each term in its
expansion becomes prohibitive. Nor is the calculation of the (n – 1) × (n – 1)
minors more feasible, so we must develop a third and more practical method of
evaluating |A|. To this end we prove a sequence of theorems of disarming
simplicity.



2.31 Interchanging any two columns (rows) of (A) changes |A| into – |A|.
Proof. Since such an interchange corresponds to introducing an extra
transposition into each π in 2.211, so changing the sign of each term in the
expansion of |A| or |At| = |A|, and the statement follows.

2.32 If two columns (rows) of A are the same, |A| = 0.
Proof. Suppose the ith column of A is equal to the jth column. Introducing the
extra transposition (ij) does not affect A, but |A| changes sign. Hence |A| = –|A| =
0, and similarly for At.

2.33 Multiplication of a column (row) of A by k changes |A| into k|A|.
Proof. This follows immediately from 2.211, since every term in the expansion
contains just one factor from each row and each column.

2.34 Adding a constant multiple of a column (row) of A to another column
(row) of A leaves |A| unchanged.
Proof. Let us assume we are adding k times the jth column to the jth column of
A, which yields:

The splitting into a sum of two determinants follows from 2.21 since each term
in the expansion contains just one factor from the jth column and every such
element is of the form arj + kari. The first determinant on the right is just |A|,
while the second is zero by 2.32. As usual, the result for rows follows by
considering At.

We are now in a position to give the general result of which 2.162 is a
special case:

2.35 For any n × n determinant |A|,



Proof. Consider a determinant obtained from |A| by replacing the ith column by a
replica of the jth column, and denote the result by |A0|. Expanding |A0| according
to 2.29 we have

by 2.32. The second result of 2.35 follows by considering At.
The application of these results to the evaluation of a determinant is

immediate. Our aim is to simplify the expansion by introducing as many
strategically placed zeros as possible by successive applications of 2.33 and
2.34. If we can arrange that all but one element in each row and column is zero,
then the evaluation will be reduced to a mere multiplication of nonzero
elements, after rearrangement according to 2.31. We shall study the stages of
this reduction in detail later on with reference to the matrix A rather than |A|, but
we can apply it effectively here.
Example. In order to evaluate the determinant

a first step could be to subtract the first from the second row,

and then, by adding the first column to the second column and subtracting it from
the third, obtain zeros in the first row except in the upper left-hand corner.
Again, adding twice the second row to the third,

and finally, adding twice the second column to the third column we obtain the
desired product of single terms. Of course, we could have proceeded
differently; we could indeed have stopped after the second stage and calculated
the second-order determinant



While the evaluation of a determinant is relatively easy for n = 2,3,4, it
rapidly becomes difficult, particularly if the coefficients are complicated. Using
2.31–2.35 we can now complete the

2.36 Proof of Cramer’s Rule If we multiply the equation 2.181 in order by Ai1,
Ai2, …, Ain and add, we have

from 2.29 and 2.35, and the solutions xi of the equations 2.181 are well
determined so long as Δ ≠ 0.
Example. Consider the three linear equations

for which we have seen that Δ = – 3 in the preceding example. Applying
Cramer’s rule and evaluating the determinants we have

so that

EXERCISES
1. Evaluate the three determinants in Exercise 1 of Section 2.1 by adding and

subtracting (a) rows, (b) columns, using scalar multiplication where
necessary to produce a zero element.

2. Evaluate the determinants



3. Solve the following system of equations by Cramer’s rule:

How could you have deduced the result by inspection?
4. Prove that

without expanding the determinant.

2.4 INTERSECTIONS OF THREE PLANES
We saw in Chapter 1 that a plane in a 3-dimensional Euclidean space is
represented by a linear equation

which passes through the origin if and only if a10 = 0. Let us consider the
intersection of π1 with the plane

If the normal vectors A1 = (a11, a12, a13) and A2 = (a21, a22, a23) are
parallel, then

and without loss of generality we can assume that A1 = A2, so that π1 and π2 are
distinct if a10 ≠ a20. Two parallel planes have no common points.

If π1 and π2 are not parallel, they intersect in a line l. In order to find the
equations of l we first locate a point Z(z1, z2, z3) on l so that



(e.g., we may set x3 = 0 and solve 2.41 and 2.42). Having thus determined Z,
we may write 2.41 and 2.42 in the form

from which we obtain the parametric equations of l:

where

are the direction numbers of l. Since we have assumed that π1 and π2 are not
parallel, it follows that no two of A31, A32, A33 are zero.
Example. The two planes

intersect in a line l through the point Z(1,1,0), so we may write the two
equations in the form

Thus we have

or in symmetric form

Consider now the intersection of π1, π2 and a third plane



If we assume that Δ = |A| and Δ1, Δ2, Δ3 are as defined in Section 2.1, then by
Cramer’s rule

2.44 The coordinates of the point of intersection of the three planes π1, π2, π3
are given by
Δx1 = Δ1, Δx2 = Δ2, Δx3 = Δ3 provided Δ ≠ 0.

If we assume that Δ = 0 and not all of the cofactors A11, A21, A31 are zero,
then from 2.29 and 2.35

But these are just the scalar equations equivalent to the vector equation

FIG. 2.1

where Ai is the ith row vector of A which defines the normal to the plane πi. We
conclude that these normal vectors are linearly dependent, and so coplanar by
1.66. In other words, the planes π1, π2, π3 are parallel to a fixed line l,
perpendicular to the plane containing their normals. Put in this way we analyze
the possibilities as follows.

2.45 The three planes π1, π2, π3 intersect in a line l. In this case the three



planes are linearly dependent and we may write

This is equivalent to saying that in addition to the three equations written above
we also have

so that the three rows of the nonsquare matrix

FIG. 2.2

are linearly dependent (note that we do not associate a determinant with a
nonsquare matrix). The equations of l are given in 2.422, and the first two row
vectors of Ã are linearly independent. We say that the row rank of each of A
and Ã is 2.

2.46 The three planes π1, π2, π3 intersect in three parallel lines. The direction
numbers of these lines may be taken to be the co-factors in |A|, since



by 2.35. It follows that

and similarly

The row rank of A is still 2 but that of Ã is now 3.
Example. The three planes (for which Δ = 0),

intersect in a line with direction numbers ( – 1,3,2) if k = 1, and otherwise in
three parallel lines.

2.47 The three planes are parallel. In this case we may assume that the row
vectors of A coincide so that

but that a10 ≠ a20 ≠ a30. The row rank of A is now 1 while that of Ã is 2. We
could think of this as a limiting case of 2.45.

2.48 Two of the three planes are parallel. We may suppose that A1 = A2 ≠ A3 so
that this is a limiting case of 2.46. The row ranks of A and Ã are again 2 and 3.
In order to distinguish this case from 2.46, we note that here

FIG. 2.3



whereas no such set Ak1, Ak2, Ak3 vanishes in 2.46.
There remains the case in which Δ = 0 with A11 = A2l = A31 = 0, so that the

last two column vectors of A are linearly dependent. Since the direction
numbers of the lines of intersection of π1, π2, π3 are again proportional, we
have a special case of 2.45 (2.46) in which the line (lines) is (are) parallel to a
coordinate plane, or to one of the coordinate axes.
Example. In order to illustrate this special case of 2.45 where Δ = 0 = A11 =
A21 = A31, we take the equations

in which the last three columns of Ã are proportional, and the column rank of Ã
is 2. The direction numbers of the line of intersection are (0,2,1). If we replaced
the 2 on the right side of the last equation by, say, 0, the three planes would
intersect in three lines parallel to the direction (0,2,1), as in 2.46, and the
column rank of Ã would be 3.

EXERCISES
1. Are there any solutions of the equations

Plot the three lines on a piece of graph paper and explain the significance of
your answer geometrically. Give the geometrical condition under which a
common solution should exist. What would this amount to algebraically?
2. Find the parametric equations of the line of intersection of the two planes

and prove that this line is parallel to the plane

3. Prove that the three planes in Exercise 2 intersect in three parallel lines.
Calculate the cofactors of the matrix A as in 2.46, and verify the required
proportionality relations.

4. Find the equations of the lines of intersection of the three planes



in parametric form. Can these equations be written in symmetric form?
5. Examine the nature of the intersections of the sets of planes

and determine the coordinates of all common points.

2.5 HOMOGENEOUS EQUATIONS
There is still one possibility which we have not considered, namely, that the
three planes π1, π2, π3 all pass through the origin, in which case

and the equations 2.41, 2.42, 2.43 are said to be homogeneous.
If these three homogeneous equations have a solution x1 = a1, x2 = a2, x3 =

a3, then x1 = ka1, x2 = ka2, x3 = ka3 is also a solution for all real values of k;
the three planes intersect in a line as in 2.45, and Δ = 0. Conversely, our
analysis of the preceding section shows that if Δ = 0 and 2.51 holds, the
distinction between 2.45 and 2.46 disappears whereas 2.47 and 2.48 do not
apply. Moreover, if Δ ≠ 0, the only solution is x1 = x2 = x3 = 0 by Cramer’s
rule.

In order to generalize this result we prove first the important

2.52 Theorem The necessary and sufficient condition that the row (column)
vectors of a matrix A be linearly dependent is that |A| = 0.
Proof. The necessity follows immediately since the linear relation

where Ai is the ith row vector of A and not all the ai vanish, implies that Δ = 0
by 2.34. Similarly for the columns, if αi is the ith column vector of A,

implies that Δ = 0.
Conversely, if Δ = 0 and not all cofactors Aij vanish, let Alk ≠ 0. Then



by 2.35, so that

Thus the row vectors of A are linearly dependent and the row rank of A is < n.
By an exactly similar argument, the column rank of A is <n.

On the other hand, if Δ = 0 and all Aij = 0 we must use induction. Let us take
as our inductive assumption that the vanishing of a determinant of order n – 1
implies the linear dependence of its n – 1 rows. Certainly this is true for n = 2,
3. Now consider the matrix B made up of the first n – 1 rows of A. If the row
rank of B were equal to n – 1, we would have a contradiction since, by
assumption, every minor of order n – 1 vanishes and this implies that its row
rank is <n – 1. We conclude that the row rank of B is < n – 1 so that of A must
be <n. Similarly, the column rank of A is <n, which proves the theorem.

We can now prove that

2.53 The necessary and sufficient condition that a system of n homogeneous
linear equations in n unknowns x1, x2, … xn should have a solution other
than x1 = x2 = … = xn = 0 is that the determinant of the coefficients have the
value zero.
Proof. The necessity of the condition follows immediately since Δxi = Δi = 0
for all i, by Cramer’s rule, and if some xi ≠ 0 we must have Δ = 0.

On the other hand, Δ = 0 implies that the column vectors of A are linearly
dependent by 2.52, so that there exist numbers x1, x2, … xn, not all zero, such
that

or in scalar form

but these x1, x2, … xn provide the nontrivial solution of the homogeneous
equations 2.531 which we are seeking.

The study of analytical geometry is rewarding if we do things elegantly;
otherwise it leads to a morass of ugly calculation. To suggest the elegant way,
we solve the following two problems.



2.54 Find the equation of a linear subspace through n given points. We could
take n = 2 or n = 3, but since the argument holds for any n, we consider the
general case. Let the n points be  and the required equation be

so that

We may consider 2.541 along with 2.542 as a set of n + 1 homogeneous
equations in the n + 1 unknowns a1, a2, … an, an + 1 so that we must have

Any examiner would accept this!—but by subtracting the last row from each of
the others the determinant can be reduced to one of order n,

This result should be compared with 1.67.

2.55 Find the equation of the plane through two intersecting lines

The important thing is to find the vector V(υ1, υ2, υ3) normal to each line.
But direction numbers of 2.551 are



as in 2.422, and similar expressions yield direction numbers m1, m2, m3 of
2.552. Thus if we assume the equation of the required plane is

we must have

and

Eliminating, according to 2.53 we have the required equation:

EXERCISES
1. Discuss the solutions of the system of equations

and their geometrical significance.
2. Give the equation of the plane through the three points ( – 1,2,0), (1,0,3), ( –

1,2, –2) in determinantal form and expand the determinant.
3. Write down the equation of the plane through the points (1,1,0) and ( – 1,0,2)

parallel to the line x1 = x2 = –x3.
4. Find the equation of the plane through the point (1,2,3) and the line

5. Find the equation of the plane through the two intersecting lines



6. Prove that the determinantal equation 2.543 of the linear subspace is
equivalent to the vector equation

with the condition that a1 + a2 + … + an = 1. How would you interpret this
vector equation as a set of parametric equations for the linear subspace in
question?



3

MATRICES

3.1 MATRIX ADDITION AND MULTIPLICATION
In the preceding discussion of determinants and their applications to algebra and
geometry, we have often found it convenient to speak of a square “array” or
matrix apart from the calculations involved in evaluating its determinant. We
also have seen that a matrix need not be square, but in this case a determinant is
not defined.

Let us now consider matrices of this general form: matrices which have m
rows and n columns, where m  n. Such a matrix A is best thought of as a
rectangular array of n column vectors (a1j, a2j, … amj) or m row vectors (ai1,
ai2, … ain), and we write

If B = (bij), we shall write A = B if and only if aij = bij for all i, j.
As in the case of vectors, we can add matrices by simply adding

corresponding row and column vectors, i.e., by adding elements:

Also, we can define the multiplication of a matrix A by a scalar k:

In particular, for k = 0 we have the zero matrix, all of whose elements are zero.
In order to see the significance that can be attached to a matrix and to

suggest how we may define the multiplication of two matrices, we take the
following simple calculation from everyday life.

Example. A housewife goes to market to buy 1 lb. coffee at 75¢/lb.,  lb. cheese
at 60¢/lb., 2 lb. butter at 50¢/lb., 1 doz. oranges at 40¢/doz., and 3 loaves bread
at 20¢/loaf. Her total bill is



which we have written as the inner product A·B of the two vectors A(1, ,2,1,3)
and B(75,60,50,40,20).

If we follow this suggestion by defining the product of two matrices A, B in
terms of the inner products of their row and column vectors, then such vectors
must obviously have the same number of components. Returning to the foregoing
example, convention decrees that we write:

i.e., we take the inner product of a row on the left with a column on the right.

3.14 Definition The product AB of an m × n matrix A and a p × q matrix B is an
m × q matrix C if and only if p = n. Setting

we have

where

is the inner product of the ith row vector of A and the kth column vector of B.
The product AB of an m × n matrix A and a p × q matrix B is not defined if p

≠ n; thus the existence of AB does not imply the existence of BA. Even if both AB
and BA are defined, as in the case of square matrices, they are in general
different, e.g. :

3.16 Definition If AB = BA, then A and B are said to commute.
One might imagine that definitions hedged about with so many conditions



would not lead to very significant ideas. On the contrary, though we shall not be
concerned very much with nonsquare matrices apart from vectors, square
matrices A, B and their products will play a major role in what follows.
Curiously enough, we must postpone the proof that |AB| = |A||B| until we have
developed more machinery.

3.2 TRANSPOSE OF A MATRIX
We have already introduced the notion of the transpose of a square matrix A
obtained by interchanging the matrix rows and columns, proving in 2.27 that |A|
= |At|. What is the significance of transposition for the multiplication of
matrices? We prove the following important result:

3.21 If At and Bt are the transposed matrices of A and B, then

The following example illustrates what is going on:

Proof. Let us suppose that A =(aij), B = (bkl) are n × n square matrices so that
the product AB = C is defined. Setting C = (crs) we have

Since this is the element in the sth row and rth column of BtAt, we have proved
that BtAt = Ct = (AB)t, as desired. By successive applications, we have

EXERCISES
1. If

(a) Show that 2A – B + C = 0.



(b) Verify that ABt =  = (BAt)t.

(c) Calculate ABtC and verify that

2. If

calculate X2, XY, YX, Y2.
3. Any matrix A is called symmetric if A = At. Prove that S = (A + At) is

symmetric, and determine the matrix K such that

Prove that Kt = –K; such a matrix is called skew-symmetric.
4. Express each of the matrices X, Y in Exercise 2 as a sum of a symmetric

matrix S and a skew-symmetric matrix K.
5. Prove that every integral power of a symmetric matrix is symmetric.
6. Prove that every even positive integral power of a skew-symmetric matrix is

symmetric, but every odd positive integral power is skew-symmetric.
7. If K is an n × n skew-symmetric matrix, prove that |K| = 0 if n is odd.

3.3 INVERSE OF A MATRIX
If we can multiply n × n matrices, it is natural to look for an n × n matrix which,
under multiplication, produces no change. Clearly, such a matrix is the unit
matrix

and IA = AI = A for every n × n matrix A.
With the analogy of ordinary arithmetic in mind, it would be natural to

designate the matrices



as inverses of each other, since

If we denote the inverse of A by A–1, the question arises, does every n × n
matrix A have an inverse, and is this inverse unique?

Consider the simple case where we assume that

so that

Since |A| = 0, these equations are inconsistent and the matrix A has no inverse; A
is said to be singular. Conversely, by Cramer’s rule, the inverse A–1 will
certainly exist if |A| ≠ 0, in which case A is said to be nonsingular.

We shall give two methods of constructing the inverse A–1 of a nonsingular
matrix A, the first along the lines of the above example. Let us suppose that A =
(aij), B = (bkl) are two n × n matrices such that AB = I where I is the unit n × n
matrix 3.31; then the following n equations determine the jth column vector (b1j,
b2j, … bnj) of B:

In order to solve these equations 3.33 we multiply the first by A1i, the second by
A2i, …, and the last by Ani where Aij is the cofactor of aij in A; adding, every
sum on the left vanishes except one:



But the inner product on the left is just Δ = |A| by 2.29, so that

assuming that Δ ≠ 0. Thus, if we define the adjoint of A to be the matrix of
cofactors

we have the inverse matrix A–l of A given by

from which we conclude that

Again, we encounter the problem of evaluating the determinant of a matrix.
If the matrix A is large, as happens in many practical applications, lthe
construction of A –1 by this method is difficult, and so we have recourse to quite
a different line of thought in the following section. Before proceeding further,
however, it is important to show that

Let us suppose that A–1 = , called the right inverse of A, and imagine that
solving a different set of equations 3.33 would lead to a left inverse ,
where  = I. Clearly

and the inverse A–1 is uniquely defined.

EXERCISES
1. Discuss the significance of the products

for the existence of the inverse of a nonsquare matrix. Is there any matrix A



such that A(1,2) = (1)?
2. Has the matrix X in Exercise 2 of the preceding section an inverse? Find the

inverse of the matrix Y and verify that 3.38 holds.
3. If

calculate A–1 and (At)–1 and verify that (A–1)t = (At)–1.

3.4 REDUCTION OF A MATRIX TO CANONICAL
FORM
In Chapter 2 we proved a sequence of theorems 2.31–2.34 whereby we were
able to make some progress in the evaluation of a determinant. Let us try to
organize the steps which were suggested in the first example of Section 2.3 into
a sequence of elementary operations. We propose to define them with
reference to a matrix A; it is not necessary here to assume that A is square.  As
a by-product of the discussion, we shall obtain a second construction for A–1 in
this special case.

3.41 To interchange the first two row (column) vectors of A we multiply on the
left (right) by the matrix

If the 2 × 2 matrix  is Properly placed, we may interchange any two

row (column) vectors of A.

3.42 To multiply the first row (column) vector of A by k we multiply on the left
(right) by the matrix



By placing k properly we may multiply any row (column) vector of A by k.

3.43 To add k times the first row or column vector of A to the second row or
column vector we multiply on the left or right by the matrix

If the 2 × 2 matrix  or  is Properly placed, the addition of k

times any given row or column vector can be made to any other row or column
vector.

Matrices of the form 3.411, 3.421, 3.431 are called elementary and the
operation accomplished by multiplying A on the left or right by such a matrix is
called an elementary operation.

