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PREFACE

Tm1s book is based upon a short course of lectures to first-
year Honours students who have just completed a course
on Algebra approximating to that covered by Dr Aitken’s
Determinants and Mairices in these Texts, and who will have
later in their curriculum a course of modern projective
geometry. While the original lecture notes. have been
drastically revised so that the book may, one hopes, meet
the needs also of students whose courses are differently
arranged, it i still designed primarily for students at
about the same stage as those to whom the lectures
were addressed.

This explanation, as well as the smallness of the book,
will account for various omissions. For instance, homo-
graphic correspondence is not introduced, largely on the
ground that it plays its fundamental part in non-metrical
geometry which the student will normally encounter at

. & later stage. On the other hand, it is hoped that the
topics included will be found to be treated with a reasonable
standard of rigour. In partioular, care has been taken to
frame the theory so that it does striotly apply to real
space. This explains the avoidance of certain familiar
short-outs, which actually depend on jumping difficulties
about reality conditions,

The book purports to be a “University Text.,” This
presumably means that it will normally be used in con-

junction with lectures or other personal instruction. It
v



vi PREFACE

would therefore seem merely foolish to include the sort of
additional explanation, illustrated by “trivial” examples,
which is more appropriately given by word of mouth.
At any rate, the author has felt justified in assuming that
the majority of readers will not be working entirely without
supervision, and has allowed this assumption to influence
his manner of presenting the subject.

I gratefully acknowledge the valuable suggestions I
have received from the editors and from my colleague,
Dr R. Cooper, and the careful cooperation I have received
from the printers.

W. H. McCREA
Bewrast, July 1942

PREFACE TO SECOND EDITION

Tms edition differs from the first by the inclusion of a
small number of new examples designed to amplify some of
the discussion in the text. In these additions I have been
glad to take advantage, in so far as my treatment of the
subject had prepared the way for me to do so, of some

suggestions kindly made by Professor H. 8. M. Coxeter
and Professor A. G. Walker.

W. H. McCREA

Rovar HoLroway COLLEGE
January 1947
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CHAPTER I

COORDINATE SYSTEM: DIRECTIONS

1. Introductory

WE are going to study by algebraic methods the geometry
of three-dimensional real euclidean space, usually regarded
a8 ‘‘ordinary” space. We adopt the elementary view of
analytical geometry, according to which it is merely a
matter of convenience to introduce the algebraic method
as a tool for the solution of problems having a well-defined
meaning apart from the algebra. However, we shall
observe that our tool guides us to those problems with
which it is best fitted to deal.

This elementary treatment is useful in applications to
other parts of mathematics and to mathematical physics.
But also, in geometry itself, the student can scarcely hope
to appreciate modern abstract treatments without some
such introduction. Moreover, the algebraic manipulation
in abstract geometry is not essentially different. The form
in which it is cast in this book is chosen partly to meet the
requirements of the student wishing to pursue the subjeot
further, and for his benefit a note on abstract geometry
is given at the end.

The reader is assumed to be acquainted with elementary
pure solid geometry, and with simple analytical geometry
of two dimensions. The only other special mathematical
equipment required is some knowledge of determinants and
matrices; for this, reference will be made to Dr Aitken’s
Determinants and Mairices in these Texts (quoted as
“ Aitken™).

1



2 ANALYTICAL GEOMETRY OF THREE DIMENSIONS

The examples consist almost entirely of auxiliary results
needed in the general development. In some cases proofs are
indicated and should be completed by the reader; in others
proofs should be supplied by the reader as he prooceeds.
In each section, examples are numbered consecutively, and
subsequent reference made by giving the number of the
section followed by that of the example. Formul® are
gimilarly treated, except that their numbers are put in
brackets. The reader is urged to construct for himself
numerical exercises; for ‘““riders” he must consult larger
textbooks and examination papers.

Metrical geometry. The present geometry is metrical,
which means that results are expressed, direotly or in-
directly, in terms of distance and angle. Distance expresses
a relationship between a pair of points; angle a relationship
between a pair of directions. Both magnitudes have to be
measured by comparison with selected standards. It may
be remarked that, whereas there is in euclidean space a
natural standard angle (the right angle being a convenient
unit), the standard of length is quite arbitrary. However,
we are here assuming the fundamental properties of these
magnitudes, and our initial consideration in applying
algebraic methods to the geometry is to find means first of
labelling points and directions by algebraic symbols and
then of expressing distances and angles in terms of these
symbols. Such is the object of this chapter.

Nomenclature. We call three-dimensional euclidean
space &. Iine will always mean straight line; any other
sort of ‘“‘line” will be called a curve. If 4, B are any two
distinct points, then we use the following notation:

“The line AB," or simply 4B, means the whole line
containing A4, B, as distinet from “‘the segment AB”';

AB denotes the same line when sense is relevant and is
taken from A4 to B;

| AB | denotes the length of the segment AB;

(AB) denotes the diatancs from 4 to B, sense being relevant;
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AR denotes the vector associated with the segment 4B, in
the sense from 4 to B.
If A, B, O are any three non-collinear points, then:
‘*The plane 4B0," or simply 4 BC, means the whole plans
containing 4, B, C.
We use the abbreviations: w.r.t. = “with respect to";
r.h.s, = “right-hand side”; Lh.s. = “left-hand side®’; and a
few others introduced subsequently.

2. Cartesian Coordinates

Consider any fixed point O and any three distinct planes
through O. These planes meet in pairs in three non-
coplanar lines through O; let X, ¥, Z be fixed points, other
than O, one on each line. Let P be any point. The lines
through P parallel respectively to OX, 0Y, OZ meet the
planes OYZ, OZX, OXY in points L, M, N, say (fig. 1).

Write = | LP | if P, X are on the same side of 0Y2Z,

=— | LP | if P, X are on opposite sides of 0YZ, lengths
being measured in terms of some selected unit; let y, z be
analogously related to | MP |, | NP |. Then, when P is
given, the numbers z, y, z are uniquely determined. Con-
versely, it is seen that, given any three positive or negative
numbers z, y, 2, there is & unique point P with which these
pumbers can be associated in the manner described, So
we may speak of P as ““the point (=, ¥ 2),"
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When the pointa of & are labelled in this fashion, we say
that they are referred to origin O and coordinate planes
O0YZ, 0ZX, OXY, or coordinate axes OX, OY, OZ, We
call z, y, z the (cartesian) coordinates of P in this frame of
reference.

Two features should be noted: (i) It must be realised that
we can describe any point P only by its relationship to some
particular set of points arbitrarily chosen as a system of
reference. (ii) When we say that & is real we mean merely
that every point of & can be labelled with three real numbers
serving as coordinates. Consequently we must ensure that
any algebraic theorems to which we attempt to give geo-
metrical interpretations do in fact hold goed in the fleld of
real numbers.

If OX, OY, OZ are mutually perpendicular, we call them
rectangular or orthogonal axes. L, M, N are then the
orthoggnal projections of P on the coordinate planes, and
z, ¥, z the perpendicular distances of P from these planes,
with appropriate signs attached. Unless otherwise stated,
we shall use only such rectangular cartesian coordinates.
Also, for definiteness, we shall use right-handed systems, t.e.
viewing from O towards X, a rotation from Y towards Z
would be that of a right-handed screw, and 8o on in oyolic
order.

l. =, 9, z are th_e rectangular components parallel to the
axes of the vector OP,
Length of a segment. If P,, P; are the points
(21, Y1, 21), (T9s Y, 2), then
| PyPy [P = (23— +{g— )3+ (z1—2)%. . (1)
This follows from an elementary application of Pytha-

goras’s theorem to the rectangular parallelepiped having
Py, P, as opposite vertices and edges parallel to 0X, 0Y,0Z.

2. If the axes are oblique and the angles Y0Z, ZOX, XQ0¥F
are O, ®, Y, then

| OP |* = 3 +y*+2'+2yz cos © + 22z cos @ +2xy cos T\
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8. A necessary and sufficient condition for a cartesian
ooordinate system to be rectangular is that | OP |* = z3+4-y? 2%
for all positions of P(z, y, z).

Coordinates in general. We shall use the term
“ooordinates’ with the following general meaning: Let X be
o collection of geometrical objecta such that every member of X
is labelled by a unique ordered set of » numbers (§, 5, ..., 7)
and such that every such set of numbers, in a specified range,
is the label of a unique member of £. Then §, 9, ..., 7 are
called the coordinates of the corresponding member of X, in
this system of labelling.

If the objecta are points, we can when desirable distinguish
their coordinates as ‘‘ point-coordinates,” if planes, as * plane-
coordinates,' and so on.

However, we sometimes find it convenient to replace the n
coordinates by the ratios of n41 other numbers, or of more
than n+41 numbers connected by certain specified relations.
We shall also call these new numbers ‘‘coordinates,’” and shall
find that we may do so without causing confusion.

3. Projections

Projection will be restricted to mean orthogonal pro-
Jjection. The projection of a point P on a plane II is the foot
of the normal from P to II. The projection of any other
figure on II is the aggregate of the projections of its points,
e.g. the projection of a line & is the intersection of I with
the plane through s perpendicular to II. The projection of
a point P on a line & is the foot of the perpendicular from
Pon s, i.e.the meet of s with the plane through Pnormal tos.

The angle & between two planes II, A is the angle *
between the normals from any point to I, A. Let a closed
boundary in II enclose area a, and let its projection in A
enclose area 8. Since lengths parallel to the intersection of -
II, A are unchanged by the projection, while lengths
perpendicular to it are multiplied by cos 8, we find
B=acos¥.

The angle ¢ between a line & and a plane I is the angle *

¢ The acute angle, unleas otherwise stated.
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between & and its projection on II. Consequently the
projection on II of a segment PQ of s has length | PQ | cos ¢.

The angle i between two skew lines s, ¢ is the angle *
between lines through any point parallel to s, £. The
projection on ¢ of a segment PQ of s has length | PQ | cos .
But this should be carefully compared with the following
paragraph.

Sensed lines. There are two opposed senses of dis-
placement along & line 8; we arbitrarily call one positive
and the other negative. The positive one is sometimes
called merely #he sense of s. When we wish to emphasise
that s has an assigned sense we denote it by s. P,, P, being

/

Fia, 2.

points of s, we reckon the distance (P,P,) positive if
the displacement from P; to P, is in the positive sense,
and otherwise negative, Thus, if (P, P;) is positive,
(PyPy) = | PyPy | =~(PyP)). If @ is another point of s,
we say that @ divides the segment P,P, in the ratio
(P,Q) : (QP,).

Let t be any other “sensed” line. We now define the

* The acute angle, unlesa otherwise stated,
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angle x between 8, t as the angle (0 < x < ) between
lines #’, t' through any point parallel to, and in the same
sense as, 8, t, respectively (fig. 2, where arrows indicate the
senses),

1. The ratio in which Q@ divides the segment P,, P, is
positive if Q lies between P,, P,; negative and numerically
less than unity if P, lies between @, P,; negative and numeri-
cally greater than unity if P, lies between P,, Q.

2. P, Q being points of 8, P*®, @* their projections on ¢,
(PQ) has a sign depending on the sense ascribed to 8, (P*Q*)
one depending on the sense ascribed to t. We call (P*Q*®) the
projection of (P@); in all cases (P*Q*) = (PQ)cos y. [The
problem is merely to see that, coupled with our definitions of
(PQ), (P*Q*®), x, this formula is equivalent to the standard
definition of cos y.]

3. PP, ... P,P, being any polygon, not necessarily plane,
the sum of the projections of its sides PPy, P.P,, ... ,P,Pyon
any (sensed) line is zero.

4. The projection of a given vector on any (sensed) line ia the
sum of the projections of its components.

4. Direction-cosines and Direction-ratios

Let v be any sensed line through 0. We can con-
veniently describe its orientation by its relation to S, the
sphere with centre O and unit radius. For v meets .S at the
ends of & diameter and one end, say V, is such that (OV)is
positive (fig. 3). If v is given, ¥V is a unique point of §;
conversely, if V is any given point of S, then v is uniquely
determined as the line OV. Let V have coordinates
{,m,n; it lies on S if and only if | OV | = 1, i.e. from 1 (1),

B4mi4nt=1, . . . 1)

Therefore the preceding statement is equivalent to: If v is
given, then 1, m, n satisfying (1) are uniquely determined ; if
i, m, n satisfying (1) are given, then v i8 uniquely determined.

The numbers I, m, n specify completely the direction,
including the sense, of v, and hence of any line 8 parallel to v
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and in the same sense. They are called the direction-cosines
(d-o’s) of 8; (1) is the relation satisfied by every set of d-o’s,

F 4

/

<

1. I, m, n are the cosines of the angles a, f, ¥ (say) between s
#nd OX, OY, OZ. g, B, y are called the direction-angles of 8.

2. 1, m, n are the componenta parallel to OX, OY, OZ of a
unit vector along 8.

3. If the sense of 8 is reversed, then the signs of its d-o’s
are reversed.

Now let A, pu, v be a set of numbers proportional to
l, m, n; then, using (1),

I m_n +1
i.e. . (2
A, v
G m) = £ T
So, if A, p, v are given, I, m, n are determined apart from

gign, 1.e. the direction of s is determined apart from sense.
These numbers are called direction-ratios (d-r's) of s,

4. A, p, v are the coordinates of some point of v. They
are also the components of some vector along s.
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. 8. D-r's of the join of Py(2y, Y1, 1), Pa(Zs Y1 24) 670 2, —2,,
Ys~Y1, 23—2;. 'The d-o's of P,P, are these quantities divided
by | P\Ps | .

Notation. We write “the direction (I, m, n)” for the
sensed direction having d-o's I, m, n; “the direction (2, s, ¥)"
for the unsensed direction having d-r's 4, 5, ». When occasion-
ally other symbols are used, and we write, for instance, *‘the
direction (a, b, ¢),” then a, b, ¢ are to be interpreted as d-r's
unless the context shows that d-¢’s are implied.

Angle between two directions. Theangle x between
two directions (I, m, n), (i', m', ) 18 given by
cos x =ll'+4+mm' +nn'. (0 < x < ). (3)
Let V, V' be the points (I, m,n), (', m', n'); then ( oV, T
have the given directions. The projection of OV on OV’
is cos x, since | OV | =1. The z-component of OV is I,
and the cosine of the angle between OX and OV’ is I’; hence
the projection of the z-component of OV on OV is I, and
go on. So (3) results from 34.
It follows that (I, m, n), (', m’, #’) are orthogonal if and
only if
W4mm'4$nn' =0. . . . 4)
6. (Another proof.) Using 1 (1), 4 (1), we have
| PP | = (=VP+(m—m' P (n—n') = 220 +mm’ +-nn’).
Again, from the triangle OV V’ in which | OV | = | OV’ | =1,
L VOV’ =y,
[PV |» =0V [*+| OV’ |3—2| OV | | OV’ |cos g =2—2cos 2.
Comparing these values, we recover (3).
7. a, b, ¢, &', b, ¢’ being any numbers,
(bo’ —b’c)t+(ca’ —c'a)t +-(ab’ —a'd)?
= (at+b*+c%)(a’t +b't+c"?) —(aa’ +bb’ +cc’)
8. From (3) and 7,
sin g = +v/{mn’ —m'n)+(nl —nYr 4 (Im’ —'m)*}.
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9. If 4 is the angle between the directions (4, x4, v), (A%, it ¥'),
then

008 § = (AN +pp’ ') = V{0 pd H)N At 90}
sin § = v/[{(sv’ — v +(vA =¥ A
0 = XAt YA ),
[These being unsensed directions, the acute angle is taken; so
the square roots are chosen 8o that cos y, sin ¢ are positive.]
- 10. The projection of the segment P,P, on the direction
(4, u, ) has length
| A@s—2z1)+n(ys—y1)+¥(2s—21) | [V/(22+p2+38). [Use §, 9.
11. The direction perpendicular to each of two distinet
directions (4, u, »), (4, u’, ¥') has d-r's uy’—u'y, vA’—y'2,
Au'—2A'u.
12. x being the angle between (I, m, n), (I, m’, n’ the
direction perpendicular to these has d-o's
+(mn’—m'n, al’—n’l, Im'—=l'm)-+sin y.
The positive sign applies to the direction such that a right.
handed screw travelling along it would turn from (I, m, n)
towards (I, m’, n).
13. The directions (4,, uy, %), (Ass Bar ¥2)» (A9 Bss vs) IO
parallel to a single plane if and only if

M op on|=0
A4 By %
A By Vs

5. Transformation of Coordinates

Our object is to establish properties of geometrical
figures which are independent of any particular labelling
of the points. Consequently we choose at each stage the
labelling which best facilitates the caloulations, and so we
want to be able to change from one system of labelling to
another. Restricting ourselves to rectangular cartesian co-
ordinates, the general transformation is a combination of
(i), (ii) as follows, provided the unit of length is unaltered.

(i) Change ot origin without rotation of axes. Let
S8, 8* be two coordinate systems, origins O, O%, corre-



COORDINATE SYSTEM: DIRECTIONS i

. sponding axes being parallel and in the same sense. Let
the coordinates of O® referred to & be £, 7, {. The
coordinates of any point P being z, y, z; 2*, y*, z® referred
to 8, 8* respectively, we have

=20+, y=y*+n, z=224+L. . (1)
For these express merely the fact that the distance of P
from OYZ is the sum of its distance from O* Y*Z# and that
of O*Y*Z* from 0YZ, and so on.

1. If p is the position vector of O® referred to O, r, r®
the position vectors of P referred to O, 0%, then r = r*+p,
yielding (1).

(i) Rotation of axes without change of origin. Let
0X,0Y,0Z (8), 0X’,0Y’, 02’ (8') be two systems of axes,
origin 0. Let OX', OY', OZ' have d-¢'s (I}, my, ),
(I3, mg, ny), (5, mg, n;) referred to .

We have
B+mi4n] = B+mj+nf = B+mi+nd =1, )
and, the three directions being mutually perpendicular,
lgls+myms+ngny = I +mamy +ngny = Lly+mymy+nyng = 0.
- Also, since [, ;, I5 are the cosines of the angles between 0X
and 0X’, 0Y’, OZ’, they are the d-¢’s of OX referred to §'.
Similarly m,, m,, my; 2,, ny, ny are the d-o’s of OY, 02
referred to &8'. Bo, corresponding to (2), (3), we have
B+5+E = mi4mitmi =ni4ni4ni=1, @)
My +mgttg+myng = nydy +ngly +ngly= lymy +-lgmg+lymy = 0.