Provided not every aij = 0, we may, by multiplying on the left and on the
right by 3.411 and 3.421, arrange that a11 = 1. When this has been
accomplished, we may, by successive multiplication by matrices 3.431 on the
left, arrange that ai1 = 0 for i > 1. After similarly arranging that a22 = 1, we
may again arrange that aj2 = 0 for j > 2 and so on until all elements below the
diagonal vanish. By further multiplication on the right we may arrange that every
element above the diagonal vanishes also. Thus we may write
(Ps … P2P1)A(Q1Q2 … Qt) = PAQ

where P = Ps … P2P1 and Q = Q1Q2 … Qt The matrix PAQ is now said to be



in canonical form.
Let us consider carefully the significance of what we have done. Certainly,

multiplication on the left (right) by 3.411 or 3.421 will not change the number
of linear relations holding between the row (column) vectors of A, though the
relations themselves will change. Nor will multiplication on the left (right) by
3.431 affect the number of such linear relations, though again the form of the
relations will change. Thus we have proved that the row rank and the column
rank of PAQ are the same as the row rank r1 and column rank r2 of A. But it
follows from 3.44 that r1 = r2 = r, which is called the rank of A. We sum up
these conclusions in the

3.45 Theorem By multiplying on the left and right by suitably chosen
elementary matrices Ps … P2P1 = P and Q1Q2 … Qt = Q, any n × n matrix A
may be reduced to canonical form PAQ = Ir, where the number of 1’s in the
diagonal of Ir is equal to the rank r (  n) of A.
We illustrate this important result by the following
Example. If we suppose that

then

so that

and the rank of A is 2.



EXERCISES
1. Determine the rank of each of the matrices

by applying elementary operations as described above.
2. How much of the reduction in Exercise l could you accomplish by operating

(a) on the left only, (b) on the right only?
3. Reduce the matrix

to canonical form by applying elementary operations (a) on both sides, (b) on
the left only, (c) on the right only.
4. Prove that a matrix A can be reduced to canonical form by elementary

operations (a) on the left only, (b) on the right only, if A is square and also
nonsingular. Are these conditions necessary as well as sufficient?

3.5 INVERSE OF A MATRIX (SECOND METHOD)
In Section 3.3 we agreed that the inverse of an n × n matrix A exists if and only
if |A| ≠ 0. Now each of the elementary matrices 3.411, 3.421, 3.431 satisfies this
condition, so we may write its inverse and conclude that

Thus if A is nonsingular, PAQ = Ir = I so that

Since the inverse of an elementary matrix is again elementary, 3.52 expresses A
as a product of elementary matrices. On the other hand, we can take the inverse
of each side of 3.52 to obtain the important result

which yields a second and more practical method of calculating A–1. However,
if A is singular, PAQ = I r of rank r < n. Certainly A = P–IrQ–1, but we cannot



take the inverse of Ir, so that no expression corresponding  to 3.53 exists if A is
singular.
Example. Consider the case where

Then

so that

The advantage of this method of calculating A–1 is just that each
“elimination” is explicit and, though the method is based on Theorems 2.31 and
2.34, no evaluations of determinants are required . We shall have more to say
on the practical computations involved after we have proved that

3.54 If A and B are both n × n matrices, then |AB| = |A||B|.
Proof. If |B| = 0, then the row vectors of B are linearly dependent by 2.52, and
since the row vectors of AB are just linear combinations of those of B, these
must also be linearly dependent and |AB| = 0, again by 2.52. If |A| = 0, then |At =
0 by 2.27 and we can apply the same argument to (AB)t = BtAt to conclude that |
(AB)t| = |AB| = 0 as before.

If neither A nor B is singular, we base our discussion on the possibility of
expressing a nonsingular matrix A as a product of elementary matrices, as in
3.52. If we could prove that

for C an elementary matrix, then by breaking up and recombining, we could
deduce the general result. But 3.541 follows immediately for:

(i) C of type 3.411, from 2.31 since



(ii) C of type 3.421, from 2.33 since

(iii) C of type 3.431, from 2.34 since

Tackling the general case, we write

as we desired to prove.
Since |AA–1| = |I| = 1 = |A||A–1|, we have

EXERCISES
1. Find the inverse of the matrix Y in Exercise 2 of Section 3.2 by the method of

this section.
2. Find the inverses of the matrices

by the method of Section 3.3 and also by the method of this section.



3.6 THE APPROXIMATE INVERSE OF A MATRIX
In order to see the distance we have traveled since we first introduced the
problem of solving the system of linear equations 2.181, let us write this system
in matrix form. We have two possibilities: (i) We may consider the vector with
components x1 x2, … xn as a column vector, so that

or (ii) we may consider the vector with components x1, x2, … xn as a row
vector, so that

It is important to observe that 3.62 is just the transpose of 3.61 according to
3.21, and there is nothing to choose between the two methods of writing the
equdtions except ds convenience mdy dictdte.

If we denote the column vectors appearing in 3.61 by X and α0, we may
write the vector equation in the form

and its solution in the form

assuming that A is nonsingular. We illustrate this second method of solution in
the following
Exdmple. Consider the set of equations

By Cramer’s rule,



We could write the matrix equation in the form

and by constructing the inverse matrix, obtain its solution in the form

From the practical point of view this second method of determining A–1 is
preferable for large values of n, but there is another consideration which enters
into the problem. In the above example only one coefficient has been chosen to
be nonintegral. If such coefficients were obtained experimentally, or were
subject to an assigned “error,” one might very well ask for the effect of such an
error on the solution. The answer has to do with how the inverse A–1 is
calculated.

In the previous section, we expressed A–1 as a product of elementary
matrices, some on the right and some on the left. But we could have restricted
ourselves to the right or the left only (cf. Exercises 3 and 4 of Section 3.5). Take
again the matrix A of the equations of the preceding example:

and similarly on the right. In this case A–1 = .
If we were working approximately, we might have arrived at

which is approximately I, whereas



which is very different from I.
The foregoing example illustrates several things in a striking way:
(a) Matrix multiplication is not commutative in general.
(b) The exact inverse of a matrix is the same however it may be calculated

(cf. 3.39).
(c) The approximate inverse, which is that used in actual computation,

depends on how it is calculated, i.e., whether from the right or left. Approximate
inverses calculated from both sides are particularly likely to introduce errors.*

3.7 LINEAR TRANSFORMATIONS
In 3.63, we used matrices to express a system of n linear equations as one
equation. The vector α0 was supposed fixed and we sought the solution vector
X. If we write the equation in the form

we have a linear transformation or mapping of the vectors X of υ n onto the
vectors Y; usually we shall assume that Y lies in υn, but it could well be a
vector X′ of another vector space .

There are several important remarks concerning linear transformations
which we shall make here, leaving their illustration and detailed development to
the next and subsequent chapters. In the first place, the equation 3.71 could
equally well be written in the form

where Yt and Xt are row vectors. The two equations 3.71 and 3.72 correspond
to 3.61 and 3.62.

If we think of applying the two linear transformations

in succession, we obtain as a result the linear transformation

Actually, we have a theorem here, but the proof of 3.74 is more a matter of
understanding the definition of matrix multiplication than of performing any



additional mathematical operation. To clarify what is going on, we write out the
steps in detail in the 2 × 2 case.

so that

If we write the linear transformations 3.73 in transposed form we have:

so that

No ambiguity can arise if we drop the superscript t on the vectors Xt, Yt etc.,
writing 3.72 as

since the form of writing the vectors is determined by the rule of matrix
multiplication. We shall insist, however, on calling A the matrix of the
transformation, whether this is written in the form 3.71 or 3.77.

In Chapter 1 we introduced the notion of the basis of an n-dimen-sional
vector space υn:

It is natural to ask how such vectors are transformed by the linear transformation
Y = AX. We have



where αi is the ith column vector of A. Conversely, if we require that Ei (i =
1,2, … n) be transformed into αn, then the matrix A is completely determineIt is
natural to call thed. We collect together these ideas in the following theorem.

3.78 A linear transformation Y = AX maps the basis vectors Ei (i = 1,2, … n)
on the column vectors αi of A. These vectors αi are linearly independent if,
and only if, A is nonsingular. Conversely, the linear transformation is
completely determined when the vectors αi are given.

It is natural to call the linear transformation 3.71 or 3.77 singular or
nonsingular according to whether A is singular or nonsingular. It follows
immediately that the inverse of Y = AX is X = A–1Y and, in transposed form,
that the inverse of Y = XAt is X = Y(At)–1 = Y(A–1)t by 3.37.

EXERCISES
1. Write the following system of equations in the form 3.61 and solve by

constructing the matrix A–1.

2. If basis vectors Ei (i = 1,2,3,4) are transformed by a linear transformation Y
= AX into vectors α1(1,2,3,4), α2(–1,1,2,0), α4(1,1,1,3), respectively, find
the vector Y into which the vector X(1,0,1,0) is transformed.

3. If the matrix A is defined as in Exercise 2, find the vector Y into which
X(l,0,1,0) is transformed by the linear transformation (a) Y = A2X, (b) Y =
XA.

* Mendelsohn, N. S., “Some Elementary Properties of Ill-Conditioned Matrices and
Linear Equations,” Am. Math. Monthly, 63, 285–295 (1956).



4

GROUPS AND LINEAR TRANSFORMATIONS

4.1 DEFINITION OF A GROUP*
If everyone in a gathering of students were asked to give his definition of
mathematics, many would define algebra and some geometry; to the economist,
mathematics is arithmetic or statistics, and to the engineer it is almost certainly
the calculus. Possibly they might all agree on the definition: Mathematics is the
study of numbers and their properties. But what are numbers but abstractions
from the world around us? The twoness of a pair of apples or a pair of oranges
provides a starting point for a satisfactory definition of number! So perhaps we
had better settle on the statement: Mathematics is the science of abstraction. For
example, the equation of a parabola can yield the path of a projectile or the
shape of a reflector on a motor headlamp. Were it not for the abstracting
process, i.e., mathematization, we might not have recognized the essential
identity of many apparently different phenomena in the world around us.

Let us return to the most elementary mathematics and write out the laws
governing the processes of addition and multiplication.

4.11 Addition Take the set of all integral numbers, including zero. If a, b are
integral, then

4.12 Multiplication Take the set of all rational numbers. If a, b are rational, then

We observe also that both addition and multiplication are commutative.
The important thing to note is that except for the interchanges of signs + and

×, 0 and 1, the laws are the same in both cases. If we abstract again, we may
set up a more general system called an



4.13 Abstract Group  This has as elements G1, G2,…, with a law of
combination indicated by (.), such that if Gi, Gj are elements of , then:

The number of elements Gi in  is called the order g of , and G1 the
identity element of . We do not assume commutativity; if, however, Gi.Gj =
Gj.Gi, then the group is called Abelian after the mathematician Abel who first
studied such a system. Could we distinguish the two Abelian groups of addition
and multiplication in some way?

Suppose we define the operation S as that of adding 1 to the number 0; then
we have a 1–1 correspondence,

and we can say that the additive group of the integers is cyclically generated by
S. On the other hand, if we denote multiplication by the prime p by the operator
Sp, then every rational number can be uniquely represented in the form

for suitably chosen p, q, r, … and α, β, γ, …. This is the fundamental theorem of
arithmetic. The multiplicative group of the rational numbers is generated by an
infinite number of independent generators Sp. The order in which these are
applied is unimportant, so that the group is Abelian and the direct product of
cyclical groups {Sp}, {Sq},… .

One might imagine that these simple abstractions are very old, but they were
first stated in this form by Cayley only a little more than 100 years ago. Those
groups which we have considered so far have been of infinite order. Let us turn
now to some familiar geometrical figures whose groups of rotations are of finite
order.

4.16 The Groups of the Regular Solids Symmetry of form appealed very much
to the Greeks. In Plato’s cosmogony, atoms of earth are represented as cubes; of
fire, as tetrahedra; of air, as octahedra; and of water, as icosahedra. The
dodecahedron seems to have symbolized the universe. This mystical
interweaving of ideas was characteristic of Greek philosophy in which
abstractions such as “the good” and “the beautiful” were objects of constant
thought and discussion. The surprising thing is that having gone so far, the
Greeks did not take the next step and abstract the notion of a group.

If we think of the rotations of a regular tetrahedron about axes (1) through



the midpoints of any opposite edges, (2) through any vertex and the centroid of
the opposite face, preserving the positions occupied by the vertices though the
latter may be interchanged, we find:

and we say that the group of rotations of the tetrahedron is of order 12. It is
worth verifying that the group of rotations of the octahedron, or the cube, is of
order 24; while that of the icosahedron, or the dodecahedron, is of order 60.

There is one feature of all the groups we have considered so far which is
important, namely, their discreteness. If we think of the motions of a chair over
the floor, we can suppose the chair moved from A to B and denote this by MAB;
if it is then moved from B to C we could imagine it moved directly from A to C
and write



FIG. 4.1

These operations satisfy all our postulates if we let the identity operation be
MAA, the operation of not moving the chair at all! But here there is a difference
from the groups previously considered, since we could choose B as close to A
as we like. This introduces the notion of continuity, and such a group is said to
be continuous.

4.2 THE SYMMETRIC GROUP 
In Chapter 2 we saw the significance of permutations in defining determinants
and deriving their properties. In particular, in 2.24 we gave the 3! permutations



on 3 symbols, and it is easy to verify that they form a group denoted by . Since

we conclude that  is non-Abelian, and this is true of  of order n! for all n >
2.

If we define a subgroup of a given group  as a subset of the g elements
which satisfy the conditions 4.13, it can be verified that the following list of
subgroups of  is exhaustive:

If  is any subgroup of  with elements L, M, N, …, then we define the
transforms of these elements by an element A of  to be ALA−1, AMA−1,
ANA−1, …, omitting the (.) signifying the law of combination. If LM = N, then

so that these transforms constitute a subgroup conjugate to  which we may
denote A A−1. The three subgroups 4.22 are all conjugates of one another, e.g.,

If A A−1 =  for all A in ,  is said to be self-conjugate or normal in .
To say that A A−1 =  means that not each element of  but only  as a set is
invariant under transformation by A. For example,

and similarly for transformation by (13) and (23), so that the cyclic subgroup 
= I, (123), (132) of order 3 is normal in . No subgroup 4.22 of order 2 is
normal, while the identity subgroup is always normal in any group.

In Chapter 2 we divided the n! permutations on n symbols into two sets, one
consisting of all the even permutations and the other of all the odd permutations.
From the definition, the product of two even permutations is an even
permutation. Moreover, I is even, and the inverse of an even permutation must



also be even, since their product is I. Thus all the even permutations on n
symbols form a subgroup of  called the alternating group, denoted .

On the other hand, the odd permutations do not form a subgroup of . If we
multiply any even permutation of  by a single transposition, say (12), we
obtain an odd permutation, e.g.,

and

It remains to show that the number of odd permutations is exactly equal to
the number of even permutations. This will follow if we can show that (i) if E1,
E2 are even permutations and O is odd, then E1O ≠ E2O unless E1 = E2, and
(ii) every odd permutation can be written in the form EO when E is even and O
is a fixed odd permutation.

The proof of (i) is immediate, since if

then

so that

assuming only that the axioms for a group are satisfied, as we have seen to be
the case.

The proof of (ii) is equally easy. Let us assume O1 to be any odd
permutation and let us suppose that

as required. Since we are dealing with a group, O−1 exists and

As in (i), E is uniquely defined.
We conclude that the order of  is n! Moreover, since



is even for all E belonging to  and any permutation P of  we conclude that 
 is normal in , generalizing 4.25. We gather together all this information in

4.26 All even permutations on n symbols form a subgroup  of  known as the
alternating group. The order of  is n! and  is normal in  .

It can be proven that  contains no normal subgroup other than I for n ≠ 4.
Such a group is said to be simple.

EXERCISES
1. Write out all 24 permutations of the four symbols 1,2,3,4.
2. Which ones of these are even? Verify that they form a subgroup  of .
3. Determine all subgroups of . Which ones of these are normal (a) in , (b)

in ?

4.3 THE GROUP OF A SQUARE
Let us see if we can attach a geometrical significance to the notion of a group.
To this end, consider the square in which the coordinates of the vertices AB′ A′B
are as indicated in Figure 4.2. We say that such a geometrical figure has
symmetry, but what precisely do we mean by this? Apart from a somewhat
vague interpretation of the word, we can analyze our idea by saying that
symmetry is characterized by the property of invariance under reflection and
(or) rotation.

FIG. 4.2

How could we describe the operation we have called reflection, say in the



coordinate axis Ox2? This can be done in two ways: either as the linear
transformation

or relative to the square, as the permutation

Similarly, reflection in Ox1 can be written

or

The “product” of these two transformations in either order is easily seen to
be

or

and this is a rotation about the origin of coordinates. It can be verified that the
remaining symmetries of the square are the reflections

or

and the rotations



or

which, along with I,

make the eight “operations” of the group or the square.
Not all permutations on the four symbols A, B, A′ , B′ have geometrical

significance; e.g., (AB) does not correspond to any geometrical operation valid
for all points in the plane. This definition of a group of operations under which a
geometrical configuration remains invariant has wide application and great
importance.

EXERCISES
1. Prove that the points A(1,0), B(–1/2, ), C(–1/2,– ) are the vertices of an

equilateral triangle.
2. By the method of 3.78, construct the linear transformations which effect the

permutations (AB) and (AC) of the vertices of the triangle in Exercise 1.
Thence, construct all rotations and reflections of the group of the triangle
ABC.

4.4 ROTATIONS AND REFLECTIONS
Pursuing the line of thought of the preceding section, let us determine first the
form of a rotation through an arbitrary angle θ about the origin. Having
reference to Figure 4.3:



FIG. 4.3

which we can write in either one of the two ways:

corresponding to 3.71 or 3.77. Observe that these formulas are independent of r
and α, i.e., of the position of X. That the distance of a point from the center of
rotation remains fixed is expressed in

as the invariance of the quadratic form  +  under the transformation 4.41.
If we combine two rotations, A through θ and B through ø, as in 3.73 and

3.74 we obtain

Since it would be enough if we wrote merely the matrices of the
transformation, we are led to consider these as the elements of another group.
We thus have three ways of describing the group of the square in Figure 2: (i) as
a group of permutations, (ii) as a group of linear transformations, or (iii) as a
group of matrices. There is an obvious one-to-one correspondence between any
two of these groups, and they are said to be isomorphic*

There is one important point which should be emphasized. Matrices must be



multiplied from left to right according to our definition 3.14. Consider the
matrix product

If we write down the corresponding permutations π1 = (ABA′B′) and π2 = (BB′)
of the preceding section, we ask the question, in what order should they be
applied to yield the permutation π3 = (AB)(A′B′)? It is easy, in fact, to verify that
π2 must be applied first and π1 second to yield π3. If π1 were applied first
followed by π2 we would obtain (AB′)(A′B) whose corresponding matrix is
given in 4.311. This explains the reason for the convention of Section 2.2 that
permutations shall always be multiplied from right to left.

Incidentally, we observe that neither the permutations nor the matrices
representing them all commute, so that the group of the square is non-Abelian.

To construct the general form of a reflection in an arbitrary line through the
origin, we refer to Figure 4.4.

FIG. 4.4



which becomes in matrix form

If we reflect successively in two lines inclined to each other at an angle θ >
0, the second reflection could be written:

so

proving that:

4.48 Successive reflection in two lines inclined at an angle θ > 0 amounts to
the same thing as rotating through 2θ about their common point.

In particular, 4.311, 4.321, and 4.341 are special cases of 4.45, as is 4.331
of 4.47.

4.5 THE GROUP OF THE CUBE
All that we have said with reference to the square can easily be generalized to
apply to the cube with vertices as indicated in Figure 4.5. Beginning with the
reflections in the coordinate planes, we have



Note that no one of the four transpositions multiplied together to yield one of
these permutations is a symmetry of the cube—it does not belong to the group of
the cube although it does belong to the larger group  of all permutations on the
eight symbols, of which the group of the cube is a subgroup.

FIG. 4.5

Similarly, we may reflect in planes through pairs of opposite edges of the
cube, which yields



Each of these reflections, and all those others that leave the cube invariant, can
be constructed by applying 4.45 in the appropriate manner, i.e., by considering a
reflection in space to be in a plane through the origin. By combining such
reflections in planes we could prove the following analogue of 4.48 in space:

4.51 Successive reflections in two planes inclined at an angle θ > 0 amounts to
the same thing as rotating through 2θ about their line of intersection.

EXERCISE
1. Construct all 48 symmetries of the cube as permutations and also as linear

transformations. How many of them leave invariant the regular tetrahedron
ABCD in Figure 4.5? Prove that these form a subgroup of the group of the
cube.

4.6 EULER’S FORMULA
In Figure 4.5 of the preceding section, imagine a sphere Σ drawn with center at
the origin O, so as to pass through the vertices of the cube. If we project the
edges of the cube from O into great circles on Σ, the resulting set of points and
great circular arcs is called a graph and, including the faces, a map  on Σ
What we are interested in here is not the relationship of  to the cube, which is
well defined in space, but the relations between the elements of  on Σ That
certain of these relations remain invariant under a continuous deformation of the
surface, suggests a new emphasis in geometry. The situation may be visualized
by supposing that Σ is made of rubber and that, after the projection of the cube
has been drawn on it, Σ is stretched and folded at will but not torn. The first
such “topological” relation was found by Euler, but the subject was not put on a
systematic basis until Poincaré’s classic work of 1895.

If we denote the number of vertices of a spherical map  by V, the number
of edges by E, and the number of faces by F, then Euler’s famous formula is that



For 4.61 to hold for , (i) the graph of  must be connected (i.e., every vertex
must be connected to every other vertex by a sequence of edges), (ii) no edge
may intersect itself or any other edge except at a vertex, and (iii) every edge
must be incident in exactly two faces.

The proof will be by induction. To start things off we verify the truth of 4.61
in the case of a map 0 containing one vertex, one edge, and two faces. Such a
map is obtained by taking any circle σ in Σ and a point P on σ. The circle σ
divides the sphere into two faces and is itself the one edge incident in P, the one
vertex of the map.

To obtain a map 1 from 0 we may insert a new vertex in σ, thereby
increasing E and V each by 1. The values of V, E, F for 1 would thus be V =
2, E = 2, F = 2.

The map 1 is more symmetrical than 0, in that we can add not only
further vertices in the manner described above without increasing F, but also
further edges, by joining pairs of vertices incident with the same face without
increasing V. Such a new edge would divide the face in question so that E and F
would each increase by 1. Each of these changes leaves 4.61 unaltered, so that
any map obtainable by applying such changes in any order would satisfy 4.61
and the conditions (i) through (iii).

On the other hand, if we have given a spherical map  satisfying the
required conditions, we may successively remove edges which separate two
faces, thereby decreasing E and F each by 1 until F = 2, always making sure
that the graph remains connected. If this condition is satisfied at every stage, we
may subsequently remove vertices, decreasing V and E each by 1, and reach the
map 1, the conditions (ii) and (iii) remaining satisfied throughout the process.
It follows that:

4.62 If a spherical map has V vertices, E edges, and F faces, and satisfies
conditions (i) through (iii) above, then

4.7 THE REGULAR POLYHEDRA
In proving Euler’s formula, we made no use of the regularity of the figure.

4.71 Definition A convex polyhedron is said to be regular if all its faces are
regular polygons, p edges surrounding each face and q meeting in each vertex.

The notion of “convexity” is important in mathematics. Here it means that no
plane containing any face of the polyhedron penetrates the interior of the



polyhedron. It is natural to extend this definition of a regular polyhedron to a
spherical map, and in so doing “convexity” is taken care of. The condition that p
edges surround each face and q edges meet at each vertex can be written

since the edges are counted twice as they surround faces or meet in vertices. If
we put these conditions into Euler’s formula, we have

or

In order to solve this Diophantine equation (i.e., an equation in more than
one variable whose integral solutions are sought), we observe that E > 0. This
limits the number of solutions to those given in the accompanying table. We
recognize as corresponding to the last five solutions

o f 4.73 the tetrahedron, octahedron, cube, icosahedron, dodecahedron  of
Figure 1. The first two solutions A and B are degenerate in the sense that we
have a regular map for any value of E. The first has two vertices which may be
taken as north and south poles, with the E lines of longitude, equally spaced if
we wish, as edges. The second is obtained by taking V = E points equally
spaced around an equator and counting the E intervening arcs as edges.

There is a noticeable property of the equation 4.73, namely, that from any
solution we can obtain another by interchanging p and q; such dual solutions
coincide in the case of T, for which p = q.

If we take the vertices A, B, C, D of the cube in Figure 5 with coordinates

it is easy to verify that AB = AC = AD = BC = BD = 2 . The equation of the



plane ABC is given by (cf. Exercise 1 of Section 1.6)

and the equations of the other three faces of the regular tetrahedron are easily
found.

EXERCISES
1. Construct a cardboard model of each of the five regular polyhedra.
2. Show that the conjugate tetrahedron A′B′C′D′ has a face A′B′C parallel to

ABC, by applying the symmetry of the cube:

3. Verify that the points with coordinates

are the vertices of a regular icosahedron if

4. Verify that the points with coordinates

are the vertices of a regular dodecahedron.
5. Pick out the vertices of the five cubes which can be inscribed in the regular

dodecahedron of Exercise 4.

4.8 POLYTOPES
Each regular polygon in the plane yields a regular, though degenerate, polytope
as in the first column of the table 4.74. One might well ask what regular
polyhedra exist in a space of 4 dimensions—or, more generally, in n



dimensions? Curiously enough, there are six regular polyhedra in 4 dimensions,
but for n > 4 there are only three, namely, the analogues of T, C, O.

It is easy to give the coordinates of the 2n vertices of the analogue of the
octahedron in n dimensions:

The analogue of the cube has the 2n vertices:

where all combinations of sign are allowed. It is best to think of the analogue of
the tetrahedron or regular simplex in n dimensions as consisting of the n + 1
points

in a space of n + 1 dimensions. That this figure really lies in a subspace of n
dimensions is shown by the fact that its vertices satisfy the linear equation

It is awkward to describe the regular simplex in n dimensions by n coordinates,
though this can be done also.

Two such figures make up the analogue of the octahedron in n + 1
dimensions, just as the corresponding two triangles

and

make up the octahedron in three dimensions.
The group of symmetries of the regular simplex in n dimensions is the

symmetric group +1 of order (n + 1)!, while that of the analogue of the cube or
octahedron is the hyperoctahedral group of order 2 nn!.

* This section is taken from a lecture given by the author to students in Australia and
published in the Year Book (1959) of the Sydney University Science Association.
Permission to quote is gratefully acknowledged.

* Two groups , ′ are isomorphic if the one-to-one correspondence between the
elements Gi ↔ G′i, Gj ↔ G′j extends to their combinations 

 
under the appropriate laws.



5

VECTORS AND VECTOR SPACES

5.1 BASIS VECTORS
In Chapter 1 we introduced the notion of a vector X =  having n comonents
(x1,x2, … xn), and the expression

in terms of the basis vectors Ei. The following result is an important
consequence of 5.11:

5.12 Any n + 1 vectors X, Y, … Z which lie in an n-dimensional vector space
υn must be linearly dependent.
Proof. If we write each vector in the form 5.11,

and multiply the first equation by the cofactor of X in the determinant

the second equation by the cofactor of Y in Δ, and finally the last equation by the
cofactor of Z in Δ and add, then on the left side we have the determinant Δ. On
the right, the coefficient of Ei is just Δ with X, Y, … Z replaced by xi, yi, … zi,
so that every such coefficient vanishes by 2.32. Thus the equation Δ = 0 yields
the desired linear relation between the vectors X, Y, … Z so long as not all the



cofactors of X, Y, … Z vanish. But in this excluded case linear dependence
follows also in virtue of 2.52

Suppose now we start with a set of n linearly independent vectors X1, X2,
… Xn in υn. It follows from 5.12 that any vector X in υn can be expressed

We may describe X1, X2, … Xn as basis vectors of υn and (x1, x2, … xn) as
the components of X relative to this basis. Putting it otherwise, we might think of
the vectors Xi as lying along n coordinate axes so that the coordinates of the
point X would be (x1 x2 … xn). It is often convenient in analytical geometry to
choose such oblique axes, since all the familiar intersection properties continue
to hold. However, one must be careful not to interpret the Euclidean expressions
for angle and distance in the usual way.

EXERCISES
1. Taking the vectors X1(1,1,0,0), X2(l,0,1,0), X3(1,0,0,1), X4(0,0,1,1) as

basis, find the components of V(2,1,3,4) by solving the vector equation

for υ1 υ2, υ3, υ4.
2. Explain how the linear transformation

relates the vectors Ei to Xi. Construct the inverse transformation and there-
from derive t he components of V relative to the Xi, as in Exercise 1.
3. Taking e1(1,1), e2(l,0) as basis vectors defining two oblique coordinate axes

Ox1, 0x2, make a drawing to show the positions of lines with equations

Find all intersections of these lines graphically and verify by solving the
appropriate equations.
4. Derive the linear relation connecting the four vectors X1 (1,1,0), X2(1,0,1),

X3(1,0,0), X4(0,0,1).



5. There may well be more than one linear relation connecting n + 1 vectors in
υn. Find those connecting the vectors X1(l,l,0), X2(2,2,0), X3( –1,0,0),
X4(2,0,0). What becomes of the equation Δ = 0 in this case?

6. Express the number of linear relations in terms of the rank of the matrix
obtained by omitting the first column of Δ.

5.2 GRAM-SCHMIDT ORTHOGONALIZATION
PROCESS
Since the vectors Ei satisfy the two conditions

they are said to constitute a normal, orthogonal basis of υn. In general, the Xi
will not satisfy such conditions and the question arises, how can we construct a
normal, orthogonal basis Yi from the Xi?

Suppose we set Y1 = X1 and Y2 = X2 + cY1 and require that

It follows that

so that

Again, set Y3 = X3 + c2Y2 + c1Y1 and require that

so that



The procedure can be repeated indefinitely so that from any basis X1, X2, … Xn
we can always find an orthogonal basis Y1 Y2, … Yn. It should be emphasized,
however, that such an orthogonal basis is by no means unique.
Example. If X1(l,l,0), X2(1,0,1), X3(1,0,0) be the given basis, choose Y1 = X1

and these Yi’s are pairwise orthogonal, as desired.
To pass from an orthogonal basis to a normal orthogonal basis, it is

necessary only to multiply each vector Yi, by the scalar 1/| Yi |. Of course, we
could have normalized at each successive stage so that each of the denominators
in 5.21 and 5.22 would have been 1.

EXERCISES
1. Instead of setting Y1 = X1 in the preceding example, set Y1 = X3 and

complete the construction of an orthonormal basis in the usual way.
2. Set Y1 = X3, Y2 = X1 – X3 and find Y3 so that Y1, Y2, Y3 is an orthonormal

basis in the example.
3. Construct vectors Y3, Y4 so that along with Y1 = X1, Y2 = X4 the Yi’s

constitute an orthogonal basis of the space of Exercise 1 of Section 5.1.
4. Using the Gram-Schmidt orthogonalization process, find an orthonormal basis

Yi for the space defined by the vectors

5.3 THE VECTOR PRODUCT U × V
In the special case n = 3 of the preceding section,

If we set X1 = U, X2 = V, Y3 = W, then the components of W must satisfy the
scalar equations



so that (cf. 2.56)

Though the magnitude of W ≠ 0 is not determined by these proportionalities, its
direction is determined up to a factor of ±1. It is customary to fix the positive
direction, as in the case of the coordinate axes in Chapter 1, to be that of a
“right-handed screw,” under which U is rotated into V. This amounts to the
following

5.32 Definition The vector W = U × V has components

It follows immediately that (V × U) = – (U × V).

5.33 U × V = 0 if and only if the rank of the matrix

Proof. Certainly, U × V = 0 if either U = 0 or V = 0 or U = kV when r = 1; or if
U = V = 0, then r = 0. Conversely, U × V = 0 implies that one of these
conditions must be satisfied.

In 3-space it is often convenient to set i = E1 = (1,0,0), j = E2 = (0,1,0), k =
E3 (0,0,1) so that, symbolically,

For any W,



and by permuting U, V, W cyclically,

Since this relation is true for all vectors W, we can choose W = i, j, k in turn
and, from the equal scalars on left and right, conclude that

Thus vector multiplication is distributive. It is to be noted that in general

so that vector multiplication is not associative.
Since the square of the magnitude of U × V is given by the Lagrange identity

we conclude that

so that

where θ is the angle between U and V.
While the vector product is defined only in 3-space, we may arrive at more

general ideas by observing that the Lagrange identity may be written in the form

Since 5.372 leads to the interpretation of |U × V| as the area of the
parallelogram formed by the vectors U and V, it is tempting to coniine our
attention to this plane π and suppose that



relative to some orthonormal basis in π. With such an assumption,

by 2.27. We conclude from 5.372 and 5.373 that

5.39 The area of the parallelogram defined by U = X and V = Y in π is given by

This remarkable simplification, which arises through consideration of the
problem in a subspace of the proper dimension, does generalize, as we shall see
shortly.

EXERCISES
1. Find the area of the parallelogram whose vertices are ( – 1,1), (0,0), (1,3),

(2,2).
2. Find the components of U × V when U = (1,1,0), V = (1,0,1). Find also the

area of the parallelogram defined by U and V.
3. Determine the fourth vertex of a parallelogram of which the first three

vertices are

How many such vertices are there? What is the area of the parallelogram in
each case? What is the area of the triangle ABC?
4. Find the vector W = U × V when U = (1, –1,1) and V = (1,1, –1), and

calculate the volume of the parallelepiped defined by U, V, and W. What is
the volume of the tetrahedron OUVW?

5. Derive the more general form of the Lagrange identity,



6. Prove the Jacobi identity

5.4 DISTANCE BETWEEN TWO SKEW LINES
From the geometrical point of view, the vector product U × V is just the normal
vector to the plane determined by U and V and, as such, it has arisen on
numerous previous occasions. By assigning a definite direction to this normal
according to the definition 5.32, we have introduced a refinement which is
chiefly useful in mechanics and in the study of electrical phenomena.
Nevertheless, it is worth utilizing these ideas to determine the shortest distance
between two skew, nonparallel lines in 3-space.

FIG. 5.1

Let us take the equations of l and m in parametric form to be

and let r = , so that



By adding multiples of the second (third) row to the first, it follows from 5.41
that the choice of Y (Z) on I (m) does not affect the value of r·(U × V). Thus if
we take Y to be the foot of the common perpendicular and Z to be a variable
point, the expression 5.42 set equal to zero yields the equation of a plane
through l, parallel to m. Hence, for Z on m the required perpendicular distance δ
between l and m is given by

according to 1.68. An alternative approach to the same result is indicated by
writing

where Z = Z′ is any point on m, as in Figure 5.1.

EXERCISES
1. Find the equations of a line drawn from the origin O to intersect each of the

lines

(Hint: Find a plane through each of l, m which contains 0.)
2. Obtain the equations of the lines l, m in Exercise 1 in parametric form and

also in symmetric form.
3. Find the shortest distance between the lines l and m in Exercise 1.

5.5 n-DIMENSIONAL VOLUME
At the end of Section 5.3 we saw that the area of a parallelogram defined by
two vectors X, Y in υ2 is given by the determinant

In order to generalize this result we shall reconsider it from a slightly different



point of view.
If W is a vector coplanar with X, Y and such that

with

then

which we may write in detail as follows:

Solving these equations, we have by Cramer’s rule

FIG. 5.2

the last fraction being obtained by multiplying numerator and denominator of the
first by w1 and the second by w2, adding, and dividing out the factor |W|2.

It is important to realize that area is invariant under rotation . To see this,
we suppose the axes transformed as in 4.41 so that



and also

where θ is determined by the condition that

and w = w1 sin θ + w2 cos θ. Since  is the usual expression for the area of
the parallelogram in question, we may use induction to obtain the required
generalization of 5.51, if we assume that volume and generalized volume are
similarly invariant under rotation. Further properties and applications of the
important “orthogonal” transformation involved here will be found in Chapter 9.

As before, let W be a vector cospatial with X, Y, Z and such that |W| = |Z|
cos ø,

and

Writing out these equations in full:

we solve to obtain



Again the denominator of the last fraction is independent of Z, and after a
suitable transformation we may suppose that W′ = (0,0,w), so that this
denominator becomes

Since this is, by definition, the volume of the parallelepiped defined by the
vectors X, Y, Z, we conclude that this volume is given by the determinant

in every case.
Having established the basis of our induction and the definition of a

generalized volume in υn in terms of that in υn–1, we have proved the following

5.57 Theorem The generalized volume of the generalized parallelepiped
defined by n linearly independent vectors Xi (i = 1,2, … n) in υn with
components (Xi1, Xi2, … Xin) is given by the determinant

It follows from its determinantal expression that the generalized volume is
zero if the n vectors are linearly dependent. On the other hand, if the n linearly
independent vectors lie in υm (m > n), the matrix of components is no longer
square and the determinant is no longer defined. As in 5.38, however, we
observe that



and the determinant of inner products 5.58 is defined in υm for every m ≥ n.
Thus:

5.59 The square of the generalized volume of the generalized parallelepiped
defined by n linearly independent vectors Xi (i = 1,2, … n) in υm (m ≥ n) is
given by the determinant

As before, this determinantal expression vanishes if the n vectors are linearly
dependent.

EXERCISES
1. Find the volume of the parallelepiped defined by the three vectors X(0,0,1),

Y(0,l,2), Z(l,2,3).
2. Make a drawing of the figure in Exercise 1; find the area A of the

parallelogram in the plane x1 = 0, and calculate the required volume by
means of the formula V = A|Z| cosθ1.

3. Find the volume of the parallelepiped defined by the three vectors X(0,0,1,1),
Y(0,l,2,2), Z(l,2,3,3).



4. Find the area of the face defined by X and Y in Exercise 3, and using the
method of Exercise 2 calculate the required volume.

5. What is the volume of the tetrahedron OXYZ in Exercises 1 and 3?
6. Could you set up an induction which would yield the volume of an n-

dimensional simplex in terms of the volume of the generalized parallelepiped
in 5.59?

5.6 SUBSPACES OF υn
Though a geometrical entity such as the volume of a figure may not change its
value, its description relative to the space in which it is embedded may change,
as we have seen. We have this phenomenon arising in a simpler form in the case
of a line, which is defined by one linear equation in 2-space, by two linear
equations in 3-space, … by n – 1 linear equations in n-space. Thus the
dimension of the space in which a geometrical figure is embedded is important
in describing it analytically.

Let X1, X2, … Xm be any m linearly independent vectors of υn so that m ≤ n
by 5.12. If 0 < m < n, we say that these m vectors define a subspace υm of υn
made up of all vectors

Any vector Y which cannot be written in this form does not belong to υm. Since
there are just n linearly independent vectors in υn, we may choose as basis

and we may suppose that the Gram-Schmidt orthogonalization process has been
applied so that they are all pairwise orthogonal. Since every Xi·Yj = 0, it
follows that

and every vector in υm is orthogonal to every vector in the subspace υn–m
defined by the vectors Y1, Y2, … Yn–m.

The two subspaces υm and υn–m are said to be orthogonal complements of
each other relative to υn
Example. For n = 2, any two distinct vectors are linearly independent, and if
orthogonal they are complementary relative to υ2. But two orthogonal vectors



are not complementary in a three-dimensional vector space υ3, whereas a plane
and its normal vector define complementary subspaces in υ3. In υ4 the
orthogonal complement of a υ1 is a υ3 and that of a υ2 is another υ2.

Just as we broke down υn into orthogonal complementary subspaces υm and
υn–m, so we could break down υm. The particular case in which υ2n is broken
down into n pairwise orthogonal planes, or υ2n+1 into n pairwise orthogonal
planes and a line orthogonal to each plane, is of special interest. If we think of a
rotation in each such plane about the complementary subspace we have, taking
them all together, the most general rotation in υ2n or υ2n+1, as we shall see
later on.