2. If
T=|l, mn/|, thenTt=|], m, n, L L, Li=1,
l, my n, Iy my ny| | my my my
l. my N, l; ms N, n, n, ny

using (2), (3). Hence T' = +1. :
3. If 8§, 8 coincide, then T = +1.
4. If 8, S’ are both right-handed (r.h), or both left-handed

(3)

(6)
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(Lh), then 7" = +1 for all §’. Suppose Qisr.h. (2)-(6) hold
whether or not §’ is also r.h. But if and only if $’is r.h could
it be rotated into coincidence with &§. During the rotation,
the value of the determinant T, if it changes at all, must do so
continuously. But by 2 it can take only the values +1;
there being no possible intermediate values it cannot change
continuously from one to the other. Hence it is always +1,
or always —1. In the final position of coincidence with S,
T = +1, from 3. Therefore T = +1 for every position of &".
5. If 8, S’ are one r.h and one Lh syatem, then T' = —1.
8. §, & being both r.h or both 1.h, we have

l, = msn,—m,n,, and so on.

The coordinates of any point P being z, y, 2; 2/, ¥/, 2’
referred to $, §', « is the projection of OP on OX, z’, /', 2’
the components of OP parallel to OX’, OY’, OZ’, 8o that
L.z, ly’, l;z' are the projections of these components on OX.
Therefore, using 3 4, and treating y, z analogously, we have

z=1lz" +ly +i2',
y =mz' +myy +myz’, ,’ S ()
z=mn2" +ny’ +ng2’,

giving the required substitution, Symmetrically, or by

solving (6) and using (2)-(6), we have

z’ = Lz+my+n.z,
Y =lztmy+ngz, e o (D
2’ =l t+may+nyz,

giving the inverse substitution.

7. Verify that (8), (7) both give z14y? 428 = 2/3-}y'* 42 8,

B. Orthogonal matrices. From 23 it follows that
the required transformation leaves z?-}y?%+z* invariant and so
is “orthogonal.” The above theory is then more concisely
expressed in the language of orthogonal matrices, and the
reader should compare Aitken, section 24, particularly
examples 2, 8, on this topic.

9. Any change of axes transforms a polynomial of degree n
in the original coordinates into one of degree n in the new
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coordinates. [For the substitutions (1), (8) cannot raise the
degree; neither can they lower the degree, for, if they did,
their inverses, which are similar transformations, would raise
the degree.]

10. A change of axzes cannot alter the number of poly-
nomial factors of a given polynomial in z, y, 2.

11. The general transformation of rectangular axes
involves six independen:t parameters, or seven if the unit of

length be changed.
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PLANES AND LINES

Tms chapter supplies an elementary account of analytio
geometry of planes and lines; certain more general con-
siderations await Chapter IV.

6. Collinear Points

The point P(z, y, z) which divides the join of Py(xy, ¥y, 2,),
Py(x,, y,, 2;) tn the ratio A, : A, 18 given by

= Az +Az, y= At Ay, 2= )‘zz1+hxza_
A+X At AtA

This is proved in the same way as the corresponding theorem
in two dimensions (or see 1 below).

It follows that P lies on the join of Py, P, if and only
if numbers A, A, exist such that equations (1) are satisfied.
Expressing this in a more symmetrical notation, poinis
Pl(xl’ Y zl)’ Pa(xz’ Ya zn)x Pa(xav Ys» zs) are collinear if and
only if numbers p,, p,, ps, not all zero, exist such that

x

1)

1% s+ pgs = 0,

Y+ peYat+pslfy = 0, . . )
izt pazetpazs =0,
mtpstps =0,

Note that if Py, P,, Py are collinear and distinet, then none
Of B #a, #3 iB zero.
Further, numbers p, pg, ps, not all zero, satisfying (2)
14
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exist if and only if every 3-rowed determinant formed from

the matrix

2 onon l

Ty Yo 23 1] . . . 3)
T3 Yy 2 1

is zero (Aitken, 28). This condition is commonly written

& h on 1l|=0

Zy yg 23 1 . . 4)
T3 Y3 2z 1
giving the most concise form of the collinearity condition.

1. Let P,P, have direction (I, m, n); let P] , P}, P® be the
projections of P,, P,, P on OX. Then

z—2, = (P{P%) = (P,P)l, x,—z = (P°P]) = (PP,)l,
and the first of equations (1) follows from
(P‘P):(PP|)=A13A,.

Similarly for the others. What happens if = 0?

2. The present section (but not 1) is still valid if the axes
are oblique.

3. If in (3) the elements of no column are proportional
to those of another, then the vanishing of any fwo 8-rowed
determinants formed from it ensures also the vanishing of
the remaining two. In any case, if the three of these deter-
minants each containing the last column are zero, then the
determinant of the first three columns is also zero.

7. Coplanar Points

We prove: Points Py(z,, 1, 2,), Po(%e, Ya, 23), Py(%3, Y5, 25),
P (x4, y4, 2,) are coplanar if and only if numbers py, pq, pa, pgs
not all zero, exist such that

%y +patetuszy +pgzy =0,

i+ ieYe Tty =0, 1)

21 Fpiaza +iazg +pzs =0,
Batpatpstp =0.
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Suppose P,, P;, P, P, are distinot; otherwise the
theorem is trivial. The four points are coplanar if and only
if the lines P,P,, P,P, have a point P(z, y, 2), say, in
common, or are parallel. If P exists, then by 6 there
exist numbers p, ', gy, iy fo p, Such that

uz+p2 +pg%e =0, P+ peZs s =0,
wy +P'ly1 +F'2y 2= 0, (2) F"y +Pﬁy 3 +1-Ldl¢ =0, (3)
patmntpazs =0, P2t pgzstpezs =0,
ptmtps =0 ' tpetpe =0
Now p #0; otherwise it would follow from (2) that P,= P,
Similarly u’ #0. Therefore, by absorbing & suitable con-
stant into p’, pg, e We can without loss of generality
suppose u-+p'=0. Then by adding corresponding
equations in (2), (3) we obtain (1).
Conversely, assuming (1), we can reverse the algebra
and derive equations of the form (2), (3), thus establishing
the existence of P. Hence the theorem is proved.
Further, by a well-known theorem of algebra, numbers
[1s B B3 e DOL all zero, satisfying (1) exist if and only if
n oz 1|=0
ZTg Yo 23 1 . . . 4
Ty ys 2 1 @
zy Yo % 1

giving the most concise form of the coplanarity condition.

1. P, is the centroid of ‘“‘masses” (positive or negative)
By By ps 8t Py, Py, Py,

2, If P,P,, P,P, are parallel, equations (1) hold good with
Bt =0 = pytite
8. General Equation ot the First Degree

The general equation of the first degree (linear equation)
inz, y,zis

II(z, y, 2) = ax+by+cz+d =0, . (D)
where @, b, ¢, d are any given constants, a, b, ¢ being not all
zero. The values of z, y, z satisfying (1) depend only on
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the ratios a:b:6:d, i.e. on three independent constants.
There is an infinite number of points satisfying (1); ocall
their aggregate II. We say that II is the locus of equation
(1), and that (1) is the equation of II.

We here introduce the device of using a single symbol,
in this case II, for the locus of an equation and also for the
Lh.s. of that equation, giving in this case the contracted
form II = 0. This proves useful, and is found to introduce
no confusion.

1. Not all points of II are collinear.

The equation of every plane is linear. For let A be a
given plane and let Py(z,, ¥, 2;), Py(%2, Ya, 22), P3(®3, Y3, 25)
be any three non-collinear points of A. Then P(z, y, z)
belongs to A if and only if it is coplanar with Py, P,, P,,
i.e. from 7 (4), if and only if z, y, z satisfy

z y z 1]=0.

oy oyl

Ty ya 23 1 . . . (2

T3 Y3 2z 1
This is therefore the equation of A and is linear. The
coefficients of z, y, z are not all zero; otherwise, from 6 (3),
P,, P, P; would be collinear.

The locus of every linear equation is a plane. For,
IT being the locus of (1), let Py(z), ¥, z,), Py(%a, ¥, 2s),
Py(xs, y3, z3) be three non-collinear points of II (cf. 1).
Then solving the equations

Mz, y1,2,) =0, II(zy, 95, 2) =0, (z3, y5, 23) = 0,
for a, b, ¢, d we get

thieid=\|yyz i |2z 1|2y 1]t — |2, 9, 2].
Y:23 1 Zgzgl| |zay, 1 T3 Yazs| (3)
Ys2s 1 Z3231 Ty Y 1 T3 Ya 23

From 6, these determinants are not all zero since P,, P, P,
are not collinear. Hence, substituting these values for
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a, b, ¢, d in (1), it assumes the form (2). 8o II is the plane
PPy, ~

Rectified equation. Let II be a plane, P(z, y, 2)
any point of II, N the foot of the normal from O to II.

Also let (I, m, n) be the direction of ON or NO, and let
(ON) = p (this being positive or negative according as
(I, m, n) is the direction of ON or NO). Expressing the
fact that (ON) is the projection of (OP) on ON, we have

lxtmytnz=p. . . N )

This is the equation of I in what is called rectified form.
Conversely, if II is given by (1), then comparison with
(4) gives
lja = mb =nfc = —p/d,
(ON) = —d]/(a*+b+e¥,
measured in the direction

(@, b, c)+v/(a®+b2+¢2).

Therefore a, b, ¢ are direction-ratios of any normal to I1; if
(1) is written so that d is negative, then

(a, b, c)++/(a?+b% +c?)

are the direction-cosines of ON.

whence

. . (6)

2. M being the foot of the normal from any point
Q(z’, ¥’, z’) to the plane (4), we have (MQ) = Iz’ +my’ +nz’—p,
measured in the direction (I, m, n). [For (M@) = projection
of (0Q) on (I, m, n) —projection of (OM) on (I, m, n).]

3. Using (6) and 2, the perpendicular distance of Q from the
plane (1) is

(a2’ +by’ +c2’ +d)+ v/ (a* +5 %),

this expression being positive for all Q in the region on one side
of II, negative for all Q in the region on the other side.
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4. Form the equations of the planes bisecting the angles
between two given planeas,

5. The plane making intercepts a, §, y on 0X, 0Y, 0Z
has equation

zlaty/p+zly = 1.

6. The plane through (z, y, z’) parallel to two given
directions (4, #y, v1), (43, sty 9y) i8
z—~z' y—y z—2'|=0.
A # ¥
2 B ¥

7. Area of triangle. Let a be the area of the triangle
with vertices B(zy, ¥4, 23), C(Ts, ¥sr 23), D(z,, Y4 2,); lot the
direction (I, m, n) be normal to BCD. Then (4 )al is the area
of the projection of ABCD on 0YZ. But the projections
of B, C, D on OYZ are the points (y,, z,), (Y3 23) (¥ 2,) in
OYZ; so, by a theorem of plane geometry, the area of the
projection is

(£} y, 2z 1].
Ys 2z 1
Yo 2¢ 1

Using corresponding results for 02X, OXY, we have, since
B4m3tnt =1,

da'=|y, 2z, 1|'}+|{2, 2, 1|34 |2, ¥y 1]
Ys 2z, 1 zZ, oz 1 zy Yy, 1 (6)
Yo 2 1 zg =z 1 T Yo 1

8. Volume of tetrahedron. Let 9 be the volume of
the tetrahedron with vertices Ay Y1 21), B(z,, y,, z,),
C(zs Yo 24), D(z, yo» z). The equation of BCD is

lzyz ll=alysz; 1| +y|ze 2, 1| 2 Ty Ys 1| — |2y ¥4 2,] = 0.
Ty Yy 25 1 Ysz, 1 237, 1 Z3 ¥ 1 T3 Yy 2y

Ty Yy 2 1 Yozl z,x, 1 zoy 1 Ty Y4 24
ZyYizy 1

From 3, the perpendicular distance Py of A from BCD is got by
writing z,, y,, 2, for z, ¥, z in Lhas. of (7) and dividing by the
square root of the sum of the squares of the coefficients of

(7)
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z, v, z. By (6), the latter i3 2a. Hence, since 9 = {p,a,
we obtain

V=32, $» = .

Ty Ya 23

sy Ys o

Ty Yo %

This has been derived without regard to sign. An argument
like that giving the sign of T in & 4 shows: The axes being
r.h, if a rotation in the sense B - O — D carries a r.h screw
towards 4, then @ given by (8) is positive, in the contrary
case negative,

9. Recover (8) by methods analogous to those used in
plane geometry to get the corresponding result for the area
of a triangle.

10. The volume of the tetrahedron whose faces have
equations a,z+by+e;z+d=0, az+...=0, az+...=0,
a@+...=0 is K*/6D,D,D,D,, where K is the determinant
| 8, by 63 d¢ | and D, ... the cofactors of d;, ... in K. [We use
the familiar device of indicating a determinant by ite principal
diagonal. Express the coordinates of the vertices in terms
of cofactors of K, substitute in (8), and apply Jacobi's theorem
(Aitken, 42).]

11. In the tetrahedron ABOD, let a, b, ¢ be the sides of
AABO, d, e, f the edges joining 4, B, C to D. Take D as
origin, then (8) gives

. . (8)

[

288‘”’ =3 8 x| yl z’ . ”l z’ :I:.
Ty Yy Z3| (N Ys Y
Zy Y 23| |21 23 2
=8 z} +y: +z§ T Xyt Ytz TaZatYiYstats
(s tyantea  B+i+a 5%y +YsYs +242%
T F YW1 +2% Ty T t2a% ‘”g +!/§ +z§
- ods dtyet—cd A fr—bi,
dt et —o? 2t e 41 —at
d*fri—bt et tf1—at 2

thus expressing the volume of a tetrahedron in terms of its
edges. [This example is given as an application of the theory
to establish a result independent of any coordinate system.)
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Henoe, or otherwise, express 9/ in terms of three concurrent
edges and the face-angles at the common vertex.

v 9. Incidence of Planes
Let four given distinot planes be

II, = az4+by+ez+d, =0, . . (1)
II, = age4-byytez+dy =0, . . (2
II; = ap+bytez+d; =0, . . ()
II,=ax+by+tcz+d,=0. . . (4)
Suppose II,, II; are not parallel; then they have in

common a line 8,4, say, and this must consist of all points
satisfying (1), (2) simultaneously. Now consider the

equation
II = kX1, +k11, =0, . « (B)

where k,, k; are any constants. (6) is linear, so II is a plane.
Also II = 0 for all (z, y, 2z) for which II, =0, II, =0
simultaneously; therefore Il contains &,;. Further,
Q(=', ¥', ') being any point not on &,,, I1 contains Q if

ky(aya' +byy’ iz’ +dy) Hhg(agr’ +bey’ +e2’ +dy) = 0,
and this determines k,:%, uniquely. Since any plane
through s,, is determined when one of its points not on &4
is given, it follows that every plane through the intersection of
I1,, IT; ¢s expressible in the form ().

1. I1,, I1,, I1, contain a common lins, or are parallel, if and
only if non.zero numbers k,, k,, k, exist such that

k1, +k:H 1 HEIl =0,

2. I1,, ,, TI, are parallel to some line if and only if
18, b5¢,| =0,

3. The planes yy—uz = p, Az—vx = ¢, ur—Ay = r contain
a common line if and only if Ap-}ug+sr = 0. This line lies
also in the plane pax+gy+rz = 0.

Suppose I1, is not parallel to 8,5, Then it meets 8,4 in a
point P,, which is the only point common to IT,, IT,, IT,; its
coordinates are got by solving (1), (2), (3).
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4. Every plane [T through P, can be written
I= "|H1+kanz+kans =0,
where k,, k,, k, are constants. (Contrast 1.)

" Finally, II; also contains P,, {.e. the four planes have
at least one common point, if and only if (Aitken, 30)

la; b ¢ dg|=0. . - (8

5. If I1,, II,, II,, I1, are not concurrent, and no three are
parallel, then any plane I can be written

Il = k0, k1 R lT 2,01 = 0,

where k,, ... are constantas.
6. Quadriplanar coordinates. II,, II,, I,, I1, being
as in 8, constants ay, a4, ..., 8, exist such that

2= a,]l,+a,Jl,+ a1, +all, . . (7.1)
y= AIL+BIL+ A1l 481, . (1.2)
z= pll+pll+yllL+y0l. . . (1.3)
1=6,11,46, 11,461,481, . . (14)

In fact, the condition that (8) is not satisfied makes possible
such a unique solution of a,xz+by-+cz+d,1=1II,, etec.
(7.1)-(7.3) provide a transformation from =2, y, z to new
“coordinates™ II,, Il,, II,, Il, connected by (7.4). Any
polynomial of degree n in 2, y, 2 is expressible as a homogeneous
polynomial of degree n in II,, Il,, IT,, Il

Now suppose (1)-(4) to be in rectified form, so that II,, ...
are the perpendicular distances of P(z, y, z) from these planes;
let IT, be positive when P, P, are on the same side of II,, and
soon. II,, ... are then called quadriplanar coordinates of P,
analogous to trilinear coordinates in two dimensions. The
four planes enclose a tetrahedron; 4,, 4,, 4,, 4, being the
areas of its faces and 9 its volume, we have by elementary
geometry (I1,4,+11,4,+11,4,+11,4,)/39 = 1, showing the
geometrical meaning of (7.4).

10. Equations of a Line

We have seen that all the points which satisfy simul-
taneously two linear equations form a line. Conversely,
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_ let & be a given line and II,, I, any two distinct planes
through s. Then a point lies on 8 if and only if it satisfies
simultaneously

m=0, M=0. . . ()

So we call these equations, taken together, the equations of
8. These equations are not unique, but may be replaced by
those of any other pair of planes through s. Some standard
forms are given in 24 below.

This is our first instance of a locus being specified by more
than one equation. But a single algebraic equation cannot
suffice to specify a line. For there are in general infinitely
many values of z, y (say) satisfying such an equation for any
given value of 2, whereas on a line there is in general a unique
point for which the coordinate z has a given value. Therefore
at least two equations are required. So we could not specify
& line more simply than by two linear equations, and we have
seen that these suffice.

In the field of real numbers, a single equation

Pafit .. +3=0

is, in fact, equivalent to the set fy =0, f, =0, ..., fa = 0.
But when we speak of a single equation we shall exclude such
cases,*

1. The equations of a line depend on four independent
constants.

2. & being not parallel to z = 0, its equations can be put
in the form

z = az+a, y = fz+p'.