Two subspaces υr and υs of υn may intersect. We define the subspace made
up of all vectors common to υr and υs as the intersection υr∩ υs, and the
subspace made up of all vectors linearly dependent on vectors of υr and υs as
the union υr ∪ υs. If we denote the dimensions of υr ∩ υs and υr ∪ υs by d(υr
∩ υs) and d(υr ∪ υs), then

Proof. If υr and υs have no vectors in common, then d(υr ∩ υs) = 0 and the
number of linearly independent vectors in υr ∪ υs is just r + s, as claimed. If,
however, d(υr ∩ υs) > 0, then we may suppose that the d(υr ∩ υs) = d linearly
independent vectors Z1 Z2, … Zd of υr ∩ υs form part of the basis of each of υr
and υs:

so that in the enumeration every vector Zi is counted twice on each side of 5.64,
proving the result.

If we replace υr and υs by their orthogonal complements υn–r and υn–s,
5.64 becomes

as was to be expected.

5.7 EQUATIONS OF A SUBSPACE
From the point of view of analytical geometry, all the subspaces of υn pass
through the origin and so are defined by one or more homogeneous linear
equations. For example, υm is defined by the n – m linear equations



To see that this is so, it is only necessary to adjoin the m further equations

and solve by Cramer’s rule to obtain (x1, x2, … xn) expressed in terms of the
parameters t1 t2, … tm. Since these expressions are linear, just m solutions are
linearly independent and we can associate them with the values of the
parameters,

If we call the corresponding vectors X1 X2, … Xm, we have recovered υm as
the solution space of the set of linear equations 5.71.
Example. Let us suppose that n = 3, and we wish to find a basis of the solution
space of the equation

To this we adjoin the equations

so that

for all t1, t2. As above, the basis vectors of υ2 could be taken to be

Certainly these are linearly independent and any solution of 5.72 defines a
vector



Conversely, every such vector yields a solution of 5.72.
Thus the dimension of the solution space is 2, i.e., 5.72 represents a plane

υ2 through the origin containing the vectors X1, X2 and every vector linearly
dependent on them. These vectors form a basis of υ2 from which an orthonormal
basis could be constructed by the Gram-Schmidt orthogonalization process.

If we wish to study the intersection υ2 ∩ , where  is defined by the
equation

we should adjoin one further equation, x3 = t1 and solve 5.72 and 5.75 to obtain

Thus the intersection space has dimension 1 with basis vector Z = (2,3,5).
To bring this vector into evidence as in 5.65, we observe that it arises by setting
t1 = 3, t2 = 5 in 5.73. Clearly, any vector of υ2 may be written in the form

from which we obtain Z again by setting  = 3,  = 5. As a basis for υ2 ∪  =
υ3, we could choose

since Y1 does not lie in υ2. We note in passing that the zero vector lies in every
subspace, since the defining equations are all homogeneous.

5.8 ORTHOGONAL PROJECTION
If we take E1 = (1,0), E2 = (0,1) as basis vectors in υ2, then the coordinate axes
are two mutually orthogonal subspaces and any vector

is said to have orthogonal projections x1E1 and x2E2 on these axes. More
generally, if X1 and Y1 are orthogonal, then any vector X may similarly be
written



and X has orthogonal projections aX1 and b1Y1 on X1 and Y1.
If we take the basis 5.62 of υn, then any vector X of υn may be written in the

form

and we say that X has orthogonal projections

and

Since any subspace of υn is defined in terms of its basis vectors, we may
similarly speak of its orthogonal projections on υn and υn–m, but we shall not
pursue the matter further.

EXERCISES
1. Find an orthogonal basis for vectors which lie in the plane x1 – x2 + x3 = 0.

Find also the orthogonal projection of the vector (1,0,1) on this plane and on
the normal to the plane.

2. Find parametric equations and orthogonal basis vectors for the solution space
of the system of equations

3. Prove that the vector (1,1,0,0) does not lie in the solution space of Exercise
2, and find its orthogonal projection (a) on that space, (b) on each of the
primes represented by the two equations which define the space.



6

CONICS AND QUADRICS

6.1 CIRCLES AND SPHERES
So far we have concerned ourselves with linear properties of algebra and
geometry, but Pythagoras’ theorem suggests that we should study quadratic
properties also, since the relation between the sides of a triangle is not between
their lengths but between the squares of these lengths. In fact, this theorem
yields the analytic definition of a circle of radius r and center (a1,a2) to be

and that of a sphere with center (a1,a2,a3) to be

Expanding these expressions we observe that (i) the coefficients of the
square terms  are all equal, and (ii) no cross terms xixj appear. Conversely,
if these conditions are satisfied the squares may be completed and the equation
takes the form 6.11 in the plane and 6.12 in space.

It follows immediately that circles and spheres, like lines and planes, have
the property that any two define a linear pencil. Consider, for example, the two
circles

Any linear combination

satisfies the conditions (i) and (ii) above, so that 6.13 represents a circle.
Moreover, any point satisfying Ca = 0 = Cb also satisfies Ca + ρCb = 0 so that
if the two circles Ca = 0 and Cb = 0 intersect in P, Q  then every circle of the
pencil passes through P, Q . Two circles intersect in two points, which may
coincide, or not at all since elimination leads to a quadratic equation which has
two real roots or two complex roots. In the latter case no two circles of the
pencil intersect. Such a linear pencil of circles is said to be coaxal, and we



illustrate the three possibilities in Figure 6.1.

FIG. 6.1

If ρ = –1, 6.13 reduces to a linear equation which represents the line PQ in
Case 1 and Case 2 and a line not meeting any circle of the coaxal pencil in Case
3; this line is called the radical axis of the system.

In Case 1 the diameter of a circle belonging to the linear pencil cannot be
less than |PQ|, whereas no such restriction holds in Case 2 or Case 3. In the
latter case we may let the radius tend to zero and define two limit points L, M
which are equidistant from the radical axis. The following example illustrates
Case 3.
Example. Take the two circles in Case 3 to be

The equation Ca + ρCb = 0 when simplified becomes

and if we require the radius of such a circle to be zero, then ρ2–7ρ + l = 0 so
that ρ = (7 ± 3 ). It follows that the x1 coordinates of the limit points L, M
(circles of zero radius) are – (– l + ) = –0.62 and (1 + ) = 1.62, with x2
= 0 in each case. The equation of the radical axis is x1 = .

All this generalizes to spheres in space and indeed to hyperspheres in any
number of dimensions. Any three circles, spheres, or hyperspheres of a coaxal
system are linearly dependent in the sense we have so often used the term.

If we suppose that a1 = a2 = 0 in 6.11, we have the equation of a circle with
center the origin,

Alternatively, we could have applied the linear transformation



called a “parallel translation” or simply a translation to achieve the
simplification of the equation. We can think of this as moving the circle 6.11
while keeping the axes fixed, or as a change of axes. We shall study such
transformations in Chapter 9, but we note in passing that the equation 6.14
remains invariant under any rotation or reflection 4.41 or 4.45.

More generally, we may write the equation of a hypersphere in υn, with
center the origin, in the form

Any linear transformation which leaves 6.16 invariant is said to be orthogonal,
and we shall see in Chapter 9 that such a transformation may be thought of as a
succession of rotations and reflections, when these are suitably defined. We
prove here the important theorem

6.17 The necessary arid sufficient condition that a linear transformation Y =
AX should be orthogonal is that A–1 = At.
Proof. If we assume that

then At A = I and A–1 = At as required. Conversely, this condition is sufficient as
well as necessary for the invariance of the quadratic form XtIX = XtX.

EXERCISES
1. Prove that the centers of the circles of the coaxal system 6.13 are collinear

and find the equation of the line in question.
2. Prove that the radical axis of a coaxal system of nonintersecting circles is the

right bisector of LM, where L, M are the limit points of the system.
3. Prove that every circle with center on the radical axis and passing through the

limit points cuts every circle of the system orthogonally.
4. Find the point of intersection P of the radical axes of the three circles Ca, Cb

of the above example along with Cc:  + (x2 – 2)2 – 1 = 0, taken two by
two. The point P is called the radical center of the system of circles. Prove
that the circle with center P, passing through the limit points, cuts any circle



orthogonally.
5. Write the equation of a circle through the three points (0,1), (1,0), (– 2,3) as a

determinant.
6. Prove that the equation of a circle through the three points (0,1), (1,0), ( , ),

when written in determinantal form, reduces to x1 + x2 = 1. Explain.
7. Write the equation of a sphere through the four points (0,1,1), (1,0,1), (1,1,0),

(1,1,1) in determinantal form and find its radius.
8. If

verify that the matrix

due to Rodrigues and Euler, is orthogonal for all real values of a, b, c.
9. Show by actual substitution that the linear transformation Y = AX, with n = 3,

obtained by setting a = b = 1, c = 0 in Exercise 8, leaves XtX invariant.

6.2 CONICS IN CARTESIAN COORDINATES
Besides the circle in the plane, there are two other central conics called the
ellipse,

and the hyperbola,

The matrix equations for these curves are easily seen to be



which correspond to 6.16 for a circle.
It is not our purpose here to investigate the properties of these central

conics in great detail. Suffice it to say that they are symmetrical with respect to
each coordinate axis and so with respect to the origin which is called the center
of the conic. The ellipse 6.21 cuts each axis in two pairs of vertices (±a,0), (0,
±b), the lines joining these pairs of vertices being called the principle axes of
the conic. The length of the semimajor axis is a and that of the semiminor axis is
b, if a > b.

FIG. 6.2

In the case of the hyperbola there are two vertices (±a,0) on the transverse
axis, but the curve does not meet the conjugate axis x1 = 0 in real points. The
term “principle axes” is, however, still applicable.

If we think of an arbitrary point P on either an ellipse or an hyperbola and 
 as a radius vector, then the vertices may be defined in terms of the

magnitude of ρ. In the case of an ellipse, ρ takes its maximum value on the major
axis and its minimum value on the minor axis, while in the case of an hyperbola
ρ is a minimum on the transverse axis and has no maximum value.

There is one further conic called the parabola, whose equation in simplest
form is



The device we used before, of writing the equation in matrix form, is no longer
applicable, but we shall see in a later chapter how our coordinate system can be
modified to recover this convenience of expression.

FIG. 6.3

Besides these analytical definitions, a conic can be defined synthetically. To
this end we introduce the notion of the eccentricity e, where e < 1 for an ellipse,
e = 1 for a parabola, and e > 1 for an hyperbola. The foci F, F ′ of an ellipse or
an hyperbola have coordinates (±ae,0) and these, along with corresponding
directrices d, d′, with equations x1 = ±a/e, are indicated in Figures 6.2 and 6.3.
In the case of the parabola there is only one focus (p,0) and one directrix x1 =
–p, as in Figure 6.4.



FIG. 6.4

EXERCISES
1. Derive the equation 6.24 of the parabola as the locus of points P equidistant

from the focus F and the directrix d.
2. Find the equation of the parabola with focus the origin and directrix the line

x1 + x2 = 1
3. Derive the equation 6.21 of the ellipse as the locus of points P such that PF is

e times the perpendicular distance from P to the directrix d. Express b in
terms of a and e. For what value of e is the locus a circle?

4. Show that the locus of Exercise 3 becomes the hyperbola 6.22 for e > 1.
5. Find the equation of an hyperbola with focus (1,1) and corresponding

directrix x1 + x2 = 1 for which e = 2.
6. Write the equation of a conic through the five points (1,0), (0,1), (1,1), (–2,0),

(0,–2) in determinantal form and expand to obtain the equation  – 2x1x2 + 
 + x1 + x2 – 2 = 0.

7. Prove that a conic is uniquely determined when five points on it are given.

6.3 QUADRICS AND THE LINES ON THEM
If we translate the origin to the point (a1,a2,a3), the sphere 6.12 becomes



The normal form of the equation of the ellipsoid (Figure 6.5) is

FIG. 6.5

while that of the hyperboloid of one sheet (Figure 6.6) is

and that of the hyperboloid of two sheets (Figure 6.7) is

Each of these quadric surfaces is symmetrical with respect to each coordinate
plane, and so with respect to the origin which is here the center of the quadric.

The matrix forms of the equations analogous to 6.23 are:





FIG. 6.6



FIG. 6.7

By setting each coordinate equal to zero in turn, i.e., by taking the
intersection of the surface with the corresponding coordinate plane, we may
determine the shape of the surface. There are two noncentral quadrics: the
elliptic paraboloid (Figure 6.8) with normal equation

and the hyperbolic paraboloid (Figure 6.9) with equation

Again we have no matrix forms of these equations until we suitably modify our
coordinate system.

There is a remarkable property of the hyperboloid of one sheet 6.33

FIG. 6.8



FIG. 6.9

which is also shared by the hyperbolic paraboloid. Let us consider first the
surface 6.33, writing the equation in the form

Factoring both sides we see that every point on the surface lies on a line

and also on a line

Conversely, every point on each of these lines lies in the surface, so that the
surface is ruled. We call the lines 6.332 λ-generators and the lines 6.333 μ-
generators, and prove two interesting theorems:



6.37 Every λ-generator meets every μ-generator.
Proof. If we write the determinant of the coefficients of x1/a, x2/b, x3/c, 1 in the
four equations 6.332 and 6.333, we must show that

and this can easily be verified.

6.38 No two generators of the same family intersect.
Proof. If we set λ = λ1, λ2 (λ1 ≠ λ2) in 6.332, the result follows from the fact
that

so that the corresponding equations are inconsistent.
These two properties hold also for lines of the two families

on the hyperbolic paraboloid 6.36, since the appropriate determinants can
readily be constructed and evaluated.

If we take a fixed point P on, say, the hyperboloid of one sheet 6.33, then the
two generators through P will define a plane which will be obtained by
identifying the two equations



This identification yields k2 = λ = l1, k1 = μ = l2, so that the equation of the
plane in question is

where λ, μ are the parameters associated with the two generators of the surface
through P. The plane so defined is the tangent plane at P, which can also be
obtained by using the calculus, as we shall explain in the Appendix.

EXERCISES
1. Find the equations of the two families of generators of the hyperbolic

paraboloid  and in particular the equations of these generators
through the point (2,1,3) on the surface.

2. Find the equation of the tangent plane to the surface at the point (2,1,3) in
Exercise 1.

3. Find the equation of the tangent plane defined by a λ-generator and μ-
generator of the hyperbolic paraboloid 6.36, corresponding to the equation
6.393.

4. Solve the equations 6.332 and 6.333 to obtain the coordinates

of the point of intersection of a λ-generator and a μ-generator of the
hyperboloid 6.331. Verify that this point lies on the tangent plane 6.393. Explain
why 1 + λμ ≠ 0.

6.4 CONES, CYLINDERS, AND SURFACES OF
REVOLUTION
What locus is represented by the equation 6.11 in 3-space? Clearly x3 is
unrestricted, so that any point P whose first two coordinates satisfy 6.11 lies on
the surface; thus any point on the line through P parallel to Ox3 lies on the



surface. This is the simplest example of a right cylinder; on such a surface there
is one family of generators, each generator being orthogonal to the x1x2 plane. It
is easy to see that any plane curve defines such a cylinder whose equation is that
of the plane curve considered as a locus in 3-space.

A more interesting surface than the cylinder is the cone. For example, the
locus represented by the quadratic equation

has the properties that (i) the origin lies on it; (ii) if (x1, x2, x3) satisfies 6.41
then so also does (λx1, λx2, λx3) for every λ; and also, every section of the
surface by a plane x3 = k yields a circle. The surface represented b y 6.41 is
called a right circular cone. Indeed, the argument we have just given proves
that

6.42 Every homogeneous equation in x1, x2, x3 represents a cone with vertex
the origin.

We can readily deduce other interesting properties of the right circular cone
6.41. If we take its intersection with the plane x1 = k, we obtain

which is a rectangular hyperbola (a = b = k in 6.22) with transverse axis
parallel to 0x3. If the secant plane intersects only that part of the cone above the
x1x2 plane we have an ellipse, and if it is parallel to a generator, a parabola, as
in Figure 6.10. It is these properties which led the Greeks to call these curves
conic sections or conics.



FIG. 6.10

A cylinder is a special case of a cone with vertex ‘at infinity’, and an
arbitrary plane will intersect a circular cylinder in an ellipse, a circle, or a pair
of parallel lines which may coincide. Of course the plane may not intersect the
cylinder at all. In an exactly analogous manner a secant plane through the vertex
O of the cone 6.41 may not intersect the cone in any other point, or if it does, the
intersection will consist of two intersecting lines through O which again may
coincide.

But we may also look at the right circular cylinder represented by the
equation

and the right circular cone represented by the equation 6.41 as surfaces of
revolution. In order to study such surfaces in general, consider the plane curve
represented by the equation f(x2,x3) = 0 and imagine it rotated about the axis
Ox3 as in Figure 6.11. If we replace x2 by  in f(x2,x3) = 0 and
rationalize, we have the desired equation.



FIG. 6.11

Example. The line x2 = r when rotated yields the equation 6.43 and the line x2 =
x3 yields the equation 6.41.

The representation of a quadric cone with vertex the origin by a matrix
equation is interesting and instructive. The equation of the most general such
cone could be written in the form

which we can rewrite

The form of the matrix in 6.45 is significant since, denoting it by M, we have

and such a matrix is said to be symmetric (cf. Exercises 3–5 of Section 3.2).
Conversely, any symmetric matrix yields a cone with vertex the origin, unless it
degenerates (cf. Exercise 5 of Section 6.5).

EXERCISES
1.           



represent two conics in the plane x3 = 0. Find the equations of the surfaces of
revolution obtained by rotating each conic about each of its principle axes.
Roughly sketch the four surfaces so obtained.

2. Find the equations of the cones formed by rotating the line x3 = 0, x2 = 2x1
about (a) the x1 axis, (b) the x2 axis.

3. Which of the different types of quadric surface can be realized as surfaces of
revolution? Make rough sketches to illustrate your answer.

4. Derive the equation of the torus (anchor ring) generated by rotating the circle

about the x2 axis.
5. Discuss the intersection of the plane x3 = k with the torus in Exercise 3, for

all values of k.

6.5 PAIRS OF LINES AND PLANES
We may well ask when a quadratic equation in two variables,

factorizes, and so represents a pair of lines. One may approach the problem
directly and identify the coefficients of the equation 6.51 with those of the
equation

to obtain

Substituting,

Collecting terms and dividing out the factor 4 we obtain as the required
condition:



A more significant approach to the condition 6.53 uses the calculus, as will be
explained in the Appendix.

The curve represented by the general equation 6.51 is met by an arbitrary
line in two points which may coincide, or in no points at all. This follows
immediately by eliminating one of the variables in 6.52 by substituting from the
general linear equation

and considering the possible roots of the resulting quadratic equation.
Alternatively, we may suppose the line 6.54 to be defined parametrically by
equations

as in Section 1.2. Substituting in 6.51 we have a quadratic equation in t and the
same argument applies.

It would be possible to study the effect of a linear transformation on the
equation 6.51 and show that by suitably choosing the constants we could bring it
into one of the normal forms 6.21, 6.22, 6.24 if it did not factorize into a product
of linear factors. A similar procedure is applicable to the general quadratic
equation in x1, x2, x3 and we conclude that every quadric is reducible to one of
the normal forms 6.32–6.36 or is recognizable immediately as a cone, a
cylinder, or a pair of planes. The method is the same in each case but we shall
postpone its consideration to the final chapter of this book.

Just as in the case of a cone, an arbitrary plane π meets any quadric Q in a
conic C or a pair of lines. This follows from the fact that two planes define a
line and by elimination we conclude that any line in π meets Q, and so C, in two
points which may coincide or in no points at all. The locus C is quadratic and so
must be a conic or a pair of lines.

EXERCISES
1. Obtain the condition 6.53 by solving 6.51 as a quadratic in x1. and insisting

that the discriminant be a perfect square.
2. For what values of k does the quadratic equation



represent a pair of lines? Find the lines.
3. Test the quadratic equation

to see if it factorizes, and if so, obtain the factors. Plot the locus on a sheet of
graph paper.
4. Write each of the equations

in matrix form 6.45.
5. What is the significance of the condition 6.53 for the equation of a cone 6.45?

Test your answer on the equations of Exercise 4, and describe the loci.
6. Prove that the equation

represents a central quadric.

6.6 A QUADRIC TO CONTAIN THREE SKEW LINES
In Section 6.3 we saw that a hyperboloid of one sheet or a hyperbolic
paraboloid has on it two families of generators with the properties 6.37 and
6.38. One is tempted to ask the question: Given three skew lines in space is
there a quadric containing them?

To be specific, let us take the three lines l1, l2, l3 to be three nonintersecting
edges of a rectangular parallelepiped with center the origin and equations as
indicated in Figure 6.12 below. The most general quadric surface to contain l1
and l2 would have the form

and if this is to be satisfied by every point of l3 then we must have



so that

from which we conclude that

and 6.61 takes the simple form.

FIG. 6.12

While the choice of the lines l1, l2, l3 would seem specialized, no metrical
property is involved and we have only chosen them symmetrically with regard
to the basis vectors and this can always be arranged. That the ruled surface in
question is uniquely defined is important and since it is centrally symmetrical it
must be a hyperboloid of one sheet. If the three lines are parallel to the same
plane, we no longer have such central symmetry and the surface is an hyperbolic
paraboloid.

Inserting the values of α, β, γ, δ from 6.62, the equation 6.61 takes the form



which factors into

and similarly into

if we set μ = 0, ∞, – a2/a3, we obtain the lines l1,l2,l3 respectively. On the
other hand, we may argue as in Section 6.3, that every line 6.65 meets every line
6.66 since the determinant of the coefficients vanishes identically in λ and μ.

We may look at the two systems of generators on a hyperboloid as yielding a
parametric representation of the surface in the sense that each point P is the
intersection of a unique λ-generator and a unique μ-generator (cf. Exercise 4 of
Section 6.3). Alternatively, we may use trigonometric functions. Just as the
ellipse 6.21,

is represented parametrically in the form x1 = a cos θ, x2 = b sin θ, so the
ellipsoid 6.32,

is represented parametrically in the form

Corresponding representations can be constructed for the other quadrics.

EXERCISES
1. Construct a parametrization for the hyperboloid 6.33 corresponding to 6.67



for the ellipsoid.
2. Verify that the hyperbolic paraboloid 6.36 can be represented parametrically

by the equations

and that θ + φ is constant for points of a given generator of one system and θ
– φ is constant for a given generator of the system.
3. The equation of an ellipsoid 6.32 may be written

If a > b > c, show that

represents two planes which intersect the ellipsoid in circles of radius b.
4. Apply the method of Exercise 3 to find the circular sections of the

hyperboloid.
5. If we denote the matrix in 6.45 by M, we may write the equation of Exercise

6 of Section 6.5 in the form

For what values of λ does the equation

represent a pair of planes? Discuss the intersections of the planes with the
quadric.

6.7 THE INTERSECTION OF TWO QUADRICS
Finally, we consider the nature of the intersection of two quadric surfaces Q1,
Q2. The simplest procedure is to consider the intersection of each surface with
a given plane π, so that we have two conics C1, C2 in π. If C1 and C2 intersect,
their common points belong to both Q1 and Q2. Since C1 and C2 intersect in at
most 4 points, we say that the curve of intersection of Q1 and Q2 in space is of
order 4. In particular, this twisted quartic curve may degenerate into a common



generator and a twisted cubic curve. We investigate this case briefly.
Before doing so, however, we remark that a curve C of the second order in

space must be a conic, i.e., it must lie in a plane; since, if not, a plane
containing two points of C could be chosen so as to meet it in a third point and
C would have order greater than 2.

It is sufficient to consider the simplest case, e.g., the intersection of the cone

with the hyperbolic paraboloid

The generators of the cone 6.71 are given by the equations

and those of the hyperbolic paraboloid 6.72 by the equations

and it is easy to see that the two surfaces have in common the x1 axis, i.e., the
line

The residual intersection is the twisted cubic curve given parametrically by the
equations

EXERCISE
Make a sketch of the two surfaces 6.71 and 6.72 and indicate as best you can the
nature of the intersection.



7

HOMOGENEOUS COORDINATES AND
PROJECTIVE GEOMETRY

7.1 EUCLIDEAN GEOMETRY
So far, we have accepted the two basic features of Euclidean geometry without
question: namely, parallelism and the Pythagorean theorem . These are not
unrelated, for a fundamental property of two parallel lines is that they are
equidistant, and the notion of distance is defined by means of the Pythagorean
theorem. Even if we agreed not to use the Pythagorean theorem, however, we
could still speak of parallel lines using Euclid’s definition that there is a unique
line through a given point P, coplanar with a given line l and not meeting it.

But we may look at the matter differently. Consider a Euclidean plane π and
a point O not in π. Every point P in π determines a unique line OP and every
line l in π a unique plane Ol. Two lines l, l′ in π which intersect in P determine
two planes Ol, Ol′ which intersect in OP; while if l and l′ are parallel in π then
the planes Ol, Ol′ still intersect in a unique line OP∞ parallel to π. All such
lines OP∞ lie in the plane π∞ through O, parallel to π.

Let us set out this correspondence between the points and lines of π and the
lines and planes of the bundle with vertex O, in the following fashion:

If we associate a line OP through O with a point P in π when OP intersects
π in P, why should we not similarly associate a point P∞ at infinity in π with
the line OP∞? Indeed this association is well defined, since any plane Ol′ will
contain OP∞ if and only if l′ is parallel to l. Moreover, all lines OP∞ lie in the
plane π∞ parallel to π, so that it is natural to speak of P∞ as lying in the line l∞
“at ∞” in π.

In the following section we shall see how this can all be done analytically.



7.2 HOMOGENEOUS COORDINATES
Let us reconsider the problem of finding the common point of two coplanar

lines. Assuming now that these lines are parallel, we may take their equations in
the form

Previously we said that such equations are inconsistent for a10 ≠ a20 and have
no solution. If, however, we introduce a new “variable of homogeneity” x0 and
write

then the two equations do have a solution x1 = ka12, x2 = –ka11, x0 = 0 for
all values of k. If we call x1,x2,x0 the homogeneous coordinates of the common
point, the two approaches can be reconciled by writing the familiar
nonhomogeneous coordinates, which we temporarily denote , … , in
the form

Notice that the homogeneous coordinates x1, x2, x3, … x0 are determined up to
a constant factor k ≠ 0 only. For any finite point we may set x0 = 1 so that  =
xi (i = 1,2,3, …) but for points “at infinity,” x0 = 0, which is the equation of the
space at infinity. The homogeneous coordinates of the origin can be taken to be
(0,0,0, … , 1) while those of the point at infinity on Ox1 can be taken to be
(1,0,0, … , 0), those of the point at infinity on Ox2 can be taken to be (0,1,0, … ,
0), and so on. There is no ambiguity here since division by zero is not allowed,
and multiplication by any k ≠ 0 does not change the point so represented.

Just as the equation of a line in two dimensions can be taken to be
homogeneous as in 7.212, so the equation of a plane in three dimensions can be
taken to be homogeneous:

We may consider the arbitrary constant factor k, by which the equation may be
multiplied without changing its geometrical significance, to be precisely that k
for which the point



Thus we have made the designation of a point in space conform to the same
algebraic convention as holds for the equation of any locus.

If we write the general equation of a conic in the form

it assumes the homogeneous form

when we replace nonhomogeneous by homogeneous coordinates. Similarly, any
algebraic equation* can be made homogeneous and, indeed, equations which
are nonhomogeneous in x1, x2, x0 have no geometrical significance.

On introduction of the coordinate of homogeneity x0, the set of numbers (x1,
x2, x0) can no longer be considered as a vector in the plane. Nevertheless, there
is the considerable advantage that the quadratic equation 7.242 can now be
written

yielding a significant generalization of the equations 6.23. The similarity of
7.243 and 6.45 is suggestive. Indeed, we obtain the nonhomogeneous equation
of a conic by setting x3 = 1 in 6.45, i.e., by taking the intersection of the cone by
this plane. In so doing we have established exactly the correspondence
envisaged in Section 7.1. The vector X(x1,x2,x3) in 3-space defines a unique
point (x1,x2,x0) in the plane x3 = x0 = 1, and (kx1,kx2,kx3) defines the same
point for every k ≠ 0.

In order to generalize these ideas further, it is convenient to write the
equation 7.243 in the form

where aij = aji. In this notation the general homogeneous quadratic equation in
x1, x2, x3 x0 becomes



where again aij = aji. Such an equation contains as a special case each of
6.321 through 6.341, and 7.26 represents a general quadric surface. We shall
see how to reduce 7.25 and 7.26 to normal form in the last chapter of this book.

EXERCISES
1. Write the equations

in homogeneous form and solve.
2. What is the nonhomogeneous form of the equation of the curve

Find the homogeneous coordinates of its intersections with the axes and
locate the points in question. Roughly sketch the curve.
3. Write the equation

in the form 7.25 with integral coefficients.
4. Write the equation

in the form 7.26 with integral coefficients. What difference would it have
made if the right side had been 0 instead of 1?

7.3 AXIOMS OF PROJECTIVE GEOMETRY
By introducing homogeneous coordinates we have been able to extend our
analytical machinery so as to take account of the behavior of geometric loci at
infinity. In a very practical sense we have adjoined such points, and the line or
plane (space) at infinity in which they lie, to the ordinary Euclidean plane or



space with which we are familiar. We have, in fact, made it possible to say that
any two coplanar lines have a point in common (finite or infinite) and any two
planes in space have a line in common (finite or infinite) and every line meets
every plane in a point (finite or infinite). If we do not involve the notion of
distance or length, i.e., if our space has no metric imposed upon it (e.g., by a
Pythagorean theorem), we have what is called affine geometry. If we do not
distinguish between finite and infinite elements, we have projective geometry.

In order to clarify these ideas, let us approach the situation from the
opposite point of view and give a system of incidence axioms which will define
a projective space, say of three dimensions. To this end we take a point to be
undefined and a line to be an undefined class of at least two points. It is
important to be somewhat vague here so that our system of axioms may be
capable of different interpretations. In this way we can include many apparently
diverse systems which are subject to the same relations, when point and line
are interpreted differently. Concerning these undefined elements we make the
following assumptions:

7.31 There are at least two distinct points.

7.32 Two distinct points A, B determine one and only one line AB (or BA) through
both A and B.
It is not difficult to prove that if C and D are points on AB, then A and B are
points on CD. Moreover, two distinct lines cannot have more than one common
point.

7.33 If A, B are distinct points, then there is at least one point C distinct from A, B
on the line AB.

7.34 If A, B are distinct points, then there is at least one point C not on the line
AB.

7.35 If A, B, C are Three noncollinear points and D is a point on BC distinct from
B and C and E is a point on CA distinct from C and A, then there is a point F on
AB such that D, E, F are collinear.
This axiom 7.35, first stated by Pasch in 1880, makes it possible to define a
plane ABC and to prove that any two coplanar lines have a point in common.
In order to have a space of at least three dimensions, we assume that:

7.36 If A, B, C are three noncollinear points, then there is at least one point D not
on the plane ABC.
To exclude the possibility that it have more than three dimensions, we assume
finally that

7.37 Any two distinct planes have a line in common.



FIG. 7.1

These seven axioms describe how points, lines, and planes are related to each
other in projective geometry. There must be at least three points on a line; how
many more is not specified. Already we have an example of the utility of
leaving “point” undefined. In fact, the interpretations of “point” as a “line of the
bundle” and “line” as a “plane of the bundle” in Section 7.1 satisfy all our
assumptions, and we conclude that the geometry of the bundle is in one-to-one
correspondence with the geometry of the projection plane.

7.4 THEOREMS OF DESARGUES AND PAPPUS
Many beautiful theorems can be proved on the basis of these assumptions, but
we prove only one due to the French geometer Desargues (1593–1662).

7.41 Theorem of Desargues If two triangles ABC, A′B′C′ are situated in the
same or in different planes and are such that BC, B′C′ meet in L, CA, C′A′ meet
in M, and AB, A′B′ meet in N, where L, M, N are collinear, then AA′, BB′, CC′
are concurrent, and conversely.
Proof, (i) If we assume that the two triangles are in different planes π, π′, then
the three points L, M, N must lie on the line l common to π and π′. Since A, A′, B,
B′ are coplanar, as also are B, B′ , C, C′ and C, C′ , A, A′, we know that these
three planes must have a point O in common so that AA′ , BB′ , CC′ all pass
through O. The converse theorem follows by reversing the argument.

(ii) If the two triangles ABC, A′B′C′ lie in the same plane π, we may choose
a plane π1 through l distinct from π and a point P not in π or π1. Projecting
A′B′C’ from P into a triangle A1B1C1 in π1, we know the theorem is true for
ABC and A1B1C1, so that there exists a point O1 in which AA1, BB1 CC1 all
meet. Projecting back again onto π from P, the point O1 projects into a point O
in which AA′, BB′, CC′ all meet, as required. The converse follows similarly.
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The remarkable fact about Desargues’ theorem is that it cannot be proved
for coplanar triangles unless the plane containing them is embedded in a three-
dimensional space. Examples of non-Desarguesian planes can be constructed
which satisfy axioms 7.31–7.35 without Desargues’ theorem being valid (cf. the
exercise of Section 7.6). There is thus a notable difference between spaces of
two and three or more dimensions which is far from being fully understood.

While the theorem of Pappus (3rd Century A.D.) is expressible in terms of
incidence relations, it cannot be proved without further assumptions :

7.42 Theorem of Pappus If A, B, C are any three distinct points on a line l and
A′, B′, C′ any three points on a line l′ intersecting l, then the three points
(BC′,B′C), (CA′,C′A), (AB′,A′B) are collinear.

Only relatively recently has the full significance of these theorems of
Desargues and Pappus been brought to light in Hilbert’s Foundation of
Geometry (Chicago: Open Court, 1938).
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EXERCISES
1. Formulate the theorem of Desargues in the bundle and verify that the proof

remains valid.
2. Formulate the theorem of Pappus in the bundle.

7.5 AFFINE AND EUCLIDEAN GEOMETRY
Having defined a projective space, in particular a projective plane π, we can
specialize an arbitrary line l∞ in π which we may designate as the “line at ∞.”
Any two lines l, l′ which intersect onl∞ will be called parallel. If l meets l∞ in
P∞, then through any point P not on l there passes one and only one line PP∞
parallel to l, and this is Euclid’s axiom of parallelism. Such a definition of
parallelism involves no metric, i.e., no measure of length or of angle, and yields
affine geometry.

FIG. 7.4



In order to introduce a measure of length it is natural to proceed in two
stages: (i) to define equality of segments under parallel translation and then (ii)
under rotation.

(i) Having defined parallelism in affine geometry, we have a parallelogram
ABCD if AB||CD and AC||BD, as in Figure 7.4. The statement that AB = CD and
AC = BD is natural, and leads to all the familiar consequences.

(ii) In order to define equality of segments under rotation, we must
distinguish a circle from the general conic 7.242. The most natural way of doing
this is to observe that every circle

intersects the line at infinity x0 = 0 in the two so-called “circular points at
infinity” given by the equations

These points have the conjugate complex coordinates (1, ± i, 0). Conversely,
any conic through these two circular points is by definition a circle. By
choosing two such points on l∞ and designating them as “circular points,” it is
possible to introduce a measure of length and eventually the full Euclidean
metric.

Though we cannot go into details here, this building up of Euclidean
geometry from projective and affine geometry leads to a clearer understanding
of the ideas involved. In the following chapter, we shall study geometry on the
surface of a sphere. Besides being our “homeland” this provides the simplest
example available of a non-Euclidean metric.

EXERCISES
1. Set up equations corresponding to 6.15 to represent the parallel translation of

the origin to the point P(p1,p2). What would these become in homogeneous
coordinates?

2. Prove that the equation 7.243 of any conic passing through the circular points
(1, ± i, 0) must reduce to the equation 7.51 of a circle.

3. What is the effect of the parallel translation of Exercise 1 on the circular
points?

4. Write the general linear transformation in the plane in homogeneous
coordinates and consider its effect on the line at infinity. What is the
condition that it leave l∞ (i) invariant, (ii) pointwise invariant? In which of
these categories would you place (a) a parallel translation, (b) a rotation



about the origin?
5. Write the general linear transformations of Exercise 4 in nonhomogeneous

form. What would be the corresponding transformations in space?

7.6 DESARGUES’ THEOREM IN THE EUCLIDEAN
PLANE
In order to clarify these ideas still further, let us consider the theorem of
Desargues from the point of view of Euclidean geometry. In Figure 7.2 of
Section 7.4 we could assume that all the intersections are “finite” and in this
case the proof given is applicable in the Euclidean case. Let us consider in
particular the two cases illustrated below in which one (or two and so each)
side of the triangle A′B′C′ is parallel to the corresponding side of the triangle
ABC. Both triangles are here assumed to lie in the same plane.

FIG. 7.5

Case (i). We take the center of perspective O as origin and the coordinates and
equations as indicated in Figure 7.5. The parallelism of AB and A′B′ is
expressed by introducing the constant k ≠ 0 in the manner indicated; we assume l
≠ k. Writing the equations of AC and A′C′ in parametric form, we have



and

and if these are identified to obtain the coordinates of M, we have

Multiplying the second by a and subtracting, we conclude that s = t, so that

By replacing a, α, s, t by b, β, u, υ we obtain for the point L the parameter u = υ
and, as before,

The direction numbers of AB are aα – bβ, α – β, while those of ML are

and

by 7.63; thus ML is parallel to AB as we wished to show.



FIG. 7.6

Case (ii). If A′B′ is parallel to AB and B′C′ is parallel to BC, then it follows
immediately that A′C′ is parallel to AC, though we cannot set k = l in 7.63 to
prove it.

Instead of introducing a different argument in each of the three cases of
Desargues’ theorem we could have used homogeneous coordinates. We
illustrate the method in the following section.

EXERCISES
The simplest example of a non-Desarguesian plane is due to F. R. Moulton.
With nonhomogeneous coordinates taken in the Euclidean plane π, a modified
line is defined by the equation

where the function f is defined as follows:

A modified line is identical with an ordinary line in π in the first case; in the
other cases a modified line is made up of two “half-lines.” Verify that:
1. Any two points P, Q uniquely determine a modified line PQ;
2. Two modified lines intersect in a unique point or are parallel;
3. Two modified lines are parallel if and only if the corresponding half-lines

are parallel;
4. Desargues’ theorem is not valid for all choices of the two triangles ABC and

A′B′C′ in Moulton’s geometry.

7.7 PAPPUS’ THEOREM IN THE EUCLIDEAN
PLANE
We have two special cases of Pappus’ theorem in the Euclidean plane, but we
shall consider first the general theorem 7.42 using homogeneous coordinates.



FIG. 7.7

If we take the origin at the intersection of l and l′, we may take these lines as
coordinate axes with equations x1 = 0, x2 = 0 respectively, so that the
homogeneous coordinates of A, B, C may be taken to be (0,a,1), (0,b,1), (0,c,1)
and those of A′,B′,C′ to be (a′,0,1), (b′,0,1), (c′,0,1) respectively. In such a
choice of oblique axes we are utilizing the convenience of expression suggested
in Section 5.1.

Setting up the necessary equations, e.g.,

for the point L, we readily verify that the homogeneous coordinates of L, M, N
may be taken to be

Since the third-order determinant Δ made up of these three sets of coordinates
vanishes (the sum in each column being zero), we conclude that L, M, N are
collinear and this is independent of the vanishing or nonvanishing of the
entries in the third column of Δ (i.e., of the coordinate of homogeneity). Thus
we have proved Pappus’ theorem not only when all intersections L, M, N are
finite, but also in cases (i) and (ii) of Figure 7.7.