These define s by its projections in the planes y = 0, x = 0.
3. The line joining two given points Py(z,, ¥, #)
Py(Zyy Yar 2,) i8
% _Y—Wh _ 27z

5—% Y=Y H—%

* Except where they arise as certain special cases of the equation
of the second degree.
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4. The line through the point (2’, ¥/, #’) in the direction
(4, p, ¥) i8, using 4 6,
22—z - y—y - z—2'
A B y
8. The line in 4 lies in the plane az+4-by+cz+d == 0 if
ai+bu+tev =0, ax’' by’ +ez'+d = 0.

[Algebraically: put each ratio in 4 equal to ¢ and make
(z, ¥, z) Lie in the plane for all ¢, Geometrically: the direction
(2, p, ) must be parallel to the plane, and the point (z’, y’, 2)
must be in the plane.) ‘
8. 8tate conditions for the line in 2 to lie in a given plane,
7. 8how how to write the intersection of

axtby+eztd =0, az+byteztd =0

in the form given in 4. [(4, u, ») being perpendicular to
(@ by, €1), (4, by, 64) is given by

(biey—bsey, €,a4—c8), arby—ayd,).

If then, say, » # 0, give z any value 2’ and solve for z, y, thus
obtaining a point (¢/, ’, z’) on the line.]
8. The perpendicular distance of Q(z*, y’, z°) from the line
through P(z’, y’, 2’) with direction (I, m, n) is
V{Zlly' -y m—(2' —2"}m)%}.
[This ia | PQ | sin ¢ where 4 is the angle between PQ and
the line.]

Shortest distance between two lines. Let two
non-parallel lines g,, 8; be given by

(x—2))/A, = (y—n)im = =2y, 1)

(z—z)[As =y —Yalpa = (2 —23)/v;. . 2)

The single direction 8 perpendicular to s,, &, is (x,v, —jievy,
viAa—vgdy, Ayprg—Ay). The plane II, containing &, and
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parallel to 3, and the plane II; containing &, and parallel
to 3 are, respectively, (8 6)

x—x y—t 2—2, =0,
A 1 41
Vg —HeW leﬁ_vBAI Aipa—Agpy [ 3
r—2x, Y—Ya z2—2, =0.
Ha Vg
Bva—pes WA=V Agpg—Ag J

Since IT,, I1; are both parallel to 3, their line of intersection
8 is parallel to 3; since II, contains s,, 8 meets 8,; similarly
8 meets 8;. Therefore (3) are the equations of ¢ unigue
line & perpendicular to 8,, 8, and meeting them both (in
N,, N,, say).

Let P, P, be any points of s,, 8, respectively; let
be the angle between P,P,, N\N,. Then ¢y =0 only if
P,=N,, Py;=N,; otherwise P, P, would be a second line per-
pendicular tos,, 8;and meeting both. Now P,N,, P,N, being
perpendicular to N,N,, the segment N, N, is the projection
of the segment P\Pyon N\N,. So|N,N;|=|PP,|cosy,
whence| N,N;| < | P,P; | unless P,=N,, P,=N,. Therefore
| NyN,y | is the shortest distance between s,, s,, as is well
known from elementary geometry.

Taking in particular P,, P, to be (2,, ¥;, 2,), (%3, ¥a, 2a)
and using 4 10, the projection of the segment P,P; on s is

. (N —21) (pyva—pgny)} - {S(pavy —pev))§13,
ie.
() |Za—21 ¥a—4 22—z
1 ] ¢
Ay M2 Vs .
giving the length of the shortest distance. It follows that
8, 8, tnlersect if and only if

+4/ {(tava—pa)2 (1A, —1,A))2
+ (AIPB —)‘2[‘-1)2}: 4)

=2y Y~ z3—2 | =0.
1 I " . )
Ay H3 Vg
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9. Recover (4) by forming the equation of the plane
through g, parallel to s, and finding the perpendicular distance
of (z,, Y¥s 2,) from it.

10. Equating the ratios (1), (2) to &,, k, any points P,, P,
of 8y, 85 are (zy+Aky, yy+ik 21+9ik) (@at+Agke, Yatasghs
23+ veky). Determining %,, %, to make P,P, perpendicular to
8;, 8, find the coordinates of N;, N, and the length and
direction of N,N,.

The equations of s;, s, can now be put in a simple
form which facilitetes the solution of particular problems.
Take origin O the midpoint of N,N,; OZ along N,N,;
OX, OY parallel to the bisectors of the angles between
8), 8. Then the equations of s,, s, become

y=mz, z=k; =—mx, z=-—k, . (6)
where 2k=| N,N,|, and 2 tan™lm is the angle between
8y, 8.

11. Find the locus of a variable line 8 meeting fixed lines
8y, 8 in Py, P, so that | N,P, | = | N,P, |, N,, N, being as
defined above. [Taking axes as in (8), P,, P, have coordinates
of the forms (x,, mx,, k), (x;,, —mz,, —k). The condition
| NyP, | = | N:P, | gives z, = £2,. With z, =z, PP, is
(z—2,)/0 = (y—m=,)/mz, = (z—k)[k. Eliminating ,, the
required locus is mzz—ky = 0, referred to this particular
coordinate system. With z, = —a,, it is yz—kmz = 0.

Later work will show that each locus is a hyperbolic
paraboloid, and that this could be foreseen geometrically.]

411. Parametric Representation

The reader will recall the introduction of parametrio
(or “freedom ') equations of a locus in two dimensions and
the advantages of their use., Familiar instances are the
representation of a line by equations of the form x = a{pt,
y = b+gqt, and of a parabola by 2 = af?, y = 2at. Each of
these is an example of a rational representation, having
the fundamental property that it establishes & one-to-one
correspondence between the points of the locus and the
values of the parameter {. So we may specify completely
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& point of the locus by the corresponding value of ¢, referring
to it, if we wish, as ‘“‘the point £.”” One and only one
parameter is needed because a point on the locus has just
one degree of freedom.

In three dimensions a curve (a line being the simplest
case) is still by definition a locus on which a variable point
has a single degree of freedom. The coordinates of such
& point must again be expressible in terms of one parameter.
A surface (a plane being the simplest case) is by definition a
locus on which a variable point has two degrees of freedom.
The coordinates of such a point must be expressible in
terms of {wo independent parameters. In each case the
expression of the coordinates in terms of the parameter
or parameters need not be rational, or even algebraic. But
if it can be made rational, then the curve or surface is said
to be rational. Obviously, not every parametric repre.
sentation of a rational locus is rational. Various features
of these conceptions will receive subsequent illustration.

1. An arbitrary point in & has three degrees of freedom;
a point satisfying a single equation has two degrees of freedom;
a point satisfying two equations has in general one degree of
freedom; a point satisfying three equations has in general no
freedom, but must be one of a finite number (if the equations
are algebraic) of fixed points. [Interpreted geometrically
these results are: the locus in & of a single equation is a
surface; if two surfaces intersect they do so, in general, in a
curve; if a curve and a surface intersect they do so, in general,
in isolated points, There are, however, important cases of
exception, e.g. two or more surfaces may have a portion of
each surface in common, three or more surfaces may have a
curve in common. But the analytical formulation of these
cases i8 too difficult to be given here.]

Line. Letsbeagivenline; l,m,nitsd-o’s; Py(z;,y,,2,),
Py(z,, ya, 2,) fixed points of 8; P(z, y, z) any point of s.

Let (P,P) = r, measured in the sense (!, m, n). Then
there is a one-to-one correspondence between the positions
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of P and the values of r (—w <r < ). Projecting
(PyP) on the axes, we find

z=xHlr, y=y+mr, z=2z+nr. . 1)

Again, let (P,P):(PP;) = p. There is a one-to-one
correspondence between the positions of P (except P = P,)
and the values of p (—w < p<w; pw —1). We have
from 6

o= trmls), g Qb)) 2
z = (2, +pz)/(1+p).

(1), (2) give two parametric representations of ¢ in terms
of r, p respectively. They are particular cases of equations
of the form

_ at4-a’ bt4b’ _ ct4c 3
z_kt-*-k" y—kt-]-k” z—kl-l-k" ° ()

where a, a’, ..., }¥' are constants, and ¢ is a variable
perameter. (3) canbe proved equivalent to the most general
algebraic representation of a line s. But further discus-
sion is best given in connexion with homographic corre-
spondence, which is beyond our present scope. It should be
noted,* however, that no value of ¢ corresponds to the point
(a/k, bjk, c[k), which is a point of 8 if £ # 0. To get a
correspondence applying to every point of 8 we must have
k=0,% +0.

2. There is a (1-1) correspondence between the values of
r, pin (1), (2). [r = ryp/(14p), where (P,P,) = r,.]

3. If lines s, s® are represented by (3), (1), and if we take
t=r, we establish a (1-1) correspondence between the points
of s, 8%, i.6. we ‘“map’ s on s*.

4. If in (3) we put ¢ = (at*+B)/(y1*+38), (ad = By), we
obtain & representation of the same form in terms of ¢®.

* This difficulty is easily overcome by using Aomogeneous
parameters ¢, ¢ and writing (3) as z=(at+a't’)/(kt +Ek't’), etc.; then
we use the ratio ¢ : ¢’ in place of the ¢ in the text. This is equivalent
to what is done in Chapter IV, but here we prefer a single symbol to
emphasise the single degree of freedom. Analogous remarks apply
to the case of the plane,
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Plane. Let IT be a given plane; (I, m, 2), (I, m’, n')
two distinot directions in II; Py(zy, ¥1, 1), Pa(®as Yar 2a)s
Py(5, ¥5, %,) fixed non-oollinear points of IT; P(z, y, 2) any
point of II.

Let P have cartesian coordinates r, r’ referred to axes
in I itself with origin P, and directions (I, m, n), (', m’, »),
not necessarily orthogonal. Then there is a one-to-one
correspondence between the positions of P and the pairs
of numbers (r, ¥), (— o <r, ¥ < ). Projecting (P,P)
on 0X, 0Y, OZ, we find
z =z, 4lr 4, y=y+tmrim'y’, z=2z+nrtn'r’. (4)

Again, let P be the centroid of masses p,, p5, 3 at
P,, P, Py, and put pofp, = p, ps/py = 0. There is & one-
to-one correspondence between the positions of P (except on
P,P,) and the pairs of numbers (p, 0), (— ®© <p, 0 < »;
pto #—1). We have from 7

z = (2,+pzy+02;5)/(1 +p+0),
y = h+pyatoys)/(1+p+o), } .
z = (2, +pzg +025)/(1+p+0).
(4), (B) give two parametric representations of II in
terms of (r, r'), (p, o) respectively. They are particular
cases of equations of the form

_ou +a'v4a” _ bu-+b'v+b° _ou 4-c’'v4-c” 6
2=t To il Y Rt Forl : = magkorer ©

where a, @', ..., k” are constants, and u, v variable para-
meters, (6) can be proved equivalent to the most general
algebraic parametric representation of a plane II. But it
should be noted that no values of %, ¥ correspond to any
point on the join of (a/k, b/k, cfk), (a’/k', b'[K', ¢'[¥’), which
are points of IT if k, &’ +# 0. To get a correspondence apply-
ing to every point of Il we must have ¥ = ¥’ =0, k"= 0.

6. There is a (1-1) correspondence between the values of
(. 7)lp, @)in (4), (6). [r = (pra+ars)f(1+p+0), ' = (pry+ory)f
11+ p+0), where P,, P, are (ry, 13), (4 3) in (4).]



30  ANALYTICAL GEOMETRY OF THREE DIMENSIONS

6. If planes II, II* are represented by (6), (4), and if we
take (u, v)= (r, r’), woe establish a (1-1) correspondence
between the points of II, II®, i.e. we “map” II on II®.

12, Plane-coordinates

We found that to any given plane there corresponds an
equation az-+by-+-cz+d = 0 for which theratiosa:b:c:d
are uniquely determined, and to any such equation there
corresponds a unique plane. Accordingly (from 2) these
ratios serve as ‘“‘coordinates” for labelling planes in &.
Actually, however, we prefer to call a, b, ¢, d themselves
the coordinates of the corresponding plane, while recog-
nising that the coordinates ka, kb, kc, kd represent the
same plane for all values of % (= 0). Note that in & there
isnoplanewitha =b=¢=0.

1. All the planes whose coordinates satisfy a given homo-
geneous linear equation aa+pb+yc+dd = 0 contain a fixed
point [the point (a/8, /8, y/8)), and conversely. This is the
equation of the point in plane-coordinates.

2. All the planes whose coordinates satisfy two given
homogeneous linear equations contain a fixed line [the join
of the two points whose equations are givemn]. The two
equations are called the equations of the line in plane-co-
ordinates.

3. Give the theory analogous to 9, replacing point- by
plane-coordinates.

13. Line-coordinates

The case of a plane is straightforward because its
equation depends in a simple way on three independent
constants which suffice to determine it. But, if we want
to specify a line s in some corresponding manner, we
observe that its equations in the symmetrical form

(=)A= (y—y)p = (z—2)v -

contain siz constants which do not depend quite simply on
8 set of four independent constants sufficient to determine .
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In particular, (2’, %', z’) may be any fixed point on s.
However, we obtain from (1)
'ww=w>ﬁ.&m$h%w}. @)
pE—Ay = px'—Ay’,

so that, (z*, y°, 2") being any other point of s, we have
vy'—pz’ = vy’ —uz’, etc. Hence, writing

wW—p'=p, N-w'=gq pr'—d=r,. (3)
the values of p, g, r are the same for all positions of (z', ¥, 2')
on 8. Also from (3) we have identically

Ap+pg+vr=0. , . . )
Finally, s is unchanged if we multiply A, g, v, and con-
sequently p, ¢, r, by any non-zero constant. Therefore, to
a given line there corresponds a set of six numbers A, y, v,
P, ¢, 7, whose ratios are uniquely determined and which
satisfy the identity (4), thus involving four independent
quantities. Conversely, given any set of values of
A, p, v, p, g, r satisfying (4), we can form the equations (2),
i.e.
wWopz=p, M—wr=g, p—ly=r, . (3
and these determine a unique line (93). We call A, v,
P, 9, r the coordinates of the line.*
1. Express the line-coordinates of the join of two given
points in terms of the coordinates of these points.
2. Express the line-coordinates of the meet of two given
planes in terms of the coordinates of these planes.
3. The shortest distance between the lines &,(,, u,, v,
Pu Qi 1) 83(Aay Hy Vo Py, G 1,) 8
Aps+ings +9i7rs+ Ay - paqy F vy
{(Ba—p )+ (i =922+ (Dapty — Ao
8y, 8, tntersect if and only if
Mpstinga+virs+ 240, pag, sy = 0.
[Expand the determinant in 10 (4) using tho definitions (3).]

* Appeal to a mechanical analogy clarifies the significance

of line.coordinates; see Salmon, Analytic Qeometry of Thres
Dimensions, § 53.




OHAPTER I11

SPHERE

Tuis chapter is inserted in order to give elementary
illustrations of the use of the results already found, and
to provide some introduction to later general theory, of
which it gives particular cases.

14. Sphere referred to its Centre

Let 8 be a sphere of radius @. Take axes through
origin O at the centre of §. Then P(z, y, ) is on § if and
onlyif | OP | = a, or

2 +y242 =ad, . . (1)

which is therefore the equation of S.

Let @(z', y', 2’) be a fixed point, and consider the line s
through Q with direction (!, m,n). Any point P(z, y,z) of &
is given by (11(1)) x =2'+lr, y =y +mr, 2 =2"+nr,
where r = (QP). P lies also on 8 if

(@ +r)*+(y +mr)P+(z ) = ﬁ’.

12 +my +nz)r 422yt 42 —a2 = 0. (9)

This is a quadratic equation for r having roots r,, r; (say),
both real or both complex, If r,, r, are real and distinet,
8 meets S in two points P, P, (say). If r; = ry (then
necessarily real), s meets 8 in one point P; which may be
regarded as given by the coincidence of P,, P,; we say that
8 touckes S, or is tangent to S, with point of contact P,. If
r,, Ta are not real, 8 does not meet 8.
32

t.e.
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From (2) we have
(QP)).(QP;) = ryry = 28 4y'242"2—a .  (3)

Hence if any line through a point Q meets a sphere 8 in points
P,, P, the product (QP,).(QP,) depends only on @, 8. We
call this the power p(Q ; S) of @ w.r.t. 8.

Equation (3) may be interpreted as

p(Q ; S) = (distance of Q from centre of 8)2—(radius of S)3.

Therefore p(Q;8) is (i) <0, if @ is inside 8, and (3)
shows that Q then lies between Py, Py; (ii) = 0,if @ison §;
(iii) > 0, if Q is outside 8, and (3) shows that @ is then not
between Py, P,. If ry = 1y, (3) gives

2(Q; S) = (length of tangent from Q@ to S)% >0,

and Q is then not inside S.
Again from (2) we have

(QPy)+(QPy) = ry+ry = —2(la’+my’ +n2').  (4)

Q is the midpoint of (P,P,) if (QP,) = —(QP,), i.e. from (4),
if I’ +my’ 4nz’ = 0. Therefore, if I, m, n are fixed, Q
must lie in the plane

lz4+my+nz =0.

This contains O and is normal to (}, m, #). Hence the
midpoints of chords of a sphere parallel to a fized direction
lie in the diametral plane normal lo the latier.

Now let Q be on 8, so that z'2+y'2+42'2 = a®. Then
the roots of (2) become r, =0, r, = —2(lz' +my’+nz').
The vanishing of r, means merely that every line through @
meets § in Q, i.e. P,=Q. Then P, = P,, making &
tangent to S at @, if and only if r, = 0, giving

l' +my’ 4nz' =0,

This expresses that (/, m, n) is perpendicular to 0Q. Hence
a line through a point Q on § is tangent to S (at @) if and
only if it is perpendicular to the radius through @. 8o
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every langent line at Q lies in the plane through Q normal to
0Q, and every line through Q in this plane is a tangeni line
at Q; this is called the tangent plane at Q. These properties
show that its equation is

z'(z—2')+y'(y—y') +2'(2—2") =0,
or, since x'3ty'342'2 = a?,

xz'+yy' +22' = ad .. (B)

Suppose now that (5) passes through a fixed point
R(z", y°, 2°). Then 2'z"+y'y"+2'2" = a?, showing that Q
then lies in the fixed plane

zx"+yy 22" = ad. S )
Hence the points of contact of tangent lines to S from a fixed
point R lie in a fized plane. This is called the plane of
contact of B and the locus of these tangent lines the tangent
cone from R,

It is clear that the foregoing geometrical theorems,
which are trivial in themselves and are reproduced merely
to illustrate the algebraic method, are independent of the
particular choice of axes used in deducing them. The

form of their algebraic expression, on the other hand, does
depend on this choice.