EXERCISE



1. Set up the necessary equations to justify 7.71–7.73.

7.8 CROSS RATIO
There is one remarkable property of the correspondence established in Section
7.1 which again we prove only in the Euclidean plane. If the four lines OA, OB,
OC, OD in Figure 7.8 have equations

we may suppose that they are met by any transversal

in the points A, B, C, D. If A1, B1, C1, D1 are the feet of the perpendiculars from
A, B, C, D on Ox1 then, from similar triangles,

where

Assuming that n ≠ 0, we conclude that the cross ratio

is independent of m, n and so of the choice of the transversal.



FIG. 7.8

FIG. 7.9

But we can look at the problem slightly differently. Suppose now that the
points A(a,0), B(b,0), C(c,0), D(d,0) are fixed and the vertex Y(y1,y2) of the
pencil of four lines is arbitrary (Figure 7.9). The slopes of the lines are easily
seen to be

and assuming that y2 ≠ 0, we have

Thus the same cross ratio is defined by 7.84 and 7.85 and this is independent
not only of the choice of the transversal for a fixed pencil but also of the pencil



for a fixed transversal. The cross ratio is a projective invariant and plays an
important role in the further development of projective geometry.

In the particular case in which {AC, BD} = –1, the four points A, B, C, D are
said to form an harmonic range and YA, YB, YC, YD an harmonic pencil. In this
case

and since we always have

the relationship is completely symmetrical with regard to the pairs A, C and B,
D, which are called harmonic conjugates of each other.

EXERCISES
1. Prove that the internal and external bisectors of any angle form, with the arms

of the angle, an harmonic pencil of lines meeting the base of the triangle in an
harmonic range of points.

2. What can you say concerning the pencil of lines and range of points in
Exercise 1 if the triangle in question is isosceles?

3. Using homogeneous coordinates, verify that 7.84 may be written in the form

4. Prove that {XY, ZT} is harmonic for any points X(x1,1), y(y1,1), Z = [ (x1 +
y1), 1], T = (1,0), and show that the point Z is uniquely defined by X, Y.

5. If the midpoint P′ of the segment AB in Figure 7.4 is defined by the condition
that {AB, P′P∞} = –1, and the midpoint Q of BD by the condition that {BD,
Q′Q∞} = – 1, prove that P′,Q∞ and Q′P∞ meet the opposite sides of the
parallelogram ABCD in their midpoints.



FIG. 7.10

6. If A′ is the midpoint of BC, B′ the midpoint of CA, and C′ the midpoint of AB
in the triangle ABC of Figure 10, prove that C′B′||BC and also that BA′ = C′B′
= A′C for all l∞ not passing through A, B, C.
Solution. Assume that {BC, A′A∞} = –1, so that projecting from C∞ we have

{AC, B′B∞} = – 1 and from A∞ we have {AB, C′C∞} = –1 = {BA, C′C∞}. It
follows that C′A′ must pass through B∞, so that BA′ = C′B′ = A′C.
7. Prove that the medians AA′, BB′, CC′ of the triangle ABC in Figure 7.10 are

concurrent (use Desargues’ theorem).
8. By actual substitution, prove that the cross ratio of four points is invariant

under any linear transformation of the coordinates.
* We assume that we have a rational integral algebraic function, i.e., a polynomial, set

equal to zero. Such a polynomial is said to be homogeneous of weight w if, when
every xi is replaced by xit, exactly tw is a factor of every term.
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GEOMETRY ON THE SPHERE

8.1 SPHERICAL TRIGONOMETRY
Though we live on the surface of the earth all our days and make maps which
guide our automobiles and our airplanes at ever increasing speed, yet most
people are not clear as to the relationship between plane and spherical
geometry. Undoubtedly the explanation of this lies in the fact that our
geometrical ideas stem from Euclid and the concept of a flat world was
acceptable long after his time. To understand this mapping process and to
introduce the study of a non-Euclidean metric, we examine first spherical
trigonometry which is the basis of all large-scale surveying.

Euclid’s definition of a “straight” line as the shortest distance between two
points introduces the idea of a metric into geometry. When we think of a surface
Σ embedded in 3-dimensional Euclidean space, this notion of the “shortest
distance” between two points on Σ leads to a unique curve called a geodesic on
Σ. If a thread be stretched between two points P and Q on a sphere Σ, then this
thread will lie along the great circle joining P and Q, and this is a geodesic on
the sphere.

For simplicity, let us assume that our sphere Σ has its center at the origin O
with unit radius, and so has equation

If A, B, C are any three points on Σ, then we call the intersections of the planes
OAB, OAC, OBC with Σ a spherical triangle, as in the accompanying figure.
The metric we adopt on Σ is that of the Euclidean space in which Σ is
embedded, so that the “length” of the side AB is determined by the angle AOB =
c. In fact, these angles a, b, c, which are subtended by the sides BC, CA, AB at
O, yield precisely the desired lengths if they are expressed in radians (i.e., as
fractions of 2π). We define the angle A of the spherical triangle ABC to be that
between the tangents AD and AE to the great circles AB and AC. We remove the
ambiguity as to which of the two possible triangles we are referring to by the
convention that every angle of the triangle ABC shall be less than π.



FIG. 8.1

With these definitions it follows from Pythagoras’ theorem applied to the
triangles ADE and ODE that

so that

and

Referring to Figure 8.1 we have our basic formula:

This, and a host of more complicated relations (cf. exercises of Section 8.2)
were derived in the sixteenth and seventeenth centuries with the expansion of
navigation and the need to fix latitude and longitude on long voyages of
exploration. The following consequence of 8.12 resembles a familiar formula of
plane trigonometry:

where 2s = a + b + c.
Proof. From 8.12 we have*



so that

Similarly,

Thus

which yields 8.13, since the expression for (sin A/sin a) is symmetrical in each
of a, b, c.

It is important to observe that we can have a spherical triangle in which A =
B = C = π/2, so that the sum of the angles is in this case >π. We shall see
shortly that this striking difference from plane geometry holds for every
spherical triangle.

8.2 THE POLAR TRIANGLE
So far, we have not drawn attention to the fact that two points B, C define not
one but two (complementary) great circular arcs on Σ. Associated with the great
circle BC in Figure 8.2 are the two poles A′, A″ which are the
*The basic formulas of elementary trigonometry which we require are as
follows:

from which we deduce that



and also that

intersections with Σ of the diameter through O such that A′OA″ is normal to the
plane OBC. Corresponding to the other two sides of the spherical triangle we
have the poles B′, B″ and C′, C″

FIG. 8.2

FIG. 8.3

It is clear that either A′ or A″ will lie in the hemisphere which contains A,
defined by the great circle BC; let us suppose it to be A′. Similarly, we



distinguish B′ and C′ and we call A′B′C′ the polar triangle of ABC. If we
examine Figure 8.3 it appears that AB′, AC′; BA′, BC′; ′CA′, CB′ are all quadrants
of great circles, so that ABC is the polar triangle of A′B′C′. Moreover, GH is
precisely the measure of the angle between the planes OAB and OAC which we
have denoted by A, while B′H = C′G = π/2. Thus

From the similar properties of ABC we conclude that

If now we substitute these expressions in the analogue of 8.12 for the polar
triangle we have

or

which we can think of as the dual of 8.12.
There is another approach to spherical trigonometry which depends on

properties of the vector product. If we write  = A,  = B,  = C, then the
Lagrange identity (cf. Exercise 5, Section 5.3) leads to the conclusion

since |A| = |B| = |C| = 1. But we also have

by 1.45 and 5.372. Taken together, 8.22 and 8.23 yield 8.12. In order to derive
8.13, we use 5.372 again to yield

By evaluating |(A × B) × (A × C)| differently, we obtain a quantity σ which is
unchanged by permutation of the vectors A, B, C in any manner. Thus we



conclude that

where σ can be shown to have the value indicated in 8.13.

EXERCISES
1. Derive the special cases of 8.12, 8.13, and 8.21 for a spherical triangle in

which A = π/2.
2. Prove that

where 2S = A + B + C.
3. Prove that

and thence that

4. Show that

5. Verify the correctness of Napier’s Analogies

by expanding and substituting from Exercise 4. By applying these formulas to
the polar triangle, obtain their duals.
6. Describe a procedure for solving a spherical triangle in which the given



elements are (i) a, b, c; (ii) A, B, C; (iii) a, b, C; (iv) A, B, a. Can you arrange
that each problem be solved conveniently by using logarithms?

8.3 AREA OF A SPHERICAL TRIANGLE
Consider now Figure 8.4, in which is represented the hemisphere containing A
and defined by the great circle BC. If we suppose the sphere Σ to have radius r
and area 4πr2, then the area of the lune made up of the parts ABC and AB1C1 is
(A/π)2πr2. Similarly, the area of ABC + AB1C is (B/π)2πr2, and the area of
ABC + ABC1 is (C/π)2πr2.
Thus,

which is a famous result that leads to the designation of the quantity A + B + C –
π as the spherical excess.

Here we have a sharp distinction between geometry on the surface of a
sphere and in the Euclidean plane. In the first place the area of a hemisphere is
finite (2πr2), while that of the Euclidean plane is not. If we think of r as tending
to infinity and the area of the triangle ABC remaining constant, then it is clear
that A + B + C – π must tend to zero, which yields the Euclidean theorem
concerning the sum of the angles of a triangle.

FIG. 8.4



In the second place, any two great circles will intersect (once in any given
hemisphere) so that there is no such thing as parallelism on the sphere.

Finally, given any two great circles on the sphere there exists a uniquely
determined great circle through their poles which is orthogonal to each great
circle. The analogous statement concerning lines in the plane is true only if the
lines are parallel, and then there is an infinite number of common
perpendiculars (see the end of Section 8.8).

EXERCISES
1. Prove that no two triangles on a sphere Σ have equal angles, i.e., are

“similar,” unless their sides are equal also.
2. From the properly that the medians of a triangle are concurrent in Euclidean

geometry deduce the corresponding property of a triangle on the surface of a
sphere.

3. If A = B = C = π/2, express the area of the spherical triangle ABC as a fraction
of the total area of the sphere Σ.

4. Show that the two restrictions on a spherical triangle ABC, (i) that every
angle be less than π, (ii) that every side be less than πr are equivalent.

8.4 THE INVERSION TRANSFORMATION
Though we have seen how geometry on the sphere can approximate that in the
Euclidean plane for r sufficiently large, yet we would like to establish a closer
correspondence between the two. To this end we investigate the quadratic
transformation known as inversion.

In order to define the transformation we consider it first with reference to
the circle 0,



FIG. 8.5

If X(x1, x2) is any point different from O, then OX will meet 0 in Y, Z, and the
inverse point X′ of X with regard to 0 is defined to be the harmonic conjugate
of X with regard to Y and Z. Thus

which on expanding and simplifying leads to the alternative definition

Rewriting the equation 8.41 in the form

we have

If we substitute from the relation

in 8.42, we obtain the equations



of the quadratic transformation known as inversion, with the inverse
transformation given by the equations

Leaving the geometrical properties of the transformation to be developed in
the next section, let us consider the following
Problem. Find the locus of the harmonic conjugate X of a fixed point X′ with
regard to the circle ,  +  = a2.
Of course the significance of the problem is that we take an arbitrary line
through X′ meeting  in Y and Z and look for the locus of the harmonic conjugate
X of X′. Such a line could be written in parametric form:

where t is the length of the segment X′X and l1, l2 are the direction cosines of
the line. Substituting the expressions 8.45 in the equation of  we have

If now we require that the roots 1/t shall satisfy 8.43, we have

so that after cross-multiplying and substituting from 8.45 we have the required
locus,

This line is perpendicular to OX′ and is called the polar (line) of X′ with regard
to the circle ; X′ is the pole of 8.47.

EXERCISES
1. Prove that if the polar of X′ with regard to a circle  passes through Y′ then

the polar of Y′ passes through X′



2. By a method similar to that used above, find the polar of X′ with regard to
each of the three conics

3. Prove that the polar line of the focus of a conic is the corresponding directrix.
4. If the polar of L with regard to a given conic  is l and the polar of M with

regard to  is m, prove that the pole of LM is the point of intersection of l and
m.

5. Using homogeneous coordinates, find the polar lines of the points at infinity
(1,0,0), (0,1,0) with regard to the ellipse

In what point do these polar lines intersect?
6. Use the result of Exercise 5 to define the center of a conic in affine geometry.

8.5 GEOMETRICAL PROPERTIES OF INVERSION
Since the equation of an arbitrary circle  can be written in the form

we obtain the inverse curve ′ with regard to the circle 0 by substituting from
8.442 and multiplying by  ≠ 0:

Thus,

8.53 The inverse of a circle  is a circle ′, unless  passes through the origin,
in which case the inverse of  is a line. Conversely, the inverse of a line l is a
circle  through O, unless l passes through O when l is mapped upon itself by
the transformation.

More generally, we can invert with regard to any circle of radius a, the
center of which is called the center of inversion and a the radius of inversion.
Clearly, any point on the circle of inversion remains fixed under the
transformation.

The three-dimensional analogue of inversion in a circle is inversion in a
sphere Σ0,



and the analogues of 8.441 and 8.442 are easily seen to be

and

Note that points on the circle or sphere of inversion remain fixed, and these are
the only fixed points of the transformation.

As in the case of a circle, the sphere with equation

inverts into the sphere with equation

under the transformations 8.542. Thus,

8.57 The inverse of a sphere Σ is a sphere Σ′, unless Σ passes through the
center of inversion O, in which case the inverse is a plane. Conversely, the
inverse of a plane π is a sphere Σ passing through O unless π itself passes
through O, in which case π is mapped upon itself by the transformation.

The following special case of 8.53 and 8.57 is of some interest.

8.58 Any circle (sphere) orthogonal to the circle (sphere) of inversion is its
own inverse.



FIG. 8.6

FIG. 8.7

Proof. The proof is an immediate consequence of the fact that if  is orthogonal
to 0, then OP is tangent to  and

so that the points X, X′ on , collinear with O, are inverse points with regard to 
0. The argument for spheres is the same.

There is one further property which is important:

8.59 Inversion is a conformal transformation.
This means that if two curves C1 and C2 intersect in R at an angle α, then their
inverses  and  will also intersect in R′, the inverse of R, and at the same
angle α.



Proof. By definition,

so that

From similar triangles, it follows that

so that

Since the angle between the curves C1, C2 is defined to be the limit α of ∠
PRQ, as P → R, it follows that the limit of ∠ P′R′Q′ is also α, proving the
theorem.

EXERCISES
1. Invert the property of circles which states that the angle in a semicircle is a

right angle.
2. Show that:

(a) Inverse points with regard to a circle  invert into inverse points with
regard to s.

(b) The limit points of a coaxal system are inverse points with regard to
every circle of the system.

(c) A system of nonintersecting coaxal circles may be inverted into a system
of concentric circles.

(d) A system of intersecting coaxal circles can be inverted into a system of
concurrent lines.

8.6 STEREOGRAPHIC PROJECTION
If we designate by N and S the “north” and “south” poles of a sphere Σ, the
process known as stereographic projection consists of

(i) projecting Σ onto the tangent plane at N from the point S, or



(ii) projecting Σ onto the equatorial plane from the point N.
We consider first case (i), and show that the effect of projection is identical

with that of inverting Σ with respect to a sphere Σ0 with center S, passing
through N. Clearly the plane π tangent to Σ at N is also the plane tangent to Σ0 at
N, so that the inverse of Σ is π. Moreover, any plane through NS meets Σ in a
line of “longitude” so that such lines invert into lines through N in π. Finally, any
small circle on Σ is the intersection of a plane ω with Σ, so that such small
circles invert into the inter section of a sphere with π, i.e., into a circle in π.
Thus lines of latitude on Σ project into concentric circles in π. Since lines of
latitude and longitude intersect orthogonally on Σ, the inverse curves will also
have this property, and we can describe the position of a point P′ on the map

FIG. 8.8

FIG. 8.9



FIG. 8.10

in the same way as P was described on the surface of Σ. There is an increasing
amount of distortion, however, as we approach the circumference of the map,
since the Euclidean metric in π is different from that on the surface of Σ.

In case (ii) a similar relation between projection and inversion holds,
except that the sphere of inversion Σ0 has its center at N and passes through the
equator of Σ. Great circles on Σ through S project into lines through Q, the
center of Σ in π, while small circles on Σ project into circles in π. Conformality
is preserved in both cases by the appropriate generalization of 8.59, and
distortion again increases as we move away from the point Q.

8.7 ELLIPTIC GEOMETRY
That only certain great circles on the sphere project into lines in π is an
undesirable feature of stereographic projection which must be tolerated to
obtain conformality. But from an abstract geometrical point of view
conformality is unnecessary, and by projection from the center of the sphere
onto a tangent plane every great circle will project into a line.

Let us proceed analytically, taking the equation of Σ to be

The equation of the plane π tangent to Σ at , in Figure 8.11, may be taken to be

and we choose  1,  2 parallel to Ox1, 0x2. We are in exactly the position
we considered in such detail in the preceding chapter: the coordinates



FIG. 8.11

(x1, x2, x3) of any point X on Σ are related to those of its projection  in the
tangent plane π by the relations

But here we have a metric which derives from that on the surface of the sphere
Σ and which we can transfer in a nonambiguous manner to the tangent plane.

Using the notion of the inner product in 1.45, let us define the distance
between two points X, Y on Σ to be d(XY) so that

taken positive. If, now, we denote the distance between  and  in π by d(  
), this is determined by setting

It follows immediately from 8.73 that d( ) is always finite for  fixed and
any , and every pair of lines intersects. We complete our definition of the
metric in the tangent plane by defining the measure of an angle to be the same as



that on the sphere Σ, so that

Thus all the formulas of Sections 8.1–8.3 applicable to the spherical triangle
ABC apply also to , and the resulting geometry in π is called elliptic.

Actually, our mapping of the sphere Σ on the tangent plane is 2:1, since two
diametrically opposite points on the sphere are mapped on the same point of the
plane. Thus the area of the elliptic plane is finite and equal to 2πr2. It follows
immediately from 8.75 that

8.76 In any triangle ABC in elliptic geometry,

In order to study analytically the effect of allowing r to increase, we write
8.73 in the form

taken positive.
Since , we conclude that

which is Pythagoras’ theorem, and Euclidean geometry is a limiting case of
elliptic or spherical geometry.

8.8 HYPERBOLIC GEOMETRY
Suppose we replace r in 8.75 by ir, where i2 = – 1; then the condition 8.76
becomes

8.81 In any triangle ABC in hyperbolic geometry

Moreover, if we wish our projection to be real we must also replace x3 by ix3
in 8.71 so that the sphere becomes an hyperboloid of two sheets with equation



The enveloping or asymptotic cone of this hyperboloid with equation

cuts the tangent plane π: x3 = r in the circle

called the absolute in π. By such a substitution the distance function 8.77
becomes

FIG. 8.12

taken positive.
In order to see the further consequences of the change of r into ir we must

examine how it affects the spherical functions



If we define the corresponding hyperbolic functions by the formulas

then it is easy to see that i sin θ = sinh iθ so that

and we can rewrite 8.83 in the real form

taken positive.
There is one notable property of 8.84, namely, that d( ) → ∞ as 

approaches the absolute , for any point  within . Thus points outside  are
inaccessible. As before, the Euclidean metric is also a limiting case of the
hyperbolic metric as r → ∞.

FIG. 8.13

Though the interpretation of the distance function 8.84 as the length of a
geodesic on the hyperboloid is no longer valid, by a slight change of emphasis
in the elliptic case we can obtain an interpretation which is consistent here. It
will be sufficient to consider the case of a plane through the origin intersecting
the sphere and the hyperboloid as indicated in Figure 8.13. Instead of defining
the length  in terms of the length AB we define it in terms of the area of the
sector OAB. In the elliptic case the parametric equations of the circle are x1 = x
= r cos θ, x3 = y = r sin θ, so that the area



and in the hyperbolic case x1 = x = r cosh θ and x3 = y = r sinh θ, so that the
corresponding area

where d cosh θ = sinh θ dθ and cosh 2θ = 1 + 2 sinh2θ, as may be easily
verified.

Thus in both the elliptic and the hyperbolic case the area of the segment 
 is  r2φ, and

interpreted in the elliptic case by 8.77 and in the hyperbolic case by 8.84. The
factor of proportionality 2/r is fixed in a given geometry.

In order to obtain the formulas of hyperbolic trigonometry we must make
the appropriate changes in 8.11, 8.12, and 8.21, which yield

Thus we are led to a model of the hyperbolic plane in which we limit
attention to the interior of the absolute circle . As we have seen, any point on 
is to be considered “at infinity.” Through X can be drawn two parallels XY∞,
XZ∞ to any line l not passing through X, as well as any number of ultraparallels
which intersect l in inaccessible points P outside . Thus two lines may
intersect, be parallel, or they may not intersect at all in hyperbolic geometry.



FIG. 8.14

It is beyond the scope of this brief treatment to give a proper definition of
“angle” in hyperbolic geometry, but we can say that perpendicularity is
definable in terms of the harmonic property:

8.88 Definition If l is the polar line of an inaccessible point L with regard to the
absolute , then any line “through” L is perpendicular to l It follows after a little
argument, which we omit, that:

(i) Intersecting lines in hyperbolic geometry have no common perpendicular.
In elliptic geometry every pair of lines has a common perpendicular.

(ii) Parallel lines have no common perpendicular in hyperbolic geometry.
(iii) Nonintersecting lines have one common perpendicular, namely, the

polar line of their inaccessible point of intersection.
Consider now the triangle PQA∞ in which PA∞ is parallel to l and ∠PQA∞

= π/2 as in Figure 8.15. If we set ∠QPA∞ = θ and d(PQ) = p in 8.73, we
conclude that



FIG. 8.15

Thus the perpendicular distance p from P to l is determined by and determines
the angle θ, called the angle of parallelism. It can be shown that the locus of P,
such that p remains fixed, is a conic having double contact with  at A∞ and B∞.
Such a curve is called an equidistant curve. Since all perpendiculars PQ pass
through L, and equidistant curves become parallel lines as r → ∞, we conclude
that there is an infinite number of common perpendiculars to two parallel lines
in Euclidean geometry, and these are themselves all parallel.

Thus Euclidean geometry is a limiting case of both elliptic and hyperbolic
geometry, and shares its properties in part with one and in part with the
other.

EXERCISES
1. Construct a triangle in the hyperbolic plane whose angle sum is zero.
2. How many such triangles exist having a given line as side?
3. Prove that ∠QPA∞ = ∠QPB∞ in Figure 15.
4. Prove that θ → π/2 as P → Q along QL in Figure 15, by considering (a) the

area of the triangle PQA∞ (b) the relation 8.89.
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REDUCTION OF REAL MATRICES TO DIAGONAL
FORM

9.1 INTRODUCTION
In this our final chapter, we emphasize two important ideas. In the first place,
the linear transformation X′ = PX is capable of two interpretations. Either it can,
when applied to a vector space υn, be interpreted as a mapping of the space on
itself in which a vector X is “moved” to a new position X′ referred to the same
basis vectors; or it can be interpreted as a renaming of the fixed vector X
relative to a new system of basis vectors  = PEi. These two points of view
are complementary, and sometimes it is convenient to adopt one, sometimes the
other.

The second important idea is the significance of the characteristic vectors
of a linear transformation Y = AX. In Sections 9.3 and 9.4 we study the problem
in the vector space υn and in the corresponding projective space n–1; in
Section 9.6 we see when a knowledge of these characteristic vectors of A can
determine a matrix P such that PAP–1 is diagonal.
If A is symmetric, P can be chosen to be orthogonal and this leads in Sections
9.7 and 9.8 to the reduction of a general quadratic polynomial equation to
normal form. We explain this reduction process against the background of
Klein’s Erlanger Programm in an attempt to show the significance of Section 9.5
in which the reduction by elementary transformation given in Chapter 3 is
applied to symmetric matrices.

Though these ideas are not easy it is the author’s hope that, by confining
attention to real matrices and transformations and by continually emphasizing
their geometrical importance in an algebraic context, the student may see their
underlying meaning. To this end, numerous illustrative examples are worked out
in the text. If this meaning can once be grasped, much mathematics studied later
and most applications to modern physics and chemistry will become clear.

9.2 CHANGE OF BASIS
In order to combine the two interpretations which can be put upon a linear
transformation, let us assume that |A| ≠0 and that the vector



is referred to the same basis vectors Ei (i = 1,2, … n) of υn, while for |p| ≠ 0,

maps the whole space υn upon itself, in particular the vectors Ei upon the
vectors PEi =  As we saw in 3.78,  is the ith column vector of the matrix P.

If we multiply 9.21 by the n × n matrix P, we have

and substituting from 9.22 we obtain

referred to the new basis vectors  (i = 1,2, … n). Note that the matrix of the
transformation is now PAP–1.

The requirement that |P| ≠ 0 is important, since we want the  to be linearly
independent vectors in the transformed space which we shall denote by . But
if, in addition, P is orthogonal, then

which implies that

and the basis  is orthonormal . Conversely, the condition 9.241 is a
consequence of 9.242, as in 6.17. We illustrate these simple but important ideas
in the following examples.

9.25 Example. Let us take basis vectors E1 E2 as in Figure 9.1, and also

With

so that



Since a rotation about the origin is still a rotation through the same angle
whether referred to E1 E2, or , , P and A commute and PAP–l = A, as
indicated in 9.252.

FIG. 9.1

9.26 Example. The situation is quite different in space. Consider first the simple
reflection 4.5

with

so that

and  = E2,  = E1,  = E3. Clearly the geometric transformation itself
remains unchanged; it is only described as a reflection in the plane  = 0
instead of in the plane x1 = 0.

9.27 Example. To take a more complicated case, let us suppose that



is transformed by

so that (cf. the example of Section 4.5)

Again, the geometrical property of reflection is unchanged, but on substitution
from X = P–l X′ the equation of the plane x1 = x2 becomes

or

with  = (1,0,1),  = (0, – 1,0),  = (1,3,2). In order to verify the fact that we
still have a reflection in the plane 9.273, we note that

if and only if the vector (a1,a2,a3) lies in the plane 9.273.
Finally, we draw attention to the fact that besides defining  = PEi as the



ith column of the matrix P, we could write:

These relations express the linear dependence of the new basis on the old, and
provide another way of describing the matrix P. One should be careful,
however, to note that the matrix of coefficients of the Ei in 9.28 is Pt and not P.

EXERCISES
1. Transform the matrix A of 9.272 by the matrix

What is the equation of the locus of the fixed points of the transformation Y =
PAP–1X? Verify your conclusion as in 9.274 above.
2. If the new basis elements are defined by the equations

write the equations of the corresponding transformation X′ = PX and express
X′ linearly in terms of the .

9.3 CHARACTERISTIC VECTORS
First, we observe that in the case of 9.261 we are reflecting in the plane x1 = 0
and this becomes , by applying the transformations

Moreover,



so that 9.261 and 9.271 are geometrically the same. We have seen that 9.271
a nd 9.272 are geometrically the same, so that all three operations are
geometrically the same, though they are described with respect to different
basis vectors. These basis vectors are orthogonal in the case of 9.261 and 9.271
but not in the case of 9.272.

The important question which we ask now is, how could we deduce the
geometrical identity of the three transformations 9.261, 9.271, 9.272 from
their matrices alone? The answer is provided by considering the nature of their
fixed elements. Such a line of thought was significant for the inversion
transformation in Section 8.5, and we follow it again here. The only difference
is that in this case we are dealing with vectors and it will be sufficient to ask
that the direction remain fixed, though the magnitude may vary. With this in
mind we look for the solutions of the three equations

Since the corresponding scalar equations are homogeneous, they have nontrivial
solutions if and only if

and each of these three equations reduces to

In order to treat the problem in general, we note that the matrix equation λX



= AX is always equivalent to a set of homogeneous scalar equations, and for
consistency we must have

This is called the characteristic equation of A. But we also have the matrix
equation

and taking determinants,

From the identity of the characteristic equations of A and PAP–1 we conclude
that

9.35 The roots of the characteristic equation of the matrix A are the same as
those of the characteristic equation of the matrix PAP–1.
We call these roots the characteristic roots of A, or the eigenvalues of A. The
matrices A and PAP–l are said to be similar.

In order to interpret this algebraic result geometrically we return to the
matrix equation λX = AX and find a characteristic or eigen vector Xi which
corresponds to the characteristic root λi. Let us consider our previous examples
and, in particular, the three equations 9.31.

I n 9.31 (a), setting λ = +1 we conclude that any vector satisfying the
condition x1 = – x1 that is, x1 = 0, will remain fixed under 9.261. All such
vectors lie in the plane x1 = 0. On the other hand if we set λ = – 1, then the only
solution of 9.31 (a) is of the form (k,0,0) which is a vector normal to x1 = 0.

In 9.31 (b), setting λ = +1 we obtain the condition x1 = x2 which is the form
the equation x1 = 0 takes with reference to the basis

Again, the characteristic root λ = – 1 leads to a solution (k, – k,0) which is the
corresponding characteristic vector normal to the plane x1 = x2.

Finally, if we set λ = +1 in 9.31 (c) we obtain the equations



which all coincide with 9.273. Setting λ = – 1,

and these equations have as solution space the vector (k,k,k), which is the way
the normal to the plane x1 = x2 is described relative to the new basis. This is
easily verified by transforming the vector (1, – 1,0) according to

Note that perpendicularity is no longer easily recognizable, since the
transformation 9.38 is not orthogonal.

We draw the obvious conclusion from these illustrative examples that it
would be highly desirable if we could confine our attention to orthogonal
transformations only. Though this is not always possible, we shall see shortly
how much can be accomplished with such a restriction.

EXERCISES
1. Determine the characteristic roots and the characteristic vectors of the linea

transformation

and explain their geometrical significance.
2. Make the change of variables in Exercise 1 indicated by the transformation

(cf. the example of Section 3.5) and verify that the characteristic roots remain
unchanged. What are the characteristic vectors?
3. Euler’s transformation for a rotation through an angle θ about an axis with

direction cosines l1, l2, l3 can be written



Verify that any point on the axis remains fixed.
4. Obtain the various rotations of the cube in Section 4.5 as special cases of

Euler’s transformation in Exercise 3.
5. Obtain the various rotations of the cube in Section 4.5 as special cases of

Rodrigues’ transformation in Exercise 8 of Section 6.1

9.4 COLLINEATIONS
As we have done so often before, we can interpret the components of a 3-vector
as the homogeneous coordinates of a point in the plane. Since the equation of a
line l is homogeneous in x1,x2,x3 = x0, for n = 3 the linear transformation Y =
AX can be thought of as transforming the line l into a line l′ described with
reference to the same basis vectors. With this interpretation, we ask what points
remain fixed under such a collineation? Since X = λX in homogeneous
coordinates, as in Section 7.2, this is just the same question we asked before
and leads to the characteristic equation

which, when expanded, yields the cubic

with real coefficients. Since 9.41 has three roots λ1, λ2, λ3, there are the
following possibilities:

9.42 λ1 = λ2 = λ3. In this case every point in the plane remains fixed and the
collineation is the identity transformation in the plane.

9.43 λ1 = λ2 ≠ λ3. In the Examples 9.25, 9.26, 9.27 the cubic 9.41 takes the form
9.33 and the transformations are called homologies. In the case of 9.261 the



center of the homology is the point (1,0,0) while the axis of the homology is the
line x1 = 0. Every point (0,x2,x3) of the axis remains fixed under 9.261, as also
does every line through the center. To see this last statement it is only necessary
to observe that such a line PS has equation

FIG. 9.2

which remains unchanged by 9.261, though a point (1,μ, –λ) will be transformed
into the different point ( – 1,μ, – λ), also on PS.
9.44 λ1 ≠ λ2 ≠ λ3. The Collineation

with a, b, c real and different, leaves fixed each of P(1,0,0), Q(0,1,0), and
R(0,0,1), and the lines joining these points, but no other points remain fixed. For
example, the point (λ,μ,0) on PQ is transformed into the different point
(aλ,bμ,0) which also lies on PQ.

9.45 . In order to illustrate the case of only one real root, consider the
transformation (cf. Example 9.25)

which, in 3-space, is a rotation about the axis x1 = x2 = 0. The characteristic
equation is



or

and (0,0,1) is the only fixed point of the transformation.

EXERCISES
Describe the fixed elements of the collineations

9.5 REDUCTION OF A SYMMETRIC MATRIX
In Section 3.4 we studied the reduction of an arbitrary matrix A to canonical
form PAQ by multiplying on the left and on the right with products of elementary
matrices. The particular case in which A is symmetric, i.e., in which aij = aji
(i,j = 1,2, …, n), is important, since then we may perform the same operation on
rows and columns by multiplying on the left by, say, Pi, and on the right by Qi; =

. In such a case

and we can choose P so that PAPt is diagonal. Moreover,

so that PAPt remains symmetric at every stage of the process.
Example. Consider the symmetric matrix



Evidently

and similarly

so that

In this case:

The chief reason we are so interested in symmetric matrices A is that every
homogeneous quadratic form can be written XtAX, so that the equation of any
conic, quadric, etc., can be written

in nonhomogeneous coordinates, or in the form XtAX = 0 in homogeneous
coordinates (cf. 7.25 and 7.26). If we make the change of basis represented by
the linear transformation X = PtX′, the quadratic form XtAX becomes

and we have seen how to choose P so that PAPt is diagonal. Thus we can
calculate the rank of A, which is also called the rank of the quadratic form
XtAX, and so classify conics, quadrics, etc., relative to this invariant.



EXERCISES
1. Write the equations of the conics 6.21, 6.22, 6.24 in homogeneous form XtAX

= 0, and calculate the rank of A in each case.
2. Consider the conics in Exercise 1 as cylinders in space—how does this affect

the rank of A?
3. Calculate the rank of A for each of the quadrics 6.31–6.36 when these are

written in homogeneous form.
4. Calculate the rank of A if XtAX = 0 represents a pair of coplanar lines which

(a) intersect, (b) are parallel, (c) coincide.

9.6 SIMILAR MATRICES
As we saw in 9.35, PAP–1 and A have the same characteristic equations and the
same characteristic roots but different characteristic vectors. In fact, if X is
characteristic for A with

then

and PX is characteristic for PAP–1. If we assume that PAP–1 is diagonal then
its characteristic vectors must be the basis vectors Ei, each associated with a
particular characteristic root λi. It follows that in this case the characteristic
vectors of A are Xi, where = Ei = PXi or

Thus we conclude that

9.64 If |P| ≠ 0 and if PAP–1 is diagonal, then the characteristic vectors of A are
the column vectors of P–1.

To state a converse theorem, we must know more than the characteristic
roots since if some of these are repeated, various possibilities arise such as are
referred to in the exercises at the end of Section 9.4. However, if the
characteristic roots are all distinct we can make the following statement:

9.65 If the characteristic roots of A are all distinct, then A is similar to a
diagonal matrix.
Proof. It is only necessary to prove that the n characteristic vectors Xi,



corresponding to the n characteristic roots λi (i = 1,2, …,n) are linearly
independent, so that, taking them as the column vectors of P–1, we have a
nonsingular matrix.

To this end we have from 9.61 that

If c1, c2, … cn are constants, not all zero, such that ∑ ciXi = 0, then also

But the λi are all different real numbers so that 9.67 implies that

where ∑′ omits the term with i = j, and j can take any value from 1 to n. But this
yields a contradiction, since such a relation can be assumed to involve a
minimum number of c’s which are all different from zero and 9.68 then implies
that the number could be reduced further by one. Thus no such relation exists
and the Xi are linearly independent. It follows that the matrix P–1 is nonsingular
and PAP–1 has characteristic vectors Ei = PXi, from which we conclude that
PAP–1 is diagonal with characteristic roots λ1,λ2, … λn.
Example. In order to illustrate these ideas, consider the matrix

whose characteristic roots are λ1 = 1, λ2 = 2, λ3 = 3. The corresponding
characteristic vectors are obtained by solving the sets of equations

Thus X1 = (α, 0, α), X2 = (0,β,0), X3 = (γ,3γ,2γ), where α ≠ 0, β ≠ 0, γ ≠ 0, so
that



It may be verified that

and the determination of the characteristic vectors has enabled us to make a
change of basis, such that PAP–1 is diagonal. Note that P is determined up to
arbitrary nonzero constants α, β, γ; in other words, the magnitudes of the
characteristic vectors of A, which are also the basis vectors of PAP–1, are not
important.

EXERCISES
1. Using the characteristic vectors of the transformation Y = AX in Exercise 1 of

Section 9.3, construct a matrix P such that PAP–1 is diagonal. Is the matrix P
unique?

2. Construct the most general matrix which commutes with the matrix of
collineation (b) in the exercises of Section 9.4 (set AM = MA and equate
coefficients) .

3. Interpret the most general matrix which commutes with the matrix of
collineation (d) in the exercises of Section 9.4 with a ≠ 1, with reference to
the three examples of Section 9.2 (cf. Section 9.3).

9.7 ORTHOGONAL REDUCTION OF A SYMMETRIC
MATRIX
In Section 9.5 we saw that the symmetry of a matrix about its principal diagonal
has certain consequences; a further consequence is the following :

9.71 The characteristic roots of a real symmetric matrix are all real.
Proof. Let us assume that A = At and if the equation 9.61 has a characteristic



root λ and characteristic vector X, then we may assume for the moment that the
components (x1,x2, … xn) of X are complex, and denote the conjugate vector by

 with components ( 1, 2, … n). Thus

but since

we conclude that

and both Xt  and XtA  are real. It follows that

since tX ≠ 0, and λ must be real.
The question now arises, does this reality of the characteristic roots of a

real symmetric matrix A have significance for the process of bringing A to
diagonal form? We prove the following important result:

9.72 If A is a real symmetric matrix, there exists an orthogonal matrix P such
that PAP–1 is diagonal.
Proof. Our problem is to utilize the fact that A is symmetric in the argument of
the preceding section. Since it has real characteristic roots λi, we conclude that
the equations

must define real characteristic vectors Xi. These vectors need not all be
distinct, but we can assume that

as in Section 5.2.
Consider now one of these real characteristic vectors, say X1, whose

components we may suppose to be

Since λ1X1 = AX1 we conclude that the subspace n–1 of υn orthogonal to X1
is mapped on itself by A. Thus if we choose an orthonormal basis



in n–1, the matrix  with these as column vectors is orthogonal:

It follows from 9.63 that (1, 0, 0, … 0) is a characteristic vector of PAP–1, and
since PAP–1. PX1 = λ1PX1

Since

P1A  is symmetric, so that B1 = 0 and

where A1 is symmetric.
We have thus established the basis for an induction, since we can similarly

construct an orthogonal matrix P2 such that

where A2 is symmetric and P2P1 is again orthogonal. Proceeding thus, we reach
the desired conclusion after at most n steps. Moreover, the matrix of
transformation



is orthogonal, and the columns of P–1 = Pt (i.e., the rows of P) are normal
orthogonal characteristic vectors of A.

EXERCISES
1. Find the characteristic vectors of the symmetric matrix

and construct the orthogonal matrix P such that PAP–1 is diagonal (cf.
Exercise 9 of Section 6.1).
2. Given that the characteristic roots of the matrix

are 1, 1, 2, carry out the construction of Section 9.7 to obtain an orthogonal
matrix P such that PAP–1 is diagonal.

9.8 THE REAL CLASSICAL GROUPS
The significance of the notion of a group of linear transformations in geometry
goes back to Klein whose Erlanger Programm of 1872 laid the foundations for
many of the ideas we have been studying in this book. The following results can
easily be verified and are of great importance.