1. Tangent lines of S pass through a given point R if
und only if R is not inside S. [For the plane (6) meets § if
and only if its perpendicular distance from O is not greater
than g, i.e. x"3+y"3+2"2—a? > 0.]

2. Polar plane. Let P\(zy, ¥, 2,), Ps(24, ¥s 2,) bo such that
the sum of their powers w.r.t, S 18 equal to the square of their
mutual distance. Then

Ty T Y+ 0z = a6t
If P, is fixed, P, must therefore lie in the plane
xz,+yy +2z, = at, . . e (D

and conversely, if P, is any point of (7), P,, P, are related in
this way. [(7) is called the polar plane of P, w.r.t. S. This is
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not a standard definition, but most such definitions fail to
apply generally to every position of P, in the polar plane.}

8. Using (7), establish the propertiea of pole and polar in 33
for the particular case of a sphere.

15. General Equation of a Sphere

The sphere with centre (a, 8, ¥) and radius & is seen to
be

(z—a)+(y—B)2+(z—y)® =a? .M
This equation has the form
cx®tey? ezt +2ux4-2vy - 2uz4d =0, . (2)

where ¢, d, u, v, w are constants (¢ # 0). Conversely, given
any equation of the form (2), we may write it

(zufey+(y +ofef++wlc a="'} @)
k = (u4v24-w?—cd)/c. )

Comparing (3) with (1), we see that its locus is the sphere
having centre C(—ufc, —vjc, —w/c) and radius +/k,
provided k »0. The case & = 0 gives a sphere of zero
radius (point-sphere) reducing to the single point C.
There are no points which satisfy (3) if £ < 0. Hence the
equation of every sphere is of the form (2), and the locus, when
it exists, of every such equation is a sphere. We usually
assume (2) to be “normalised” so that ¢ = 1.

where

1. The general equation of a sphere depends on four
independent constants. One and only one sphere passes
through four given non-coplanar points.

By the methods of 14, or by merely changing the origin
in the results of 14, we prove: S being given by (2) with
¢ =1, and @ being (z', ¥’, z'), the power of @ is given by

p(@; 8) = 22 +y"? 428 2ux’ 20y +2w2' +d;  (4)
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and the equation

2z’ +yy 22 Fulz+) doly+y') Holz42) 43 =0

gives the tangent plane at @ if @ is on 8, the plane of contact
of Q if @ is outside S, the polar plane of @ for all Q.

16. Circle

If a plane and a sphere intersect, they do so in a circle.
So the locus of

a'z4b'y+c'z+d =0, } (1)
byt et 2oy 42+ d =0, |

taken together, when it exists, is a circle. Conversely, every
circle can be represented by equations of these forms.

As in the case of a line, more than one equation is
needed to specify a circle in & We cannot specify a circle
more simply than by one equation of the first degree and
one of the second. In this specification the former
. equation gives the unique plane containing the circle, but
the latter need not be that of a sphere; it may be a quadrio
of any type possessing circular sections (44).

1. Find the condition for the circle (1) to exist, and find
ita centre. [The distance of the plane from the centre of the
sphere must not exceed its radius.]

417. Radical Plane
Let
Sl = 22 +y2 +Za +2ulx+2vly +2wlz +d1 = 0,
8y = 234y 422 4-2ugz -+ 20y 2wz +dy = 0,
be two given spheres, and @(z’, y’, 2') any point. Then
2(Q; 8,) = p(@; S,) if and only if, using 15 (4),

.,,;'s +yra +z'3 +2ulz' + 2vly' +2w1z’ +d1
= 23yt 23+ 2ugz’ + 20y’ +2wyz’ +dy,
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i.e. if and only if Q lies in the plane
2ty —ug)e+2(vy —vp)y + 2010y —wo)e+dy—dy = 0. (1)

This is normal to the direction (¥, —%g, v;—v,, w;—w,) and
80 to the line of centres of 8,, §;. Also, if R is any point
common to &,, S,, then p(R; 8,) =0=p(R;8,); so, if
8,;, 8, intersect, their intersection lies in (1). Hence the
locus of a point having equal powers w.r.t. two spheres 18 a
plane normal to their line of centres and conlaining their
intersection, if any. It is called their radical plane,

1. Let S; = 0 (3 = 1, 2, 3) be the normalised equations of
three given .spheres. The three radical planes of §,;, S, S,
taken in pairs meet in a line [given by 8, = §, = §,, and
sometimes called their radical axis], or are parallel.

2. Let Sq=0 (i =1, 2, 3, 4) be the normalised equa-
tions of four given spheres. The six radical planes of
Sy, Sy S, S, have in general a point in common [given by
8, = 8;=8; =S,], and called the radical centre. Consider
cases of exception.

18. Coaxial Spheres

A sphere S and a plane [T being given by 16 (1), consider
the equation

S)(z, ¥, 2) = S+2A = 22 +y%+224-2(utAa')x
F2(v 4+ Ab' Yy +2(w+Ac' )z +d+2Md = 0,

where A is any constant. It is the equation of a sphere 8.
Let Q(z’, y', z') be any point of II so that II(z,’ y, 2') = 0.
Then (15 (4))

P(Q 3 Sx) = Sx(x'» 3/1 z') = ‘S'(z" y" z') +2AH(3¢', y" z')
=8, y',2')=¢q, say,

where g depends on @ but not on A. Hence as A varies the
spheres 8, form a family such that the power of @ w.r.t.
every member is the same, s.e. I1 is the radical plane of every
pair of members. It follows that the spheres have also a
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common line of centres. They are said to constitute a
coaxial system.

. L. Give the coordinates of the centre of S); verify that
it lies on a fixed normal to II.

2. There i8 one and only one sphere S, through any point
not on II. Either no two spheres of the system intersect, or
else they all contain a common circle in IT.

8. If any line & through @, but not contained in II, meets
S, in P), P,, then (QP)).(QP)) = g; hence, as A varies,
P;, P: generate an involution vn 8, If Q is outside the spheres,
two of them touch &; if Q is inside the spheres, none touches S,

4. There are two point-spheres (limiting poinis) of a non-
intersecting coaxial system. .

§. Orthogonal spheres. Spheres

S = 2"+’ 42%+ 2uz 4+ 20y + 2wz +d = 0,
8 =28yt 4284 2z 4 20y + 2wz +d = 0,

intersect orthogonally at every common point if and only if
2un’ 4200’ 42w’ = d+4-d’. [This is a simple extension of the
corresponding result for circles in a plane.]

6. If a sphere S is orthogonal to each of two spheres S,, S,
its centre O lies in the radical plane II of §,, §;. Conversely, if
O lies in I1, and if S is orthogonal to &, it is orthogonal to S,
and 80 ﬁ,o every member of the coaxial system determined
by §,, il.

7. All the spheres orthogonal to three given spheres form
in general a coaxial system whose radical plane is the plane
of centres of the yiven spheres and whose line of centres is
their radical axis.

8. There is in general one and only one sphere orthogonal
to four given spheres.

19, Parametric Representation

Let II* be a fixed plane and let u, v be cartesian
coordinates of any point P* of II* referred to axes in II*®
itself. We saw (11 6) that the parametric representation of
any other plane II yicldsa - ‘map” of Il on I1®. Conversely,
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if we can map any surface £ on II* we shall obtain a
parametric representation of . For, if P(x, y, 2) is any
point of T and P%(x, v) its “map” in I1®, then z, ¥, z must
be expressible in terms of u, v.

One way of mapping a sphere § (centre O, radius a) on
II® is by stereographic projection, the simplest case being
the following: Take as II* any plane through O. Let 4 be
one extremity of the diameter normal to I1%; then the join
of 4 to any other point P of S meets II in one point P*, and
conversely. This gives a one-to-one correspondence be-
tween P, P®; so P®* may be taken as the “map” of P.

Now take axes with origin O and OZ along OA. Then
I1* is the plane z = 0; 4 is the point (0, 0, a); & is the
sphere

224y 422 =ad . . « ()

Let P* be the point (u, v, 0); so AP* has parametrio
equations
z=ut, y=1t, z=a(l—t).. v 2)

This meets S at points where, from (1),
w2 +v224-a*(1—1) = a?,

whence ¢ = 0 or 2a%/(u®+v2+a?). The first root gives 4;
therefore the second must give P. Substituting for ¢ in
(2) the coordinates of P are

_ 2a%u _ 2a% _ u?4-v%—qa? 3
2= orere YT irere 0T %retar ©)
Also (2) gives

% = azf(a—z), v = ay/(a—z). . (4)

(3) is a parametric representation of 8. (3), (4) render
explicit the (1-1) correspondence between P, P#; if u, v are
given, (3) determines unique values of z, y, z satisfying (1);
if z, y, z satisfying (1) are given, (4) determines unique
values of u, v, with the single exception that no point of II*®
corresponds to 4 on 8.
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1. The ourves y = constant, v = constant, on S are two
families of amall circles through 4, one member of each going
through every point of S other than 4.

2. A more familiar method of locating a point on a sphere
is by ite latitude and longitude. The following slight modifica-
tion of this is used in mathematica: In the frame of reference
used above, call the angle ZOP the colatitude 6 of P, and the
angle between the planes OZX, OZP, in the r.h sense of
rotation about 0Z, the azimuth ¢é of P. Then, if P is given,
8, ¢ are uniquely determined so that 0 L0 n, 0 é < 29}
if any pair of values of 0, ¢ in this range is given, it locatea
a unique point P on S. Hence 6, ¢ serve as parameters of P.
Projecting OP on the axes we obtain the parametric equations

z=asinfleos$, y = asinfsing, z = a cos 0. (8)

This non-algebraic representation is not so useful as (3) in
algebraic geometry. ‘

- 8. Spherical polar coordinates. Let Q(z, y, z) be any point
of & Let P be either of the two points in which 0Q meeta
8, and let P be specified by 6, ¢ asin 2. Taking OP as fixing
the positive sense of 0@, let (0Q) =r. Then as in (5) we
obtain

z=rsinfcosd, y=reinbsing, z=rcosb.

Thus Q is determined uniquely when r, 8, ¢ are given; these
are called spherical polar coordinates of @ in the frame of
reference used. Note however that, if Q is given, r, 6, ¢ are
not uniquely determined, owing to the ambiguity in the choice
of P.

4. If in 3 we take rsin 6§ = p, Q is determined uniquely
when p, ¢, 2 are given; these are called cylindrical polar
coordinates of Q.



CHAPTER 1V

HOMOGENEOUS COORDINATES—POINTS AT
INFINITY

THE preceding work suffers from certain inelegancies of
form and expression: of form, since we specify any point
by & unique set of three point-coordinates, and go on to
specify any plane by a non-unique set of four plane-
coordinates, and any line by a set of line-coordinates of
non-uniform type; of expression, since we have to make
_ continual mention of special cases depending on parallelism.
The simple algebraic device now to be introduced removes
these defects and simplifies the subsequent algebra. It
does not mean that we pass to a different geometry. In
particular, we do not discard the special cases due to
parallelism; they merely cease to be exceptional as regards
the general treatment, but can be isolated whenever
necessary. This is well illustrated by the successive stages
in the classification of quadrics (Ch. V).

20. Homogeneous Coordinates

Suppose we have a collection & of geometrical objects
and we label them with sets of numbers (g, g, ...,g,). If
(i) to every set of values of g¢;, ..., g, in a stated range
there corresponds a unique member of &, which we call “the
object (gy, . . ., ga),” (ii) the objects (g}, ..., g3), (93, ..., g})
are the same if and only if g,/g) = ... =g, /g, (iii) this
system of labelling includes all the members of @, then we
call g,, ..., g, homogeneous coordinates of the corre-
sponding object in .

41
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Since the set of values 0, 0, ..., 0 could be reckoned
proportional to any other set, it must be excluded from the
range of possible values of gy, ..., g,.

Now let some geometrical relation concerning the object
(95, ..., g») be expressed by an algebraic equation in-
volving these coordinates. Then that equation must be
satisfied when these coordinates are replaced by the
“equivalent” set (g7, ..., gp), Where g1/gl = ... = g./g%
since this set specifies the same geometrical object. Hence
the equation must be homogeneous in gy, ..., gj.

21. Linear Dependence

We denote a set (g, ..., g,) by the symbol g, and a set
(kgy, ..., kg,) by kg. We can without confusion denote
also by g the geometrical object corresponding to the
set g; then g and kg denote the same object (& = 0).

Sets g’, g°, ..., g'" are said to be linearly dependent if
there exist numbers %', k*, ..., k", not all zero, such that

kg kg ... +Ekingin =0, ., . (1)

where this implies the # equations

Fgitk'gi+...+8%P =0. 6=1,...,n) (2

If in particular k», say, (1 < p < r) is not zero, we say
that g!# is linearly dependent on the remaining g's in (1).
Sets which are not linearly dependent are called linearly
independent. We require the following lemmas:

(i) There exists a g linearly dependent on u, v, ..., and
ony, 2 ...,ifand only if u, v, ..., ¥, 2, ... are linearly
dependent amongst themselves. This follows from the
definition.

(i) Any m of the g's are linearly dependent if m>n
(Aitken, 28 3).

(iii) At least two of the ks in (1) are not zero. For if all the
ks except kP are zero, (2) reduces to kPP =0 (s =1, ..., n).
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But we have excluded the possibility g? = ... =g = 0.
Hence k' = 0, and we have a contradiction.

(iv) Two geometrical objects g’, g° are identical if and only
if g’, g" are linearly dependent. For, if k'g’4+-k°g” = 0, then,
by (iii), &, " # 0, 8o g;/g; = ... = g,/gn and conversely.
Bearing in mind this lemma, we may speak of linear dependence

of sets of coordinates in terms of the corresponding geometrical
objects.

22. Point-coordinates : Space é

Let P(z, y, z) be any point of & We shall now label
P by four numbers z,, z;, 3, ¥, such that

T =2/, Y= r, 2=z, . (1)
If, in the definition in 20, & is the aggregate of points
of & and z,, .., z, can take all values, then we see that
Z,, %, %3, , are homogeneous coordinates of P in &,
provided we exclude the possibility x, = 0.

Suppose now we define a collection & of objects as those
having homogeneous coordinates z;,, ,, %3, 2z, where
these range unrestrictedly over all real values (except only
the set 0, 0, 0, 0). Wae shall, ag is possible from what has
just been said, identify those objects of & for which z, = 0
with the points of & We shall then choose to call all
the objects of & the “points” of & When it is necessary
to make the distinction, we shall call points having z; = 0
“ordinary” points of &, and those having z, = 0 “special ”
points. The latter are not points of &; so we have hitherto
no geometrical definitions concerning them and we are
consequently now free to impose any we please (provided
they are self-consistent). Their usefulness in respect to &
will become evident in 27.

Reversion to cartesian coordinates. If x is any
ordinary point P, then, ¥x being the same point for all k
and z,, being not zero, we can take k = 1/, and so obtain
for P, from (1), the particular set of coordinates (x, y, 2, 1).
We can thus make the z,, #;, #;-coordinates equal to the



44  ANALYTICAL GEOMETRY OF THREE DIMENSIONS

original cartesian coordinates. Further, since we deal
only with komogeneous equations in =z, z,, z,, z,, these
equations hold good equally for every particular set of
homogeneous coordinates of P, in particular for that in
which xy = 1. Therefore, in order to pass to the cartesian
form of an equation, we have merely to put z; = 1 and
replace z,, z,, z; by z, ¥, 2.

Notation. When using homogeneous point-coordinates
we reserve subscripts to distinguish the four coordinates
of the same point. To distinguish different points we use
either superscripts or else different letters x, y, 2, t, ...
(x generally denoting a variable point). The practice is
largely the reverse of that followed with cartesian co-
ordinates, and the reader should guard against confusion.
Also we formerly spoke of ““the point P(z, y, z),” specifying
it descriptively by P and algebraically by (z, y, z); now
we can make a single symbol like x do the double duty.
Analogous remarks apply to the subsequent treatment of
planes,

23, Linear Dependence of Points

(2) The relevant objects being points of &, lemma (iv)
becomes:

A, If two points are linearly dependent they are coincident,
and conversely.

(b) Let u, v, w be the ordinary points P,, P,, P, of 8,
Writing A = p,/%,, etc., the four equations 6 (2) may now
be replaced by the single condition

Au+l.l,v+vw == 0- . . . (l)
Hence the theorem in 6 is simply: u, v, w are collinear if
and only if they are linearly dependent. Therefore, u, v
being distinct ordinary points, their join & in & consists of
all ordinary points x given by

x = Au +}LV, . . . (2)
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where A, p take all real values (not both zero). There is
one and only one distinct point of 8 corresponding to every
value of the ratio A:pu, except A:p = —v,:u, which
makes x; = 0. The latter gives a unique special point in &.
We shall now call the aggregate of all points given by (2)
an ordinary line § in &:; so 8 is identical with s, except for
the addition of one special point.
1. In (2) we may replace v, say, by the special point of &,

Now let u, v be distinct special points. Thenu, =v,=0,
and so z, = 0 for all A, u in (2). All points given by (2)
are then special, and we call their aggregate a special line
in &.

Line will now mean either ordinary or special line. We
gee that the definitions extend to & the fundamental
property of a line in &, that it is completely determined
by any two distinct points lying on it. They permit the
assertion regarding &:

B. If three points are linearly dependent they are collinear,
and conversely.

2. If a line contains one ordinary point, it is ordinary.

8. The point x given by (2) divides the join of u, v in the
ratio pv,: Au,.

4. If two lines are given by ® = lu+uv, X = vw+ w2z, they
have & common point if and only if u, v, w, z are linearly
dependent. [Lemma (i).]

(c) Let u, v, w, z be the ordinary points P,, P,, P,, P,
of 7. As before, the four equations 7 (1) can now be
replaced by the single condition

ANtpvtrwtopz =0, . . 3)
Hence the theorem in 7 is: u, v, w, z are coplanar if and
only if they are linearly dependent. Therefore, u, v, w
being distinet non-collinear points, their plane II in &
consists of all ordinary points x given by

x = Au+pv+w, . . . (4)
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where A, u, v take all real values (not all zero). There is
one and only one distinet point of IT corresponding to every
value of the ratios A : y1: v, except those satisfying

Aug +!w¢+"wd =0, . , (5)

which make z, = 0. The latter give a unique special line
in & For all points satisfying (4) and (5) give

wx = Mwu—uw)+p@wv—ow), . (6)

and conversely. From (b), (6) gives the special line
determined by the special points wu—uw, wyv—vw,
which are distinct since u, v, w are linearly independent.
We shall now call the aggregate of all points given by (4)
an ordinary plane Il in &; so IT is identical with II, except
for the addition of one special line.

6. In (4) we may replace v, w, say, by any two points of
the special line in [1.

Now let u, v, w be non-collinear special points. All
the points given by (4) are then special, and we call their
aggregate a special plane in &.

Plane will now mean either ordinary or special plane.
The definitions extend to & the fundamental property of
a plane in &, that it is completely determined by any three
non-collinear points lying in it. They permit us to assert
regarding &:

C. If four poinis are linearly dependent they are coplanar,
and conversely.

6. If a plane contains one ordinary point, it is ordinary.

7. A plane in & entirely contains the line determined by
any two of its points.

8. Every line in a special plane is special.

9. 4, u, v in (4) provide homogeneous coordinates of the
points of the plane uvw. [When u,=v,=w,=1, they are
areal, or barycentric, coordinates with uvw as triangle of
reference.]
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(d) Since a point of & is given by four coordinates, it
follows from lemma (ii) that any five points are linearly
dependent, and that all points x of & are given by

x = Autpvtrw oz, . . (7)

where u, v, w, z are any four non-coplanar points and
A, i, v, w take all real values (not all zero).

Just as we proved in (c) that every special point of (4)
lies in a unique special line, it now follows that every
special point of (7) lies in & unique special plane. So there
i3 one and only one special plane in &, and & is identical
with &, except for the addition of this special plane.

(7) permits us to assert regarding &:

D. Every point is linearly dependent on any four linearly
tndependent points.

10, The numbers 1, u, v, @ in (7) provide a now set
of homogeneous coordinates of the point xX. When
% = vy = w, = z4 = 1, they are called barycentric coordinates
with tetrahedron of reference having vertices u, v, w, z.
The equation of the special plane in barycentric coordinates is
Atutv+ow = 0.

We now have the following incidence relations in & (in
addition to 4, 7):

(i) Every line s meets every plane I1 in which it does not
lie tn one and only one point.* Let y, z be distinct points
of s, v, v, w non-collinear points of II. Then by (d)
there exist p, ..., v (no four being zero, lemma (iii)) such

that py+wz4dutpuvtrvw = 0.

Also p, w are not both zero, since u, v, w are linearly in.
dependent; A, g, v are not all zero, since y, z are distinct,
So there exists a point x such that

X = py+oz = —(Autpuvirw).

* Honceforth we use, when necessary, symbols like s, I (without
the bar) for a line, plane in &.
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Using (b), (c) it follows that x lies in both ¢ and II. From
7, X is unique, for if s contains two points of II it lies in IT.

(ii) Every two distinct planes I, A have one and only one
line in common. Take any two distinct lines in IT through
a point of IT not in A. These meet A in unique points
(by (i)) whose join ¢ lies in IT, A (by 7). II, A cannot have
any common point not on 8; otherwise (by (c)) they would
coincide.

(iii) Every three non-collinear planes have one and only
one common point. (Planes are called “collinear” if they
have a line in common, “concurrent” if they have a point
in common.) This follows from (i), (ii).

Note that in & there are no exceptions to these relations
due to parallelism.

24%. Plane-coordinates : Linear Dependence of Planes

Either directly from results in 8, or by using the methods
of 8 in conjunction with 23 (c), we now have: The equation
of every plane is a homogeneous linear eguation in homo-
geneous point-coordinates ; the locus of every such equation
18 @ plane. We write such an equation in the form

E.x=fx+Hmt+Himtér =0, . (1)
where x = (z,, Z,, Z,, %,) is the variable point, and the
coefficients £;, £,, £&;, £, are not all zero.

From 12, 20 we see that &,, &, &, £, are homogeneous
coordinates of the plane (1), which we now call the plane E.
In & the case § = & = £; = 0 was excluded; but this
now gives, from (1), 2, = 0, which is just the equation of
the special plane in &,

Using the methods and results of 9, 23 we can deduce the
following (for which the reader should construet proofs):

A’. If two planes are linearlydependent theyare coincident,
and conversely.

B’. If three planes are linearly dependent they are collinear,
and conversely,
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C'. If four planes are linearly dependent they are con-
current, and conversely.

D’. Every plane is linearly dependent on any four linearly
independent planes.

25. Duality

We now observe that, if in any one of the relations
23 A-D we replace the terms

point line plane
by the terms

plane line point,
respectively, we obtain the corresponding one of the
relations 24 A’-D’, and vice versa. Since any incidence
relations derived subsequently will depend only on these
fundamental ones, it will remain true that when this
replacement is made in any such relation a valid relation
will result. Pairs of relations corresponding in this manner
are called dual relations, and the principle which allows
us to pass from one to the other is called the principle of
dualsty.

26. Line-coordinates
Let & be a line and y, 2 any two points of s. Then,
as in 6 (4), x lies in s if and only if

T Ty Ty I,
i Y2 Ys Y
21 23 Py %

=0.
. .

By 6 3, a necessary and sufficient condition for (1) is given
by any two distinot equations of the following set, from
which the rest follow :

PosZy +P3%e +D1223 = 0,

Py +PuZa+P1a% = 0, @)
P3a%1 +Pa%s+P1s% = 0,
Pa¥y+Peg®s +Pest = 0,
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where Prs = Yrza—Yets = —Pq, elo. . ®

The ratios of p,, Py3, ... are fixed when the points
¥, z are given; not all of p,g, Pys, ... aTe zero, since y, =
are distinot points. Also by expanding the vanishing
determinant

Y1 Y2 Ys Y
2y 23 23 2
h Y2 Ys Ys
2 23 ZZ %
on the first two rows, we have the identity

PraPsctPouPratPuaPis =0 . . (4

Conversely, as in 13, the planes (2) all pass through a
unique line 8 when the ratios of 9,3, Pyg, ... satisfying (4)
are given. Hence 9,5, P13 ... related by (4) provide
homogeneous coordinates for the lines of &. They are
known as Pliicker coordinates.

We can derive a second set of coordinates m,,, @y, ...
by taking the dual of every step in the foregoing derivation.
In particular, if v, § are any two planes through s we take,
dually to (3), ‘

Wy = mgn—ﬂaﬁ = —uy, eto. . . (6)

But the first two planes (2) could be taken for ¥, §, which
are then the planes (Pys, Ps1» Prg» 0)s (Poes Pars 0, Prg).  Sub-
stituting in (5) and using (4), we find

Wig: Wyg: Wy, Wy ! Wey ¢ Wyg = Paut + Paz  Pes * Pra* Par Piwe (6)

1. Verify that passage to cartesian coordinates gives the
results of 13 1, 2.

2. The lines p, q intersect if and only if
P13+ P1s0esH Prdas + P+ Prds1+P3udia = 0. (7N

[Let y, z be points of p, u, v points of . P, ¢ intersect
if and only if y, 2, u, v are coplanar, s.e. |¥;2%;v4| =0
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Expanding the determinant on the first two rows gives (7).
Or express the fact that any two of the planes (2), and the
corresponding ones for ¢, are conourrent, and use (4).]

3. If q is given dually as @ (i.e. the w’s are got by writing
g instead of p in (6)), then (7) may be written =, , p,, @,, = 0.

27. Parallelism

In 26 let s be an ordinary line and let the coordinates
of y, z be taken in the forms (2, ¥, 2', 1), (A, p, v, 0), s0
that z is the special point of 8. Then 26 (3) gives

Pos=vy' —pz', Py =M -, pp= px’—"y"} 1
Pa=2A Pe=4p Pg=v,

and reproduces the line-coordinates in 43. Hence, if

(A, p, v, 0) 18 the special point of an ordinary line s, then s

has direction (A, p, v), and conversely. Accordingly fwo

ordinary lines are parallel if and only if they meet in a special

point.

Thence it follows: An ordinary line is parallel to an
ordinary plane if and only if it meets the plane in a special
point; two ordinary planes are parallel if and only if they
meet in a special line.

We have now the following state of affairs: In & the
special points, lines, and plane satisfy the same incidence
relations as ordinary points, lines, and planes; there are
no exceptional elements. But, in recovering the geometry
of &, we recover the exceptional cases of parallelism by
noticing any particular relations involving the special
points and interpreting them in accordance with the results
just given. It should be noted that these avoid the
assignment of ‘‘direction” to a special line or the special
plane. ‘

Sequence of points on a line. In & let g, ¢ be skew
lines. Let a plane II through ¢ rotate continuously
about £. In every position Il meets 8 in a unique point
P (23 (i), and every point of g is a possible position of P.
Hence in one complete rotation of II, P traverses con-
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tinuously the whole line s and returns to its starting-point.
8o, if 4, B, C are points of s, P can start from C, traverse
the positions 4, B once and only once, and return to C.
Therefore we conclude that in & the points 4, B divide s
into two segments [AB] and [4B]', say. Now let s be
ordinary and 4, B be ordinary points of s, and let K be the
special point of 8. Then K lies in one of the two segments,
say [AB). When we revert to &, we cut out K; when
P= K in &, II is parallel to s and does not meet s in &.
So [4.B] becomes the unique segment 4B in &, and provides
the only route between 4, B along s.

Points at infinity. We now adopt more usual
terms and call the special points, lines, and plane, points,
lines, and plane at infinity. These are to have no connotation
other than has been given in this chapter. We shall in
future denote the plane at infinity by €.

1. The planes ¥, { are parallel if and only if n,/¢; = n/{s
= n,/ls» Deduce that they are parallel if and only if
contains their common line, i.e. if they meet in a line at
infinity.

28. Harmonic Ranges and Pencils

Let u, v, x', x* be four collinear points. By 23 (2)
there exist numbers X', p’, A", p" such that

x' = ANufp'v, =" =Autpv. . (1)
We call the quantity
W Nt M) =k= (v, xx) . (@)

the cross-ratio of the “range” u, v, x’, x*, In particular,
if ¥ = —1 we call the range harmonic and call x', x*
harmonio conjugates w.r.t. u, v.

Dual definitions apply to a “pencil” of four collinear
planes.

Now let 8, ¢ be skew lines, x, u, v points of s, E, 0, §
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- planes through ¢. Then there exist numbers A, u, I, m,
such that

x=Mutuv, E=mn+mE. . N )]

. Further, let E, 5, § contain x, u, v respectively, so that the
fundamental incidence relation 24 (1) gives

E.x=0, n.u=0, E.v=0. . (4
Combining (3), (4) we obtain
(n+mb) . (Autpv)=Ipn . v+mdL . u=0,
whence

m:Y)/(u: )=k . . . (6)

where % is independent of A, p, !, m. Hence if X', ', V', m',
A%, p’, U, m" are two sets of corresponding values of these
parameters, (5) gives

(m' ) (m* : 1)=(p : X)/(un" : X").
Therefore the cross-ratio of a pencil of planes is equal to that
of the range of points in which the planes meet any transversal.

1. The definition (2) gives the cross-ratio as ordinarily
defined. [Use 23 3.]
2. If (uv, xy) = —1, then
(Xy, uv) = (uv, xXy) = etc. = —1.

3. If v, v are ordinary and (uv, xy) = —1, then when ¥y is
the point at infinity on uv, x is the midpoeint of the segment
uv, and conversely.

4, The definition of cross-ratio (2) is geometrical, ¢.e. the
value of the quantity defined is unaltered when u, v, x’, x”
are replaced by au, v, yx’, éx°, where a, §, y, J are any given
numbers,

5. Let u, v be two given points, E, v two given planes.
Let the join of u, v meet E, nin x, y; if * = Au+uv, we have
from E.x = 0 that /A = —(§ . w)/(§ . v), with a corresponding
result for y. Hence (uv, xy) = (§.u)(n.v)/(§.v)(n.u). Let
the planes through the meet of &, % which contain u, v be
. 0. The dual calculation gives the same expression for
(€0, EW), i.e. the final result in 28 is recovered.



OHAPTER V

GENERAL EQUATION OF THE SECOND DEGREE *

Resurrs in this chapter, unless otherwise stated, apply
to &.

29. Lemmas on Conics

It will be assumed that the reader is familiar with the
following results of plans geometry, here summarised for
convenient reference:

Confine attention to any plane Il in &, and let the pointa
in this plane be labelled by any system of homogeneous point-
coordinates. A conic in [I will be defined as the locus I of the
equation got by equating to zero an indefinite quadratic form
in these coordinates. (Quadratic form is defined in Aitken,
p- 20; it is indefinite if it vanishes for any values of the variables
not all zero.)

I. If the quadratic form is irreducible to linear factors,
' is a non-singular, or proper, copie. Any line in IT meets I'
in two distinet points (secant), or in one point (tangent), or
in no point (non-secant); at every point of I' there is a unique
tangent. I’ is a unicursal curve which does not cross itself;
it separates the points of II, excluding the points on T}, into
two domains, the inlerior D, and the exterior D,. Every line
through & point of D, is a secant and separates D, into two
unconnected portions. Through a point of D, there pass
gsecants, non-secants, and two tangents,

IT. XIf the quadratic form is reducible to two linear factors,

* A reader having difficulty with this chapter may proceed to
Chapter VI and study the properties of quadrica deduced from their
standard equations. In the light of this he should then try to
satisfy himself as to the truth of the general results in Chapter V.

54
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I’ is a singular, or degenerate, conic, and three cases arise:
" (i) Factors real and distinct; I' is a line-pair. (ii) Factors real
and coincident; I is a single line (counted twice in the equation
of I'). (iii) Factors complex; I' is a single point. ,

III. In all cases it is convenient to define a tangent as a
line which meets I" in one and only one point or which forms
part of I'. P being a point of I', either a unique tangent
goes through P, then called a non-singular, or simple, point,
or else every line through P is a tangent and P is called a
singular, or double, point. In I, I' has so singularity. In
II (i) the meet of the two lines is the only singularity, II (ii)
every point of I’ is singular, II (iii) the single point of I' is
singular.

IV. Suppose I' is proper. (i) Let ABC be a self-polar
triangle w.r.t. I'; one vertex is in D, two are in D, and their
join is a non-secant; every chord of I' through a vertex is
divided harmonically by that vertex and the opposite side.
(ii) Let AB be the tangent at B= O on ['; O is the pole of
AB and there is no point such that every chord through it is
divided harmonically by that point and AB; the polar of 4 goes
through C and every chord through A is divided harmonically
by 4 and this polar.

V. In IV let AB be w, the line at infinity in II, and let w
be omitted so that II becomes a plane in &. Then IV (i) gives:
Every chord through O is bisected at O, the centre of I'; every
chord parallel to the {conjugate) diameters 04, OB is bisected
by CB, CA respectively, If O is in D,, I" does not extend
to infinity and remains a unicursal curve with & single interior
domain; both conjugate diameters of any pair meet [’
(ellipge). If Cis in D,, I’ extends to infinity and the tangents
from O become the asymptotes; I' is separated into two
branches and its interior into two domains; of any pair of
conjugate diameters one does, and one does not, meet I'
(hyperbola). IV (ii) gives: I' has no centre; it extends to
infinity but has no asymptote; it is a unicursal curve with
one point omitted and with a single interior domain. Every
chord parallel to a given direction is bisected by a line
(diameter) parallel to the fixed direction determined by lines
through O (parabola).

1. Enumerate the possible types of degenerate conic in &.
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30. Quadrio

The general linear form in 2,, z,, 23, %, is

. ¢
Il = &2 +-€p+- 52+ €47, E'zlfrzn . (1)

where §,, .., £, are any numbers not all zero. We have
seen that the locus in & of the equation II = 0 is a plane,
and that every plane has an equation of this form. We
saw too that the plane II may be labelled by the set of
numbers £,, which serve as homogeneous coordinates for I1.

We shall now adopt the summation convention according
to which we omit the summation symbol and understand
that whenever a suffix is repeated $n any term that term 18 to be
summed over every value of the repeated suffix (in present
cases over the values 1 to 4). Thus (1) is written as
simply £x,.

Woe shall also extend the device introduced in 8, and
speak of the locus F of an algebraic form F, meaning
thereby the locus of the equation got by equating that
form to zero.

The general quadratic form in 2,, ¥, %5, 7, is

8 = ay,2]+2a,.7,75+2ay37, 73 +2a1, %1%
+ %) +2a55%%; 20,477,
+ ay7]  +20375%,
+ a7,
where a,y, ..., @, are any numbers (here assumed to be
real) not all zero. According to the summation convention
we write

. (2

8 = a,2x2x, where a,=a,, « (3

where summation over all r, 8 is implied.* We call the
locus § (s.e., as just explained, the locus of the equation

* The reader should at first transcribe such expressions in full
in order to ensure his understanding the operation of the con-
vention. In particular, he should convince himself that it ia
immaterial what letter is used for a repeated suffix, since changing
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8 = 0) in &, when it exists, a quadric. As in the case of
the plane, we may label 8 by the set of ten numbers a,,,
which would in fact serve as homogeneous coordinates of
8. Now these numbers can be regarded as the elements of
a symmetric square matrix A = [a,,], so the properties
of the corresponding quadric must be expressible in terms
of properties of this matrix. It is known, in fact, that the
language of matrix theory is that most appropriate to
express the properties of a quadratic form,* and the same
must then apply to the corresponding quadric. For the
properties of the quadric are simply those of the quadratic
form when the latter are given a geometrical interpretation
in accordance with the theory of Chapter IV.

1. There is at least one quadric through any nine given
points; either it is unique or there exists an infinite number of
such quadrics.

Intersection of a quadric and a plane. Let IT be
any plane and u, v, w fixed non-collinear points of II.
Then (23 (4)) every point x of Il can be expressed in the
form x = Au+4puv+yw. This is also a point of § if and
only if

I = a,(Au, +pv,4vw,)(Au,+pv,4+vw,) =0.  (4)
Now TI' is a quadratic form in A, u, v. Also we have seen
(23 9) that A, p, v serve as homogeneous coordinates sn the
plane II. 'We know from plane geometry that the locus,
when it exists, of a quadratic form in homogeneous
coordinates in the plane is a conic. Hence, if the plane 11
has any points tn common with 8, these points form in
general a conic sn II. A quadric is therefore in general a
locus such that every plane section is a curve, namely a

the letter (in both placea where it occurs) makes no difference when
the expression is written in full. But the letter used for the repeated
suffix must, of course, be different from any other suffix which may
occur; ¢.e. the same literal suffix must not appear in more than two
places, and it oceurs in two places when, and only when, summation
over all its numerical values is implied.