9.81 The totality of all nonsingular real linear transformations on n variables
forms a group called the full linear group (n). Every such transformation
represents a mapping of the vector space υn on itself.

9.82 If we interpret the n variables (x1, x2, … xn) as homogeneous coordinates



of a point P in a projective space n–1, then

represents the same point P for all k ≠ 0. This freedom in the choice of k
enables us to restrict our attention to unimodular transformations, i.e., all
transformations Y = AX having |A| = 1 (cf. Section 7.2). Clearly, all such
collineations form a subgroup of (n) called the unimodular group.

9.83 If we interpret xn = x0 = 0 as the equation of the space at infinity (line at
infinity for n = 3), we have affine geometry. If we insist that our unimodular
transformation Y = AX leave x0 = 0 fixed, it follows that A must have the form

where A0 is a unimodular (n – 1) × (n – 1) matrix, and T is a column vector
having (n – 1) components. Since

all such affine transformations form a group called the affine group (n – 1).
We can distinguish two important subgroups:

9.84 those transformations in which T = 0, and

9.85 those transformations in which A0 = I.

9.86 In the particular case where all the linear transformations Y = AX are
orthogonal, if AAt = 1, BBt = 1, then (AB)(AB)t = ABBtAt = 1, so that we have a
subgroup (n) of (n), called the orthogonal group.

The condition that A and so |A| be real implies that the coefficients of the
characteristic equation |λI – A| = 0 are real, and further, since AtA = I, that |A| =
±1. From this we conclude that if λ is a complex characteristic root, then its
conjugate  is also a characteristic root, and the corresponding characteristic
vectors are complex. We have an example of this in 9.45, where it can be
verified that the characteristic vectors corresponding to λ1 = eiθ, λ2 = e–iθ are
X1 = (i, 1) and X2 = (–i, 1). In order to speak of the magnitude of a complex
vector we must modify slightly our definition, writing |X| = tX, which reduces
to XtX if X is real; but we still have



if A is orthogonal. It follows that if Y = λX, where X is any characteristic vector
of the transformation Y = AX, we must have λ  = 1. Thus

9.861 The characteristic roots of an orthogonal matrix are roots of unity and,
since |A| = ±1, they occur in conjugate complex pairs.

Just as in the case of the transformation of 9.45, these two conjugate
complex characteristic vectors span a real plane, so by suitably choosing the
basis vectors we have proved that

9.862 Any orthogonal n × n matrix A can be transformed by an orthogonal
matrix P so that

We may think of the orthogonal transformation Y = AX as consisting of a
succession of rotations and (or) reflections performed in mutually orthogonal
subspaces. By combining two reflections to make a rotation through π we
conclude that

9.863 Any orthogonal transformation may be considered as a succession of
rotations in mutually orthogonal planes if |A| = 1, followed by a single
reflection if |A| = –1.

9.87 If we assume that A0 in 9.83 is orthogonal we have the Euclidean group.
For n = 3 the situation has been studied in Section 7.5, and the “circular points”
7.52 remain fixed under such a transformation (cf. Exercises 3, 4 of Section
7.5). In nonhomogeneous coordinates, any Euclidean transformation of the plane
can be written

where the matrix

is orthogonal (i.e., a rotation or a reflection), and 9.871 can be written in vector
form



Thus the two subgroups 9.84 and 9.85 of the affine group 9.83 turn out to be,
in Euclidean geometry, the group of all orthogonal transformations, and the
group of translations in the plane.

Klein’s contention was that, while a geometry determines its group of
collineations, conversely the group of collineations describes the geometry
completely. A “theorem” (such as Pythagoras’ theorem) is a relation which
remains invariant under all collineations of the appropriate group. Since angle,
distance, and so area, volume, and generalized volume are all defined in
Euclidean geometry in terms of the inner product X. X = XtX, it follows from
6.17 and the invariance of XtX under translation that all these are invariant
under any Euclidean transformation. This completes the proof of 5.57.

9.9 REDUCTION OF THE GENERAL CONIC TO
NORMAL FORM
We conclude our study of vector geometry with a brief analysis of the Euclidean
transformations necessary to bring to normal form the general conic (7.241):

Two methods are available.
First Method. If we write the quadratic terms of 9.91 in the form

and find an orthogonal matrix P such that

as in the preceding section, then setting X = P–1X′, 9.91 becomes

Completing the squares we have



as desired. The method is applicable for any n but we illustrate it in the plane
only.

9.95 Example. If we take 9.91 to be

the quadratic terms can be written XtA0X where

with the characteristic roots λ1 = , λ2 = –  and characteristic vectors X1
= (1 + , 1), X2 = (–1, 1 + ). Following the construction of the preceding
section,

where k = . With the substitution X = P–1X′, the equation 9.951 takes
the form

and completing squares we have

If we set

we finally arrive at the normal form



of a rectangular hyperbola. We sum up the changes of variable in the vector
equation

or in the scalar equations

Second Method. If we examine the equation 9.956 we see that P–lX″ represents
a rotation to bring the coordinate axes parallel to the axes of the conic, while
P–1 C′ represents a translation of the origin to the center C(0,1) of the conic, as
is illustrated in Figure 9.3. It is natural to inquire whether we might not
profitably reverse this order of procedure and first translate the origin to the
center of the conic. If this were done in the case of the above example we would
set X = Y + C so that 9.951 would become

and the subsequent rotation of the axes would involve the quadratic terms only.
The problem resolves itself, then, into finding the center C of the conic in

question. This can be accomplished most conveniently with the help of the
calculus as we shall explain in the Appendix, but an equivalent procedure is to
insist that the curve be symmetrical with regard to C , i.e., that its equation
remain unchanged when Y is replaced by – Y. Again referring to the preceding
example, this would mean for 9.951 that



FIG. 9.3

identically, so that



from which we conclude that

and c1 = 0, c2 = 1 as we expected.
In order to clarify these two approaches to the reduction problem, we give

the two corresponding factorizations of the Euclidean transformation, written in
homogeneous form, first the direct transformation in 9.96 and then its inverse in
9.97:

where C′ = PC and C is the center found above. As we have remarked already,
the second method of procedure is usually preferable.

There remains the possibility that one of the characteristic roots of the
matrix A0 in 9.92 should be zero. But this could happen only if |A0| = 0, in which
case we could take h = ka, b = kh = k2a so that not only is the rank of A0 equal
to 1, but when a is divided out the quadratic terms of 9.91 form a perfect
square. This is the necessary and sufficient condition that 9.91 represent a
parabola, and the appropriate Euclidean transformation will bring it to normal
form,

Let us summarize our conclusions with regard to the reduction of the
quadratic equation

in homogeneous coordinates:

9.981 If |A| = 0 the equation 9.98 factors and represents a pair of lines (6.53).

9.982 If |A| ≠ 0 and |A0| =  = 0, then 9.98 represents a parabola.

9.983 If |A| ≠ 0 and |A0| ≠ 0, then 9.98 represents a central conic which may be
an ellipse or an hyperbola.

This brings us back to Section 9.5 and explains why it is so important to



determine the rank of A. While this rank of A can be obtained most easily by
using elementary transformations, we see now that such transformations are not
orthogonal. Consequently they do not preserve the form of the curve. We must
be clear as to our aims; if it is a case of seeing what a conic looks like, i.e., of
plotting it, then we should use only Euclidean transformations so that this form
is unchanged.

FIG. 9.4



EXERCISES
1. Plot the curve represented by the equation

Solution. It is easy to verify that λ1 = 0 and λ2 = 2 so that the corresponding
normal characteristic vectors are

It follows that

and

and substituting X = P –1X′ we have

Though the parabola has no center, we translate the origin to the vertex

so that the equation takes the normal form



2. Bring each of the following equations to normal form (i) by the first method,
(ii) by the second method, and make diagrams to record the changes of
coordinates and the shapes of the corresponding loci.

3. Bring the quadric

to the normal form

(a) by the first method, (b) by the second method.
4. It can be proved that the quadric represented by the equation 7.26 in

homogeneous coordinates:

is (a) a plane counted twice, if A has rank 1; (b) two distinct planes, if A has
rank 2; (c) a cone, if A has rank 3. Construct examples to illustrate each of these
three cases.
5. Prove that the center of the quadric represented by the equation

is given by the solution of the equations

Show that this center is finite if |aij| ≠ 0 for i,j = 1,2,3.
6. What are the conditions that 7.26 should represent an ellipsoid or

hyperboloid?
7. What is the significance of the condition |aij| = 0 for i,j = 1,2,3? Give an

example.



APPENDIX:
CALCULUS AND GEOMETRY

Like nearly all our mathematical ideas, the calculus had its origin in
geometry. In particular, the study of tangents to curves by Fermat and the study
of motion by Newton led to the development of the calculus in the 17th Century,
though the notation we use today is largely due to Leibniz. Conversely, the
expansion of a function in a Taylor’s series has geometrical applications which
are so significant that it seems unfair not to draw attention to them.

Perhaps the simplest of these applications is to a plane curve n given in the
form

where ƒ(x1) is a polynomial in x1 of degree n. If we expand the function ƒ(x1)
about x1 = a, we have

since the (n + 1)th and all higher derivatives vanish. The advantage of writing
(1) in the form (2) is that it enables us to approximate to n, in the
neighborhood of the point A(a, ƒ(a)). For example, we could ignore the terms in
(2) of order higher than the first to obtain

which is the equation of the tangent to the curve at A. If we substitute in (2) we
find that the tangent (3) meets the curve in two coincident points if ƒ″(a) ≠ 0 and
in three coincident points when ƒ″(a) = 0 if ƒ′′′ (a) ≠ 0; in the latter case A is
called a point of inflection of n.

Example 1. Consider the cubic curve x2 = ƒ(x1) =  so that

At the point (a, a3) the equation of the tangent is

which meets the curve in three coincident points if a = 0. The origin is thus a
point of inflection with x2 = 0 as the inflectional tangent. The graph of the curve
is shown in the figure.



We immediately remark, however, that the condition that ƒ( x) be a
polynomial is undesirably restrictive. The best way out of this difficulty is to
use homogeneous coordinates and write the equation of the curve n in the form
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where ƒ(x1, x2, x0) is a homogeneous polynomial of degree n in x1, x2, x0.
Fortunately, Taylor’s theorem generalizes to any number of variables, though we
must use partial differentiation to obtain the desired expansion. Let us suppose
that the point X(x1, x2, x0) lies on the curve n and that Y(y1, y2, y0) does not
lie on n. Then any intersection of XY with n. has homogeneous coordinates

where λ + μ = 1 as in 1.22, and we may write

since we are assuming that the point (5) lies on n.
The equation (6) can be written more compactly if we use the differential



operator

and the fact that Δ(n) ƒ(x1, x2, x0) = n!ƒ(y1, y2, y0), so that (6) becomes

The equation (7) is symmetrical in λ, μ and Δ(2), Δ(3), etc., denote the
symbolical square, cube, etc., of the operator Δ; since Δ(n + 1) and all higher
powers of Δ annihilate ƒ, we may proceed as before.

By assumption, X lies on n so that ƒ(x1, x2, x0) = 0. If we look for the
locus of Y such that XY meets n. in two coincident points μ = 0, we must have
Δƒ = 0 so that the equation of the tangent at X is

where y(y1, y2, y0) is the variable point and X(x1, x2, x0) a fixed point on n.

Example 2 Let ƒ (x1, x2, x0) = x2  –  as in Example 1; then

which reduces to (4) if we set x1 = a, x2 = a3 and x0 = y0 = 1.
Let us now suppose that X does not lie on n and that the n points of

intersection of XY with n are X1 X2, … Xn. The relation

which generalizes 8.43 and defines the point Y for fixed X, can be rewritten in
the form

Since XY ≠ 0 and YXi:XXi = –λi,:μi, we must have



which implies that

Thus Δƒ = 0 represents the tangent at X to  n, if X lies on n, and otherwise it
represents the polar line of X.

We have carried out this same analysis for n = 2 in Section 8.4 without
using the calculus, but now we see that the method may be generalized and is
applicable to any curve n, if the polar line of X is defined as in (9) above.

Exercise Prove that if the polar line of X with regard to n, passes through Y,
then the polar line of Y passes through X.

It is interesting to apply these ideas to determine the condition that a general
quadratic polynomial factors into the product of two linear factors. If we take X
to be the point of intersection of the two lines represented by ƒ(x1, x2, x0) = 0,
then every line XY will meet these lines in two coincident points at X so that μ2
= 0; for this to be so we must have Δƒ = 0 identically. Thus, taking ƒ as in 6.51
(made homogeneous as in 7.243):

Since these equations must be consistent, the condition 6.53 follows
immediately. More generally, the condition that X be a double point of n, is
again just that

and the Taylor expansion yields the machinery whereby such double points on 
n, may be studied.

As a final illustration of the power of the method, consider the problem of
finding the center of the general conic. In the context of Section 7.5, we saw in
Exercises 5 and 6 of Section 8.4 that it is natural to define the center X as the
pole of the line at infinity with equation y0, = 0. For (10) to so reduce, it is
necessary and sufficient that the coordinates of the center satisfy the equations



Example 3 In the Example 9.95 the equation 9.951 becomes, in homogeneous
coordinates,

so that the equations (12) become

Setting x0 = 1 we have the nonhomogeneous coordinates of the center to be
(0,1), as in 9.959. With this information we can complete the reduction to
normal form as previously explained.

It is clear that this approach is applicable to surfaces in space and to more
general “varieties,” but we shall pursue it no further.



ANSWERS TO EXERCISES

Section 1.2

2. 

3. x1 = 1, x2 = τ, x3 = 2τ; no

4. A′D: x1 = 1 – 2τ, x2 = 1, x3 = 1, etc.

5. AB: 

Section 1.3

1. Components (2, – 3,1), magnitude 

2. (–3,l,–2), (5, –5, –5), (–2,4,7)

3. | | = , ;

Section 1.5

1.  = 3i – j – k

2. |  + |2 = 11 = |  – |2

3. |U|2 = 69, |V|2 = 65

4. ±

7. (0,0,0)

Section 1.6

2. ABC with equation x1 + x2 + x3 = 1 and A′BC with equation –x1 + x2 + x3
= 1 intersect at an angle cos–1( – ). AB′C′ has equation x1 – x2 – x3 = 1
and is inclined to ABC at an angle cos–1 ( ). ABC is parallel to A′B′C′, etc.

3.  = –E1 + E2, ′ = –E2 – E3, etc.

Section 2.1

1. 23, 18, 0

2. x1 = , x2 = – , x3 = –

Section 2.3



2. 48, 0, 9

3. x = y = z = 0, w = 2

Section 2.4

2. x1 = 1 – 2k, x2 = 1 – k, x3 = 3k with direction numbers (2,1, –3); this
direction is perpendicular to the normal to x1 – 2x2 = 3 and so parallel to
the plane.

4. x1 = 1 + 3k, x2 = 2k, x3 = – k and
x1 = 3 + 3k′, x2 = 1 + 2k′, x3 = –k′

5. (i) x1 = 3 + k, x2 = 2 + k, x3 = k;
(ii) 

Section 2.5

2.  = 0 = x1 + x2 – 1

3. x1 + x3 = 1

4. 7x1 + 5x2 – 3x3 = 8

5.

Section 3.2

2.

4. X = 0 + X;

Y = 

Section 3.3

2.

3.
, 



, 

Section 3.4

1. 1, 2
Section 3.5

2.
,

B–1 = –

Section 3.7

1. x1 = –1, x2 = 0, x3 = 2, x4 = 1

2. (2,3,4,6)

3. (a) (9,17,22,34), (b) (4,1,2,2)

Section 4.2

3. The subgroup I, (12)(34), (13)(24), (14)(23) is normal in  and also in .
Besides this “four group” the only normal subgroups in  are I and ,
along with  itself.

Section 4.3

2. (AB) and (AC) lead to the linear transformations

Section 5.1

1. (1,0,1,3)

2.

4. X2 – X3 – X4 = 0



5. X2 – 2X1 = 0, X4 + 2X3 = 0

Section 5.2

3. Y1 = (1,1,0,0), Y2 = (0,0,1,1)
Y3 = , Y4

4. Y1 = , Y2 = ,

Y3 = 

Section 5.3

1. 4

2. (1,1,–1); 

3. Fourth vertex can be chosen in three different ways; .

4. 8; 

Section 5.4

1. 

2. l: x1 = 1 + s, x2 = 3s, x3 = 2s
n: x1 = 1 + 2t, x2 = t, x3 = 6 + t

3. 

Section 5.5

1. 1

3. 

5. 

Section 5.8

1. If Y1 = (1,1,0), Y2 = (– , ,1), Y3 = (1,–1,1), then

2. x1 = t1 + t2, x3 = 3t2, x3 = t1, x4 = t2;
( ,3, – ,1), (1,0,1,0)

Section 6.1



4. P( , )

5.

7.

Section 6.2

2.  – 2x1x2 +  + 2x1 + 2x2 – 1 = 0

5.  + 4x1x2 +  – 2x1 – 2x2 = 0

Section 6.3

1. x1 + x2 = x3, x1 – x2 = 1
x1 + x2 = 3, 3(x1 – x2) = x3

2. 4x1 – 2x2 – x3 – 3 = 0

Section 6.4

1.  = 1

for the first conic, and similarly for the second.

2. (a)  +  = 4 , (b)  = 4  + 4

4. 4a2(  + ) = (  +  +  + b2)2

Section 6.5

2. All real k; x1 – x2 + 1 = 0 = 2x1 + x2 – k
3. (x1 + 2x2 – 1)(x1 – x2 + 1) = 0

4.



Section 6.6

1. x1 = a cos θ cosh φ, x2 = a sin θ cosh φ, x3 = c sinh φ

5. If |M – λI| = 0, then XtMX – λXtX = 0 represents a pair of planes which
meet the quadric XtMX = 1 in circles lying on the sphere XtX = λ–1.

Section 7.2

1. x1 = 2t, x2 = t, x0 = 0

2. x1 = x2 = 0, x0 = 1; x1 = 0, x2 = ±x0 = 1;
x1 = 1, x2 = x0 = 0

Section 7.5

5. 

Section 7.8

2. The internal bisector of ∠BAC is the right bisector of BC, and the external
bisector of ∠BAC is parallel to BC.

Section 8.2

1. For A = π/2: cos a = cos b cos c = cot B cot C,

Section 8.3

3. Area ΔABC =  the area of Σ.

Section 8.4

2. 

5. Polar line of (1,0,0) is x1 = 0 and that of (0,1,0) is x2 = 0, and these lines
intersect in the center of the ellipse.

Section 9.2

1. 4x1 – 5x2 – x3 = 0



2.

X′ = x1  + x2  + x3

Section 9.3

1. λ = 1, 2, 3, with associated characteristic vectors (1,0,1), (0,1,0), (1,0,–1)

2. (2,3,3), (0, –1,0), (0, –3, –1)

Section 9.4

(a) every point fixed; (b) every point (a,b,0) on x3 = 0 fixed and every line x1
+ λx3 = 0 fixed; (c) (1,0,0) fixed and x3 = 0 fixed; (d) for a ≠ 1, every
point (a,b,0) on x3 = 0 fixed and also (0,0,1) fixed, so that every line
through (0,0,1) is fixed; (e) for a ≠ 1, (1,0,0) and (0,0,1) fixed so that x2 =
0 is fixed.

Section 9.5

1. 3 in each case.

2. The rank is unchanged.

3. 4 in each case.

4. (a) 2, (b) 2, (c) 1

Section 9.6

1.
, 

2.

Section 9.7

1. 

Section 9.9

2. (a) (x1 – x2 – l)(x1 – 2x2 + 1) = 0
(b) 2(x1 + x2)2 = (x1 – x2 – 1)
(c) (x1 + x2)2 + 2(x1 – x2 – 1)2 = 1
(d) 2(x1 + x2)2 – (x1 – x2 – l)2 = 1



(e) 2(x1 – )2 + 2(x2 + )2 = –1
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