* (f. Aitken, or almost any other book on modern algebra.
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conic, It agrees with our intuitive notions to call such a
locus a surface, thus giving a particular illustration from
another standpoint of the conclusions of 11 1.

We discover later the conditions which determine
whether the conic (4) is proper or degenerate.

Reducible quadric. The preceding discussion may fa.il
in one way, viz. the form I"' may vanish identically. In this
case every point of I satisfies (4) and is therefore a point
of 8. Hence if I has equation I = £,x, = 0, then 8 = 0
for every x for which II = 0 and so II is & linear factor
of 8. Then the remaining factor must also be linear,
say A = 52,.

Conversely, suppose § does possess linear factors II, A.
Then 8 consists entirely of the points which make Il = 0
or A = 0. 8ince the coefficients of S are real, three cases
arise:

@) IT, A are real and distinct; &S consists of the
plane-pair 11, A.

(i) II, A are real and coincident; S consists of the
single plane Il (counted twice in the equation
of S).

(iii) IT, A are of the type M +iN, where M, N are
distinct real linear forms in z,, x,, %5, %;; then
II=0o0rA=0if and only if M =0, N =0
simultaneously; S8 consists entirely of the line
given by M =0, N =0.

In these cases S is called a reducible quadric.*

2. The general equation of a plane-pair involves siw
independent constants.

* The properties of reducible quadrics are trivial properties of
lines and planes, and the reader may ask why we include them in
what follows. It is to render the discussion sufficiently exhaustive
for us to use the following type of argument: To prove that an
irreducible quadric 8 has property ‘“P'. We ghow first that it has
e:ther roperty ‘“‘P™ or property “P'» From some result estab-

or reducible quadrics, we deduce that if S has eglroperi;y “pn
1t is redumble The desired result is then establish
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3. If a2, = (§x,) (n.2,) with a,, = a,,, then
2a,.) = &M ]+ {38,

where on the r.h.s. { } [ ] denote single-column and single-row
matrices, respectively.

4. If a plane Il contains any set of points of S which do
not lie on a single conic, then I] is entirely contained in S.

Intersection of a quadric and a line. Let s be any
line and y, 2 distinct fixed points of s. Then by 23 (2) any
point x of s can be expressed in the form

X = Ay+tpz. . . . (5
x is also a point of S if and only if a, 2,2, = 0, i.¢., from (5),

an(Ayr +Pzr)(Ayn+an) =0

or, gince a,, = a,,,

Na, yy,+20pa, 2, tpte, 22, =0. . (6)

This is called the (Joachimstahl) ratio-equation, since its
roots in A:p yield the ratios (by 23 3 actually uz;: Ay,)
in which the intersections of 8, S divide the segment yz.
Substituting these roots in (5) we obtain the actual points
of intersection.

Since (6) is quadratic in A : pu with real coefficients, we
have the following possibilities:

() @ri¥sYyr B, i%0 B,77, nob all zero; (B) has (a) no
real root, or (b) two equal real roots, or (c) two
distinct real roots;

(i) 0,0l = 8,02, = G 22, = 0; (6) is satisfied by
every arbitrary value of A : p, and since (8) is of
degree two, it is convenient to regard every such
value as a double root of (6).

These yield for any line s the four corresponding mutually
exclusive possibilities:

(i) (a) & does not meet S; & is then called a non-secant
of S;
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~ (b) 8 meets 8 in precisely one point; 8 is then a
tangent line of S at that point, which is its
point of contact (see below);

(c) 8 meets § in precisely two distinct points; s is
then called a secant of S;

(ii) every point of s is a point of S; s then lies entirely

in 8 and is called a generator of 8.

Tangent line. We shall now more exactly define a
tangent line of S as follows: If the line 8 meeis the quadric S
in a point x given by (5) and if the corresponding value of
A:p is a double root of the ratio-equation (8), then s is a
tangent line with point of contact x. It follows from the
possibilities enumerated above that, if s is a tangent line
of S, then, either s has a unique point of contact (case (i) (b)),
or every point of 8 is a point of contact and s is a generator
(case (ii)). Briefly, a tangent line is one which meets § in
only one point or is a generator of S.

Particular attention is invited to this definition. It
facilitates the concise formulation of properties of quadrics,
but it differs from the standard definition and is not immedi.
ately applicable to other surfaces. The following comments
may be noted: The definition is preferable to one which
speaks of a tangent line meeting the surface in *‘coincident™
or “consecutive” points. In addition to lines which *“touch™
the surface in accordance with our intuitive notions, it leads
us to regard, for instance, any line through the vertex of a
quadric cone as a tangent line of the cone. The analogous
definition of a tangent of a conic is given in 29 IIT.

5. Any tangent line s at a point ¥ of S is also a tangent
at y to the conic in which any plane through s meets S, and
conversely.

Tangent plane. Now let y be any fixed point of 8,
so that
a.y.y,=0. . . . @)

Let z be any fixed point of & distinct from y, and let s be
the join of y, z. Then any point of s is again given by (6).
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Since ¢ contains y, and y is a point of S, then s now certainly
meets S in y. So 8 is necessarily either a secant or else a
tangent line having y as a point of contact. Since x =y
in (5) requires p = 0, & is therefore a tangent line if and only
if p = 0 is a double root of (6). We seek now the geo-
metrical condition which must be satisfied by z in order
that s shall in fact be a tangent line.
Using (7), the two roots of (6) are seen to be given by

p=0. . . . (8)
and
222, Y.z, +pa, 2.2, = 0. . . (9)

((8) merely reproduces the fact that s necessarily meets
Siny.) Sop =0 isa double root, and s is consequently
a tangent line, if and only if (9) is satisfied by p =0.
This is true if and only if e,y2, = 0 (since A, pu cannot
vanish together), i.e. z is any point x of the locus given by *

T=eay=x=0. . . . (10)

T is a linear form in x, with coefficients a,,y,, and two cases
arise:

(i) a,y, (6 =1, .., 4) are not all zero and we cally a
non-singular or simple point of 8. Then (10) is
the equation of a plane T through y; it is called
the tangent plane of S at y, and ¥ is called the
point of contact of T'.

(ii) a,,y,=0( =1, ..,4) and we call y a singular or
double point, or singularity, of 8. Then (10) is
gatisfied by every point x of &.

We have therefore proved the following important

theorems:

Any point y of S is either non-singular or singular.

* Note that, 8ince a,, = 6,,, then 8,4, = Grs%sY, the sum on each
aide, implied by the repeated suffix, containing precisely the same
terms, tﬁough in different orders. The reader should verify this by
writing the expressions in full.
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If y is non-singular, there exists a tangent plane at y
such that every langent line at y lies in this plane and every
line lying in this plane and passing through y is a tangent
lineat y.

Conversely, if every tangent line at y lies in one plane, y is
non-singular.

If y ts singular, then every line through y is a tangent
line at y.

Conversely, if not every tangent line at y lies in one plane,
Y s singular,

If z is a fixed point not on S, then from (10) the tangent
plane at y contains z if and only if a,y,2, =0, e y,
besides being a simple point of 8, is & point x of the
plane

e, 2.z, =0. . . . (11)

Hence the poinls of contact of tangent planes which pass
through z are those non-singular potnts (if any), and only
those, in which the plane (11) meets 8. This is called the
plane of contact of z.

Singular and non-singular quadrics. We have just
seen that y is a singularity of S if and only if it lies on
8 and if it satisfies ¢,9, =0 (s=1, .., 4), t.e. y is a
common point of the four planes

ez, =0. (s=1,..,4) . (12)

Now a necessary and sufficient condition for y to exist
satisfying (12) is

d=|A|=la,]=0, . . (3

i.e. that the matrix A be singular (Aitken, p. 63). More-
over, if (13) is satisfied and y is any solution, then substitut-
ing x = y in (12), multiplying (12) by y,, and adding the
four equations, we obtain a,y,y, = 0, s.e. ¥ i8 necessarily
a point of 8.
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More particularly, we assert: *

If rank A = 4, the planes (12) have no common point;
S has no singularity.

If rank A = 3, the planes (12) have a unique common
point; 8 has a unique singularity.

If rank A = 2, the planes (12) have a line in common;
S has a line of singularities.

If rank A = 1, the planes (12) are all identical; S has
a plane of singularities.

If rank A =0, every a,, is zero, which is contrary lo
hypothesis.

S is called a non-singular quadric if it possesses no
eingularity; it is called a singular quadric if it possesses
one or more singularities.

Properties of singularities. The algebraic proofs of
(a), (b) below are trivial; that of the first part of (d) has
just been indicated. Nevertheless, for the sake of uni-
formity and of gaining insight into geometrical results, we
establish them by geometrical arguments (based, of course,
on the earlier algebra). Analogous considerations govern
the choice of method in other places also, and the reader
should, wherever possible, supply the analytical proofs.

(a) The join of a singularity y to any other point of S isa
generator. For every line through y either meets S in no
other point or is a generator. It follows that, if § is
singular, it can be regarded as generated entirely by the
aggregate of generators which pass through any singularity.

(b) Every tangent plane contains every singularity of S.
TFor let z be any non-singular point of S and y any
singularity. By (a) zy is a generator through z. Therefore
the tangent plane at z contains zy and so contains y.

(c) In the cases of reducible quadrics on p. 58 we have
respectively, as immediate consequences of the geometrical
character of a singularity: (i) Every point on the meet of

* Cf. Aitken, 26-28.
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II, A is singular; every other point of 8 48 non-singular.
(ii) and (iii) Every point of S ts singular.

(d) A quadric S has (i) no singularsty, or (ii) a unique
singularity, or (iii) a line of singularities, or (iv) a plane of
singularities; in (i), (ii) S 48 irreducible, in (iii), (iv) S 8
reducible. If 4 + 0, we have (i). If 4 = O we either have
(ii) or S possesses at least two singularities y, 2. In the
latter case yz is a generator, by (a). If S contains no
point not on this generator, then by (o) all its points are
singular, and we have (iii). If S contains a point u not on
this generator, then by (a) uy, uz are also generators;
therefore the plane of y, 2, u contains three generators and
8o by 4 it is part of 8. If S contains no point not in this
plane, then by (c) all its points are singular, and we have (iv).
If S contains a point v not in this plane, then by a repetition
of the argument, the plane of y, 2, v is part of S; therefore
8 is a plane-pair, and by (¢) we again have (iii).

(e) If 8 possesses a unique singularity y, then, either
there 18 no other point of 8, or S is generated by the joins of y
to the points of a proper conic tn a plane not containing y.
For, if 8 contains any point other than y, then by (a) it is
entirely generated by lines through y. Any plane II not
containing y meets each of these lines in a single point;
the aggregate of these points gives the intersection of II, 8
and therefore a conic. Had this conic any of the degenerate
forms 29 11, it is easy to see that 8 would be reducible and
80 would contain more than one singularity. Hence the
conic is proper. In this case S is called a gquadric cone,
and y its vertex.

* Conversely, if ¥ 18 any point and T’ any proper conic in
a plane I1 not containing y, then the joins of y to the points of
I" generate a quadric cone with vertex y. For let utt), .. . utd
be five points of I, and vi1), v(2), vi® be points, not in II, of
three of the joins of y to points of I'. By 1 there exists &
quadric § through the nine points utt), ., ., u®, v, vi®,
y. S meets Il in a conic containing five points of I" and so
identical with I'. S then contains three points of each of
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the joins of y to v, v(®, v, and therefore contains these
joins. Hencey is a singularity of S by 6. This singnlarity
is unique; otherwise by (d) S would be reducible and
would meet II in a degenerate conio. Thus 8 is a quadric
cone with vertex y. Since I' is a plane section, § is
generated by the joins of y to points of I.

6. If three generators go through y, then S is reducible or y
is a singularity. [If they are coplanar, their plane is part of S;
if they are not coplanar, y is a singularity.]

7. ¥f S possesses a singularity y and a generator & not
containing y, then S contains the plane of y and s.

8. If the tangent planes at four non-coplanar points of 8
are concurrent in Z, then z is a singularity. (If z is not on S,
only tangent planes at points in the plane (11) can go through
2. Therefore % is on S, and from 311 we deduce that at
least three non-coplanar generators go through 2.]

31. Properties of Tangent Plane

The importance of the following theorems earns them
a separate section.

Let S possess at least one simple point ¥ and let 7' be
the tangent plane at y.

1. If T meets S in any point Z distinct from y, then y2
is a generator. For every line lying in T and going through
y either meets § in no other point or is a generator of 3.

II. T meets S in (i) y only, or (ii) one line s through y, or
(iii) two lines s, t through y, or (iv) T is part of S. For,
from I, T either meets S in y only or in generators through
y; and if 7 contains more than two generators, by 8, T is
part of 8.

1I1. (i) If 7 meets S in y only, then S is non-singular and
possesses no generators. For, by p. 63 (b), T contains every
singularity. But 7' meets Siny only and y is non-singular.
"Therefore S possesses no singularity. Further, had § any
generator, this would meet 7' in a point of 8 and so could
dosoonlyiny. But,sincey is non.singular, any generator
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through y must lie in 7T, thus giving a contradiction.
Therefore S possesses no generator.

(i) If T meets S in a unique line 8, then S is a cone
and T 13 the tangent plane at every point of 8 except the
vertex. Every line in T is a tangent line; for it either meets
8 and consequently 8 in one and only one point or is the
generator 8. Therefore T is the tangent plane at every
non-gingular point of 8. Moreover, s contains at most one
singularity, and S possesses non-singular points not on s;
otherwise by pp. 63—4 (c), (d) every point of s, including y,
would be singular. Let then u be a non-singular point
not on 8. Then the tangent plane at u meets 8 in some
point z. By (2), zu is a generator, and so not every
tangent line through z lies in one plane. Therefore z is
a singularity and is unique. Hence S is by p. 64 (e) a
quadric cone.

(iii) If T meets S sn precisely two lines s, t, then 8 i3 non-
singular and possesses two generators through every point of S.
For, were z any singularity, it would by p. 63 (b) lie in T',
and by p. 63 (a) the join of every point of s, ¢ to z would
be a generator. Since s, ¢ are the only generators in 7',
could then only be the meet of s, £. But, by II (iii) this is
y and is non-singular; so we should have a contradiction.
Therefore a tangent plane exists at every point u of S,
and meets S either in u alone or in two generators through
u; otherwise the preceding results would show § to be
gingular. But if it meets S in u alone, then by III (i)
possesses no generators at all, contrary to the postulated
existence of s, ¢£. Hence S possesses two generators
through every point u. Further, by 6 not more than two
generators go through any point, since S is non-singular.

(iv) If T is part of 8, then 8 43 a plane-pair. For if 8
contains one plane then it either consists entirely of that
plane or is a plane-pair., But in the former case every
point of 8, including y, would be singular.

IV. If a surface is entirely generated by lines it is
said to be ruled. From the preceding work it follows:
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If any quadric possesses at least one generator, then st is
a ruled quadric.

1. The point of contact of a given tangent plane is unique
if and only if the quadric is non-singular.

2. The discussion on p. 68 can now be completed as
follows: (i) If II does not meet S, or meets S in & proper conie,
IT is not a tangent plane and contains no singularity. (ii) If
IT meets S in a unique point ¥, either II is the tangent plane
at y or y is singular. (iii) If II meets S in a unique line s,
either Il is the tangent plane at every point of S except one
which is singular, or every point of s is singular. (iv) If I
meets S in distinet lines s, ¢ with common point y, either II
is the tangent plane at ¥ or ¥ is singular.

3. Every plane through a generator ¢ of a non-singular
quadric is a tangent plane at one and only one point y of s and
meets S in a second generator through y. [Also, of course,
the tangent plane at every point of s contains &.]

4. An irreducible quadric S is a rational algebraic surface,
i.e. the homogeneous coordinates of a variable point X of S
are expressible as polynomials in two parameters. [For, as in
19 for the case of a sphere, we can employ stereographic
projection from a fixed point y of S on to any fixed plane I
to set up a (1-1) correspondence between the points of S and
those of II. This fails only for points of S in the tangent
plane at ¥.]

6. The plane of contact of any point contains every
singularity of S.

32. Classification of Quadrics in &

Existence. The properties derived for non-singular
quadrics are those they must exhibit if they exist. To
establish the existence of such quadrics not possessing
generators we have merely to note that the sphere is a
particular example of this type.

Now let g,, ga, g be three non-intersecting lines. Through
nine points, three on each of g, g,, g5, there passes by 30 1
at least one quadric 8. Since each of ¢;, g5, g5 meets S
in three points it lies entirely in 8. Moreover § is non.
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singular, for by p. 64 (d) no type of singular quadric can
possess three non-intersecting generators. Hence we have
established the existence of non-singular ruled quadrics.

The existence of every type of singular quadric men.
tioned has been explicitly or implicitly established.

Classification. We can now extract from the work up
to this stage the exhaustive classification of quadrics in &
given in Table 1. The rest of this chapter provides some
elaboration of the properties in & and the deduction of
those in &.

33. Non-singular Quadric

Throughout this section the quadric 8 is assumed to be
non-gingular. _

Polar plane. Lety, 2 be such that the ratio-equation
30 (6) has real roots A’ : u’, A" : p*. Theny, z are harmonic
conjugates w.r.t. the points in which their join meets § (and
consequently y, z are not themselves points of §) if, from
28, A'fu’ +A"/p’ = 0, i.e. if the sum of the roots of 30 (6)
is zero, giving

e, Y2, =0. . R

Hence, if y is fixed, z must be a point x of the plane

e, yx, = 0. . . . (2)

Conversely, if z is any point of this plane such that yz meets
8 in distinet points, y, 2 are harmonic conjugates w.r.t.
these points. We call (2) the polar plane of y w.r.t. 8,
and y the pole of the plane.

Note that the polar plane II of y is not completely defined
as the locus of harmonic conjugates of y w.r.t. the pairs of
points in which lines through y meet S. This locus is con-
tained in II, but is not in general the whole of II, since in
general not every join of y to a point of II meets S.

The derivation fails if y is on S. But, if y is on 8, then
(2) is the tangent plane at y. We therefore define the
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polar plane of y in that case as the tangent plane at y.
Since then the algebraic form is the same in all cases, the
ensuing properties of polar planes hold without exceptions
when the definition is extended in this manner.

We now have the theorems:

(i) Every plane in & has a unique pole w.rt. 8. For a
given plane £z, = 0 is the polar plane (2) of y if

ay, =k (B=1,..,4; k#0) (3)

Since 8is non-singular, | a,, | # 0, and the equations (3) have a
uniquesolution y. Werecover asa corollary the resultin 311
that every tangent plane of § has a unique point of contact.

(i) The necessary and sufficient condition for a plane to
be a tangent plane i that it should contain its pole. For (2)
contains y if and only if a,y,y, = 0, i.e. ¥ is & point of §,
and then (2) is the tangent plane at y. It follows from 31
that the polar plane of a point not on S either does not
meet S or meets it in a proper conie.

(iii) The polar plane of y is the plane of contact of y, as
follows from 30 (11).

(iv) If the polar plane of y conlains =, then the polar plane
of z contains y, since a,.y,2, = a,2,y,. We cally, z conjugate
points, and their polar planes conjugate planes, w.r.t. 8.

(v) Polar lines. The polar plane of every point of a
fixed line 8 passes through another fized line ¢, and the polar
plane of every point of ¢ passes through 8. Let y, z be any
distinct points of s. By (i) their polar planes are distinct,
and so meet in a line ¢&. By (iv) the polar plane of every
point of ¢ contains y, 2, and so contains s, Similarly the
polar plane of every point of 8 contains {. Each of s, ¢ is
called the polar line of the other.

(vi) Seli-polar tetrahedron. Take any point y not
on 8 and let IT be its polar plane. Take any point =
on Il and let & be the line in which the polar plane of z
meets II. Take any point u on s and let v be the point
in which the polar plane of u meets 8. It follows from
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{iv), (v) that, in the tetrahedron yzuv, each verlex is the
wole of the opposite face, and each edge 18 the polar line of
the opposite edge; it is called self-polar.

1. If any plane IT through y meets S in a conic I, then II
meets the polar plane of ¥ in the polar of ¥y w.r.t. I' (with the
definition of polar used in plane geometry). If y, z in II are
conjugate w.r.t. S, they are conjugate w.r.t. I, and conversely.

2. If any plane I1 through s meets S in a conic I', then
IT meets the polar line of & in the pole of s w.r.t. I

3. If any plane through y, z in (vi) meets § in a conioc I
and meets uv in w, then yzw is a self-polar triangle w.r.t. I,

4. If a proper conic I’ is a section of S and yzw is
any self-polar triangle w.r.t. I', then there exists a self-polar
tetrahedron w.r.t. § having y, Z as vertices, any plane through
¥z as one face, and the edge opposite yz containing w.

6. If a line s contains the pole of a plane II, then II contains
the polar line of s.

6. g i3 atangent line of S if and only if it meets its polar line ¢,
and then ¢ is also a tangent line, Then, if s # ¢, the plane of
8, t is the tangent plane of S at the meet of &, ¢; & is a generator
if and only if s = ¢.

7. The polar planes of y, z have plane-coordinates a,.,
a2, (r=1,.., 4). The meet of these planes has therefore
from 26 (5) line-coordinates of the second kind m; where

Wiy = BY85%:—0; Y BuZs = Gub(YZi—Y2:) = 8081 Puts

where, from 26 (3), p.: are the line-coordinates of the first kind
of yz. -

8. Combining 8, 7 with 26 3, the necessary and sufficient
condition for the line P having polar line (& to be a tangent line of
S is DBy = 0, t.e.

68y PiPu = 0 . . o (4)
(summation over all values of 1, , 3, ¢ from 1 to 4 being implied).
(4) is called the line equation of the quadric S.

9. Let p, g be two given lines; then the polar line of p

meets q if and only if

G481 Pi1sqn = 0.
Deduce that if the polar line of p meets q, then the polar line
of ¢ meets p. Then P, q are called conjugate lines w.r.t. S.
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" Tangent cone. We saw that the line ¢ involved in
the ratio-equation 30 (8) is a tangent line of § if and
only if that equation has equal roots. This condition givea
(@psy2.)2—(a,, 9,908, 2,2,) =0, ie., if y is fixed, 2 must be
a point x of the locus

(a'ny rxa)g—(anyryo)(aﬂztzu) = 0, . (6)

if it exists.” This locus is therefore the aggregate of tangent
lines of S which pass through y. Hence, if y is not on §, it
consists of the joins of y to the points (if any) in which 8
is met by the plane of contact of y; from p. 70 (ii), (iii)
it follows that (5) is then a quadric cone, called the langent,
or enveloping, cone from y to S.

10. If y is on 8, the second term in (8) is zero, and it reduces
to the equation of the tangent plane at y (counted twice).
11, The summation convention allows us to write

(Y 2.)? = 8, YT 00 To == GurBol) YT T}
(30 ¥ ¥:)(3,2,%,) = GusB,Y Y T2, .

Hence (5) may be written (8u,8cs —8u8..)Y Y22, = 0. Verify
algebraically that y is a singularity of the surface given by this
equation.

Ruled quadric. Now let 8 be a non-singular ruled
quadric. ‘

(i) Through every point of 8 there pass two and only
two generators; all such generators form two systems, every
member of one meeting every member of the other and no
member of the same system. The first part has been given
in 31. Let g, & be the generators through a point y of 8;
let z be any point of 8 not on g, A, and T the tangent plane
at z. By 31 II, 7 does not contain g or &; therefore 7'
meets g, A in single points u, v, respectively, distinct from
y. Hence, by 31 I, zu is one of the generators, say A’, and
zv the other, say g, through 2. Also &' does not meet 3,
g’ does not meet g; otherwise 7' would meet g, A in further
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points. Hence, of the two generators through any point
of 8, one is like g and meets %, the other is like A and meets
g (fig. 4). Call all those of the first system [g], or g-generators,
those of the second [A], or h-generators. Just as g, g’ meet

h, W, every g-generator meets every h-generator; justasg,g’
do not intersect, no g-generator meets any other g-generator;
similarly no A-generator meets any other A-generator.

Since everypoint of S is on one and only one g-generator,
8 is completely and non-redundantly generated by [g].
Similarly it is so generated by [A). Each system is called a
regulus of lines.

12. In fig. 4, y2, uv are polar lines w.r.t. S.

13. g, ¢’, g° being any three g-generators, [A] ia completely
determined as the aggregate of lines meeting ¢, ¢’, ¢°. {g.9', 9°
are skew lines; so through any point ¥y of g there passes a
unique line s meeting g’, g*. But through y there passes a
unique generator % meeting g’, g*. Hence h =s. Further,
we saw in 32 that, if g,, gy, g, are any three skew lines, there is
at least one quadric S having these for generators, and S is
non-singular, It now follows that S iz the unique locus
generated by a variable lins meeting gy, gy 9s-]
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(ii) S consists of one sheet; it 18 not divided snto two
portions by any plane. For y, z being any two points of 8
as in fig. 4, the route y — u — 2, for example, along g, '
lies wholly in §. Hence 8 consists of a single connected
portion, or sheet. Having regard to the nature of the
sequence of points on a line (27), we can show moreover
that, IT being any specified plane not containing y, 2, it is
always possible to select a route from y to z which lies in
8 and does not cross II. Hence, in particular, § still
consists of a single sheet if the points common to 8, Q
are omitted.

(i) Every plane I1 (not being a tangent plane) meets S
in a proper conic. For I1 meets every line in & and hence
meets every generator of S. Therefore II meets S in a
conic, and this is not degenerate since otherwise, by 31 2,
IT would be a tangent plane.

(iv) Through every point w of & not on 8 there pass
secants, tangent lines, and non-secants of 8. Let g be any
generator; the plane of w, g is the tangent plane at some
point y of g; then yw is a tangent line at y. Let A be the
other generator through y, and Il any plane through yw
not containing g or k. Then II is not a tangent plane and
80, by (iii), meets S in a proper conic I'. By 30 5,ywisa
tangent of I'. Hence, by 29 I, w is an exterior point of I',
and so through w there pass secants, two tangents, and
non-secants of I' in II. These are also respectively secants,
tangent lines, and non-secants of 8.

14. Every point of & is the vertex of a tangent cone of 8.
16. There {8 no interior domain of S in &. ([There is no
point such that every line through it is a secant of S.]

(v) Through every secant of S there pass two tangent
planes; through a non-secant there passes no langent plane.
A tangent plane meets S in two lines; every other line in
the plane meets each of these and so necessarily meets S.
Hence, if a line 8 is a non-secant, no tangent plane can
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contain 8. Now let s be a secant meeting S in y, 2, and
let g, b, g’, ' be the generators through y, 2. Once again
we get a figure like fig. 4, and the tangent planes at u, v
contain 8. No other tangent plane contains s, for such a
plane would meet § in further generators through y, =z
which is impossible.

16. In (v} g, g’ are distinct, and A, A’ are distinet.
17. The polar line of a secant is a secant, that of a non-
secant is a non-secant,

(vi) In any self-polar tetrahedron yzuv, one pair of
opposite edges are non-secants, and the remaining edges are
secants. The plane yzu meets S in a conic I' and the
triangle yzu is self-polar w.r.t.I" (33 3). Hence by 29 IV
one side, say yz, is a non-secant of I' and so of ; the
remaining sides are secants of I' and so of S. But uv is
-the polar line of y2z, and so by 17 is a non-secant; yv, zv
are the polar lines of zu, yu, and so by 17 are secants.

Non-singular quadric without generators. Now
let 8 be not ruled.

(i) A plane is a tangent plane of S if and only if it meets
8 in a unique point. Any plane I containing more than one
point of 8 meets S 1n a proper conic I'.  (Cf. 31.)

(ii) S separates the points of & (excluding poxnts of 8)
into two domains, the interior 4,, and the exterior 4,; every
line through a point of 4, 1s a secant of S; through any point
of 4, there pass secants, tangent lines, and non-secants of S.
Let I, I be as in (i) and D,, D, as in 29 I; let u be any
point of D,. Every line in IT through u is a secant of I
and so of 8. Hence every plane through u, since it meets
IT in a line through u, contains at least two points of § and
8o meets § in a proper conic. Hence no tangent plane,
and so no tangent line, of S goes throughu. Hence by 30 5
no tangent of any section of S goes through u. Therefore u
is an interior point of every section of S by a plane through
u, and 50 every line through u is a secant of 8.
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Now let u’ be another such point. Choose II to contain
u,uw’. Then u, u’ belong to a single domain, namely D,, in
II. Therefore they belong to a single domain in &; this
is A‘O

Let v be.a point of D,. Through v can be drawn
secants, tangents, and non-secants of I', and these are,
respectively, secants, tangent lines, and non-secants of S.

As before, we can show that all points like v belong to a
single domain in &; this is 4,.

18. Every point of 4,, and no point of 4,, is the vertex of a
tangent cone of S. :

19. From 18, the polar plane of & point of 4, does not meet
S; the polar plane of a point of 4, meets S in a proper conie,
and conversely. [Note that this establishes the existence of
planes which do not mest S.] .

20, The polar line of a secant is & non-secant, and
conversely.

21. Through any non-secant there pass two tangent planes
[those at the points where its polar line meets §]; through any
secant there passes no tangent plane.

(iii) In any self-polar tetrahedron yzuv, one verlex 18 in
4., three are in A,; all the faces through the former meet S,
the face containing the latter does not meet 8. At least one
vertex, say ¥, is in 4,; for if 2, u, v are not, then by 19
the pole y of their plane is in 4,. But if y is in 4, its polar
plane does not meet 8; so2,u,varein 4,.

(iv) S consists of a single sheet and 18 @ closed surface
it 18 separated tnlo two portions by any plane Il which meeis
it in more than one point. The first part follows direotly
from the existence of 4,. The proof of the second part
cannot be given here in full, but may be outlined as
follows: Take any non-secant 8 in I1; by 21, two tangent
planes 7';, T'y go through 8. Then 8§ is entirely enclosed in
one angle between 7', and T,. The surface § is divided
into a portion 8, lying in one angle between Il and 7',
and a portion 8(g lying in one angle between Il and T,
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In & it is impossible to join a point within the first angle to
a point within the second by a path which does not cross
any of the planes. Therefore it is impossible to join a
point of 8(;, to a point of S, by a path which neither
leaves 8 nor crosses II. In other words, when the
points of II are omitted, 8, 8 are disconnected
portions of 8.

We now see the reason for the difference between this
result and p. 74 (ii); a ruled quadric crosses any tangent
plane and cannot be enclosed in an angle between two
tangent planes.

34. Properties relative to the Plane at Infinity

Properties of non-singular quadrics in general.
Let S be a given non-singular quadric, Q the plane at
infinity, C its pole w.r.t. 8. Wae distinguish two cases.

(i) O not on S—Central quadric. Every chord through
O is divided harmonically by ¢ and the point where it
meets Q, and is therefore btsected at C. Also C is the only
point having this property. We now call 8 a central
quadric, C the centre, & line through C a diameter, a plane
through C a diametral plane.

Now let CLMN be any self-polar tetrahedron having
one vertex at C and consequently the other vertices in Q.
Any chord through L is divided harmonically by L and the
point where it meets CMN, the polar plane of L. There-
fore, using 27, every chord parallel to the diameter CL is
bisected by the diametral plane CMN; similarly for the
diameters CM, CN. We call CL, CM, CN a triad of
conjugate diameters, and we say that each is conjugate to
the plane of the other two (or any parallel plane).

1. Let any plane [I parallel to CMN, which meets S in a
conic I', meet CL in ¢, and CLM, CLN in C'M’, C'N’. Then
¢ is the centre, and C’M’, C’N’ are conjugate diameters, of I".
[From what has just been proved, each of C'M’, C'N’ bisecte
all chords of I" parallel to the other.]
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If now C, L be fixed, M, N may be any pair of conjugate
points in the polar line of CL. Hence, using 1, all sections
of 8 parallel to the plane CMN possess an infinite number
of pairs of conjugate diameters such that, to any pair in
one section there is a parallel pair in each of the others.
By a theorem on conics it follows that all such sections are
similar and similarly situated conics.

(i) C on S—Non-ceniral quadric. Here S touches Q
at C. There is now no point which is the midpoint of
every chord through it. S8 has no centre and is called
non-central. But it is still convenient to call any line (not
in Q) through C a diameter, and any plane (other than )
through C a diametral plane. C being a fixed point at
infinity, all diameters are now parallel to a fixed direction.

Further, there is now no self-polar tetrahedron having
one vertex at C. But let M, N be any pair of conjugate
points in Q, but not on 8, Then the polar line of M N goes
through C and meets 8 again in V, say, so that the tangent
plane at V contains MN., We can now prove as in (i) that
every chord of 8 parallel to VM 18 bisected by the diametral
plane CVN, and every chord parallel to VN is bisected by
CVM. Thence we can deduce that all parallel sections of §
are similar and similarly situated conics with centres on a
diameter of S.

Ruled central quadric. Let S be ruled; comparing
(i) with p. 75 (vi), we see that of any triad of conjugate
diameters CL, CM, CN meeting Q in L, M, N, one is a
non-gecant; if this is CL, then CM, CN are secants, MN
a non-secant, LM, LN secants. Consequently, by p. 74
(iii), (v), every plane through MN meets S in a proper
conic having no point at infinity, for were there any such
point it would be a point of 8§ on MN; every plane through
LM or LN (save the tangent planes through these lines)
meets S in a proper conic having two points at infinity,
being the points of 8 on LM or LN. Combining these
conclusions with 29 and (i), we have: Given any triad of
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conjugate diametral planes, all sections parallel to one of the
planes are similar and similarly situated ellipses, all sections
parallel to either of the other two are similar and similarly
situated hyperbolas. 8 is called a hyperboloid of one sheet.
There is a cone of contact with vertex C and plane of
contact £, called the asymptotic cone.

2. A proper section of S parallel to a tangent plane 7 is a
hyperbola whose asymptotes are parallel to the generators
through the point of contact of 7. [This fact provides a
means of calculating the angle between the generators.]

Ruled non-central quadric. ) is now a tangent
plane meeting 8 in two generators through C. Every
plane through C, other than Q, meets S in a proper conic
having one point at infinity, ¢.e. a parabola. Every other
plane, not a tangent plane, meets § in a proper conic having
two points at infinity (its intersections with the generators
in Q), t.e. a hyperbola. A parallel tangent plane meets 3
in a line-pair parallel to the asymptotes of the hyperbola.
8 is called a kyperbolic paraboloid.

3. All the generators (except that in ) of either system
on S are parallel to a fixed plane. [For they all meet one of
the generators in £, and so are parallel to any plane through
it.]

Non-ruled central quadric. Let 8 possess no
generator; we have two cases:

(i) Q does not meet §. C is an interior point and every
plane through C meets S in a proper conic having no point
at infinity, i.e. an ellipse. 8 is called an ellipsoid.

(ii) €2 meets S (in a proper conic). C is now an exterior
point. Comparing p. 77 (i) with p. 78 (iii), we see that of
any triad of conjugate diameters CL, CM, CN meeting Q
in L, M, N, one is a secant; if this is CL, then CM, CN
are non-secants, MN a non-secant, LM, LN secants.
Hence the diametral plane CMN does not meet S, and
there are two tangent planes through MN; every other
plane through MN, which meets S, does so in a proper



80  ANALYTICAL GEOMETRY OF THREE DIMENSIONS

conic having no point at infinity; every plane through LM
or LN meets 8§ in a proper conic having two points at
infinity. Interpreting these conclusions w.r.t. & by
taking II in p. 76 (iv) to be Q and then omitting its points,
we have: Given any triad of conjugate diameiral planes, one
does mot meet 8; there are two tangent planes parallel to
this, and 8 consists of two sheets having no part between these
tangent planes; all sections parallel to this diametral plane
are similar and similarly situated ellipses; all sections
parallel to either of the other two are similar and similarly
situated hyperbolas. 8 is called a hyperboloid of two sheets,
Again there is an asymptotic cone, vertex O.

Non-ruled non-central quadric. {2 is now a tangent
plane meeting § in O and nowhere else. Every plane
through C other than Q meets S in a proper conio having
one point at infinity, i.e. a parabole. Every other plane
gsection has no point at infinity, and so is an ellipse. 8 is
called an elliptic paraboloid.

35. Quadric Cone

For comparison with the exhaustive algebraic classification
in Chapter VI, and for the sake of seeing what the results of
33, 34 become in degenerate cases, we give a brief account of
singular quadrics in 35, 36.

Let S be a quadric cone with vertex y. From 31, a plane
is a tangent plane of S if and only if it meets S in a single line;
any plane I1, not containing y, meets S in a proper conic I'.

S separates the points of & (excluding points of S) snto two
domains, the interior 4,, and the exterior 4,; every line through
a point of 4, not containing ¥, ia a secant ; through any point of
A, there pass secants, tangent lines, and non-gecants, For let
I1, T be as stated above, and then let D,, D,beasin 29 I; let u
be any point of D,. Every line in IT through u is a secant of I"
and so of S. Hence every plane through u, since it meets
Il in a line through u, contains & secant of 8. Therefore
no tangent plane, and so no tangent line, of S goes through u.
Hence u is an interior point of every proper section of 8 by a
plane through u, and the reat of the argument is as p. 75 (ii).
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Pole and polar. The polar plane of a point 2 is defined in
the same way as for a non-singular quadric, and so is given by

G2, %, = 0. . . . (1)
This gives & unique plane unless @,2, = 0 (8 = 1, .., 4), i.e.
unless 2 is the singularity y. Let u = Ay+uz be any point
on the join of y, 2. Then, sincea,y, =0(s =1, .., 4), the
polar plane of u is

Cr sy = an(lyr +“z')zl = U8, 2,2, = 0,

which is the same as the polar plane of 2, (u  0). Further,
since a,y, =0 (r =1, .., 4), (1) is satisfied by x =y for
all z.

These results mean that p. 70 (i) has to be replaced by:
Any plane II through y has a unigque line of poles p through y.
We may call p the polar line of I1, and II the polar plane of p.
Any plane not containing y has no pole in the usual sense,
but consistent results follow by defining the pole as the vertex
(¢f. 36 2, 37 3). Results (ii), (iii), (iv), p. 70, retain their
validity, but (v) is replaced by: The polar plane of every point
of a fixed line s, not contatning y, passes through the polar line p
of the plane I1 containing s and y. Since the polar plane of
every point of p is II, we cannot define pairs of polar lines as
before.

These results preclude the construction of a self-polar
tetrahedron w.r.t. S. But take any line p, not a generator,
through y, and let IT be its polar plane. Take any line r in II,
not a generator, through y, and let A be its polar plane. A con-
tains p and meets IT in a line & through y; let I be its polar
plane. Then X contains p, r. We call the resulting figure
& self-polar trihedron w.r.t. S.

l. §=a,z®, = 0 iz a cone if and only if A = [a,,] has
rank 3. [Necessary and sufficient condition for a unique
solution of a,, = 0 (8 = 1, .., 4) (Aitken, 28).]

2. Denoting by A4,, the cofactor of a,, in 4 = a,,|, the
coordinates of the vertex (the solution of a,.y, = 0 (s = 1, .., 4))
are A,, A,y A, 4., where r can be any one of the numbers
1, .., 4, provided 4,,, 4,,, 4,,, 4,, are not all zero. [From 1,
not every A., is zero; since 4 = 0 the cofactors of any row
are proportional to those of any other row.]
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8. 14 =0,A,=0thenAd, =0(r =1, .., 4). Hence,
from 2, the vertex is in ) if and only if 4,, = 0. [By Jacobi's
theorem (Aitken, 42), A4, —A3, = (6,853 —a},)4, ete.)

4. S being a quadric coné, vertex y, and Il any plane not
containing y, S-+ull®= 0 (4 # 0) is a non-singular quadrio
having S as a tangent cone and II as the plane of contact
ofy.

8. Through any “exterior” line & containing y (¢.e. all
points of & except y belong to 4,) there pass two tangent planes
of S. [This plane-pair is the analogue of the tangent cone from
any point Z of s; its equation is 33 (6) with 2 in place of y.]
No tangent plane contains any secant or non-secant of S.

6. A plane II, not containing y, meets a self-polar tri-
hedron in a triangle self-polar w.r.t. the conic in which Il
meets S,

7. In aself-polar trihedron w.r.t. S, one edge isan **interior”’
line, and the other two are “exterior’ lines, of S.

Properties in relation to Q. (i) { not containing y.
Here () meets S in a proper conic. Since {2 has no pole in the
usuel sense, there is no point U such that every chord through
C is bisected at C. But it is convenient to define the vertex y
as the centre C of S, and to call any line (other than a generator)
though C 8 diameter, and in particular to call the edges of a
self-polar trihedron a triad of conjugate diameters. ‘The reader
will then easily verify that the general properties of conjugate
diameters of a non-singular quadric are thereby extended to
the present case. The properties particular to this case are:
Of a triad of conjugate diametral planes, one meets S in C alone
and all parallel planes meet S in similar and similarly situated

ellipses; each of the other two meets S in a line-pair through C,
and all parallel planes meet S in similar and similarly situated
hyperbolas with asymptotes parallel to the line-pair. Sis called
a guadric cone in &.

8. There is only one general type of quadric cone in &,
and this can be regarded as the transition case between the
hyperboloids of one and two sheets.

(ii) Q containing y. Here () has a polar line w.rt. S.
All the generators meet in a point at infinity, and so are
parallel, i.e. S is a cylinder. Three cases arise:
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(a) Q meets S in y alone. Every plane not containing y
meets £ in a non-secant, and so meets S in a proper conic
having no point at infinity, i.e. an ellipse. S is called an
elliptic cylinder,

(b) Q) meets S in a pair of generators. Every plane not
containing y meets ) in a secant, and so meets S in a proper
conic having two points at infinity, i.e. a hyperbola. S is
called a hyperbolic cylinder and possesses two sheets in &.

In (@), (b) the polar line of {2 provides & line of centres,
which we call the axis of the cylinder.

(c) Q is a tangent plane, and so contains its polar line. &
has now no centre. Every plane not containing y meets S in
a proper conic having one point at infinity, i.e. & parabola.
8§ is called a parabolic cylinder.

36. Reducible Quadrics

Properties in relation to {). (i) Plane-pair. Let the
planes be II, A with common line #; we have the possibilities:
(@) 8 not in Q; S is a plane-pair intersecting in an ordinary
line, which may be taken as a line of centres. (b) s is in Q,
but II, A are distinct from Q; § is a pair of parallel planes,
and the plane midway between them is a plane of centres.
(c) Q is part of S, which consists of {2 and one ordinary
plane.

(ii) Single plane (counted twice in the equation of §).
The plane may be (a) ordinary, and every point may be taken
as a centre, or (b) Q itself.

(ili) Single line. The line may be (a) ordinary, and every
point may be taken as a centre, or (b) a line at infinity.

1. In (i) (c), (ii) (b) the equation of S is not of the second
degree in cartesian coordinates. [In (i) (¢) the form S has
z, as one factor; in (ii) (b) we may take S = x3.]

2. If § is the plane-pair II, A, with common line s, then
the polar plane of every point of a plane I containing s is the
harmonic conjugate of T w.r.t. I, A.
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37. Dual Results

Non-singular quadric. Let A =[a,,] be a non-
i symmetric 4 X4 matrix and B = [},,] its recipro-
cal. Then [b,,] is & non-singular symmetric matrix and

(Aitken, 21)
by, = 4,/ l A I' . . . (1)

where A4,, is the cofactor of a,, in | A |.
The locus, assuming it exists, of the equation
a,xx, =0 . . . {(2)

is & non-singular quadric §. Let ¥ be any plane. The
pole y of § w.r.t. S is given by 33 (3), i.e., on absorbing
the constant & into E,

anyf_fa =0, (s=1,..,4) (3)

and we have seen that (3) has a unique solution. By
p. 70 (ii), € is a tangent plane if and only if it contains y,
i.e. ¥ satisfies also

&y, =0. . . . (4)

The necessary and sufficient condition for the consistency
of (3), (4) is (Aitken, 31)

=0, e Arnftfn =0, . (5)

| 'g g
ol’ usmg (l)’
!raglfl . . hd (E)

Therefore the coordinates of every tangent plane of 8 satisfy
(6), and every plane whose coordinates satisfy (6) ts a tangent
plane of 8. We call this the plane or tangential equation
of 8, as contrasted with the point equation (2). Moreover,
if [b,,] is any non-singular symmetric 4 X 4 matrix, (6) is the
tangential equation of a non-singular quadric, namely that
given by (2) when [a,,] is the reciprocal of [b,,].



GENERAL EQUATION OF THE SECOND DEGREE 85

By the principle of duality, if we prove a theorem T
concerning the set of poinis S satisfying a general equation
of degree two with non-singular matrix, we derive a valid
theorem G*® by substituting “plane,” “line,” ‘point”
for “point,” “line,” “plane” in the statement of . Then
G* will concern the set of planes X satisfying a general
equation of degree two with non-singular matrix. Now §
consists of the points of a non-singular quadric, and we
have just proved that X consists of the tangent planes
of a non-singular quadric. Hence, corresponding to any
theorem about points of a quadric there is a dual about
tangent planes of a quadric, and conversely.

The reader should now re-read 33 and note the dual of
each result. Owing to the conclusion just reached, he will
get the same aggregate of results, but in a different order.

1. The dual of a tangent line of a quadric is a tangent line
of a quadrio. ,

2. By (3), the plane.coordinates of the polar plane of
y wrt. S are a,y, (=1, .., 4). Dually, the point-co-
ordinates of the pole of the plane ¥} w.r.t. Z are b,,7,; these
are proportional to 4,,7,.

8. The centre of S has point-coordinates A, A, A
Ay [In (3) take M = (0, 0, 0, 1) corresponding to the plane
at infinity.]

4. The solution of (3) is y, = b,,4,; substituting in (4)
we immediately obtain (6).

Dual of singular quadric. We might proceed to study
the set X of planes satisfying an equation of the form (8) in
cases where B = [b,,] is singular. There is then no point
equation corresponding to (2), since [b,,] has no reciprocal;
hence I is not the set of tangent planes of any non-singular
or singular quadric (as we have defined quadric). However,
we can foresee the results of such a study by noting that X
is the dual of the set Z* of points satisfying the point equation
bz, = 0. X% is then a singular quadric whose properties
are known; the duals of these properties are those of I.

Rank B = 3. ZI*isa quadric cone; it may be taken to be
a tangent cone of a non-singular quadric @*® (35 4), t.e. X®
consists of all points on the tangent lines of Q* which pass



euerd saury jeqreied gsousid
0= off [efi—s0lsx qoso wr soulf [[V | -uou Jo med !eurj aj3mg | errvrBd-UOuU JO ITBE ¢ =V yuey
0 = of sfi+:0/sx i0jezeuad ojButg| 9urod efBum feut] o(Bulg euy] o(Jury
b € =V Juey
U= off[si—sD/sz | 230y815u03 [ofurny | -20d4q usnEo:sa.u oa], | zopuri4o ofoqIedAR {0 = vy ¢ =
I = of/ofi+D/s? | 8307815003 [oqresey | esdifie ‘sour] [o[Tered oag, xopur&o ondyea |J0 7 0 Ivl
uorjenbe prepueg s10je30Ten) oﬁogjoﬂmﬁﬂ% § oupend v e
§8I3U0) JO UI—OLIPBNY [BIIUSD
ool o ] 55 o
= 3— +4D wsds euQ cuo  ‘amed-emy omJ, euo) A
o= m“"i%“%tewu ouoN sutod o8mg Jurod op8mg |[0F Y 0=1VI
& 8urjesw jou ouwrd 810048
1 = gtlsz—uff lsh—D/fsz uoN euo ugoﬁo&%& ._n_.nv.,_p oms Jo umcaoMMMMMm (5 = v quoyp)
I = ebls—oflfeftcolee| morsks omy, |euo  tewioquedAq omy |ewo o projoquedam ||0* VO * IVI
1 = ot/s3-+af [ofi+s0/s® euoN sesdipy prosdrrrx
uonenbe prepumg £103815T0Y) 3@%.““““%9 _M%wﬂuﬁom & oupend v XIepR

exjuop enbrun—orrpeny [vxIUS)

¢ T19dVL




figg = 42 sJ0j8roual [o[fereg ejequred foun o[8uwig | sepurifo orjoqureg ﬁ Hm w<c&“dwm<_
pro|
Af2g = of Iyhi—sohsm gure}84s OAT, sjoqaedAy tejoquiny | -oqered ofeqiedAE v h=v
aonoestesul ou Jo ‘yurod 0=""F‘0 #
dfzg = off [+ Dfs® euoN o[futs ‘esdife ‘wjoqursg | proroqered ondrpx
euerd Tp-uou
uopenbo prepueig 810}819u9F) [orourap £q pUOROg g oupund v xR
OLIPYNY [EIIUSD-UON
(o019
0=¢ eueld uy ssuy eu] oj3urg | pojunod) ewvrd eydurg | [ = v Jyuvy
eue| gounyd
0 =T qove I sou| [[V souy] jofjered Jo qreg | peqrexed o e | g =y yuey
wojunbo prepuesg 81078200 ousd § oupwnd v xme
: [enewsIp-uon £q woyoeg : :

fanux) jo euvid—oLIPBTY [BIIU)




88  ANALYTICAL GEOMETRY OF THREE DIMENSIONS

through a fixed point. - Dually, I consists of all planes through
the tangent lines of a non.singular quadric @ which lie in a
fixed plane. Hence X consists of the aggregate of planes con-
taining the tangent lines of a proper conic. These lines may be
called generators of X; then every plane of X contains one
and only one generator, except the plane of the conio; the
latter plane contains all the generators and may be called a
singular plane of 3.

Rank B = 2. Here I*® and 8o I is reducible. Therefore
we can write its equation in the form, say, (u.£,)(v.£,) = 0,
and then I consists of the aggregate of planes E satisfying
u, =0 or v,§, = 0. These are the plane-equations of two
pointa u, v. Thus X consists of the aggregate of planes containing
u or v, just as L*® consists of the aggregate of points contained
in two planes. '

Rank B = 1. X consists of the aggregate of planes through
a single point, counted twice in the equation of Z.

38. Classification of Quadrics in &

We can now extract from 34-36 the classification of
quadrics according to their properties in & given in
Table 2. The last column gives the standard cartesian
equation from Chapter VI,



CHAPTER V1

QUADRIC IN CARTESIAN COORDINATES;
STANDARD FORMS

39. Algebraic Lemmas

The results of this section, in the form required, are not
readily accessible in textbooks of elementary algebra; their
derivation here may therefore assist the student.

I. Discriminating cubic.* Let us consider the matrices

D=[a B g7, Dy=[a—2 & g 1,
[h b f:l [h b—2 f]
g J ¢ g S e—2

where a, b, ¢, f, g, h are given real numbers, and write
D=|D|, D =|D].

This is in accord with the practice we shall adopt of denoting
the cofactors of @, b, ..., din A by A, H, ..., D, where

4=\, S=[a b g u].
h b f v
9/ 0 w - W
v w d

We shall denote the cofactors of @, ..., Ain Dby A, ..., M
and the cofactors of a—4, ...,hin D, by A, ..., M. Inthe
application required, the equation D, = 0, which is in fact 1

B—(a+dbt ) H A+B+CA-D =0, |, (2)
will be called the discriminating cubic of the quadratic form
having matrix D.

* The discussion is based on Turnbull and Aitken, Canonical
Matrices (1932), 101, Ex. 1.
1+ The Lh.s, is actually —Da.
89
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Suppose first thatf, g, h 55 0. Let 1 = y,, ¥, be the roots of
G =(a-b-2)-h=0 . e (3)

Then y,, ¥, are real, and y; <a, b < y,.
By Jacobi’s theorem, or by direct verification,

(a—A)D, = BC-H. A )

Also A = F+Afand f # 0 ; therefore ¥, vanishes for one
and only one value of 4.

Case (i). F, #0, &, #0. Put 1 =y, in (4); since
a—y>0,6, =0, 3’3. > 0, we obtain D, < 0. Analogously,
D,, > 0. Therefore, when 4 = —ew, y,, ¥,, , the sign of D,
is +, — 4+, —. Thus (2) has three real and distinct roots
Ay Ay Ay such that 4, < 9, < Ay < yy < A,

Case (ii) &, =0, &, #0. Put A =1y, in (4); since
6—1>0,C, =0, &, =0, we obtain D, =0. As in (i),
D, > 0. Therefore D, has the same sign when 2 = —w, Yo
and has one zero y, between these values; consequently it
has a second zero between them. As in (i), there is a third
zero between A = y,, ©. Thus (2) has three real roots,
Ay Ay 2y, two at least being distinct, such that 2, = y, < P13
Lh<y<iy

Now suppose (2) has a double root; from what has just
been proved, this is necessarily 4,(= y,). Then in (4) 1,is &
double zero of D, and of &;, and &0 is a double zero of &,G,.
Therefore, since 1,(= y,) is only a simple zero of @,, it must
be a zero also of &3,. Using these properties in further relations
like (4), we can show that A, is a zero also of A G M. Thua
a double zero of D, is a zero of every cofactor of D,.

It is easy to prove the converse. We can, in fact, prove
somewhat more, viz., {f @ value A, of A is a zero of the
three cofactors F, Qv A, then it is necessarily a zero also of
Aw B G, and consequently, from (4), a double zero of D, (for
a—4, # 0). Since then the remaining zero, say 4,, of D, must
be simple, it cannot make %, g,, A, all vanish.

Case (iii). &, # 0, &, = 0. This is similar to (ii).

A little elaboration of these arguments extends the results
to cases where f, g, b are not all different from zero.

It follows that, if y, # y,, D) cannot have thres equal zeros.
8o if it has zeros 4, = 2, = A,, then certainly y, = 95. From
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(8), this requires (a+b)*—4(ab—h?) = 0, i.e. (3 —D)*+4h* =0,
giving @ = b, h = 0. Similarly, it is necessary that b =¢,
J=0; o=a, g=0. But if these are satisfied, then
D, =(a—2)® and 80 4, = %, = 4, = a. Thus D, has a tripls
zero A, if and only f a=b=c(=4), f=g=h=0, ie
D, has every element zero.

We can restate the results thus: D, = 0 has three real
rools A, Ay A, such that

(8) A, # A, # A, if and only if Dy, Dy, D, have rank 2;
(b) A, = A, # A, if and only if D, hasrankl, D, has rank 2;
(c) A, = A, = A, if and only if D,, has rank 0.

II. Principal directions. Consider now the equations

al+hm+gn = 4,
A+bdbm4fn =2im, ¢+ . o (6)
gl+fm-ten = An.

These have a solution in I, m, n (not all zero) if and only if

Dx = 0, 1'.8. 1 = A" 1’, 1..

Let a solution when A = 3, be I;, my, n,, and suppose
these to be normalised so that they can be regarded as direction-
cosines; similarly for A,, 3,. Then writing 4 = 4,, and so
1 =1,, eto., in (5) and multiplying the equations by Iy, my, 14,
respectively, we get

Ll +mumgnn,) = ally+bmmy+ennyHf(mmy+man,)
+g(n s +n4l;) +h(lyms+1my). (6)

From the symmetry of the r.h.s. it follows that
ML +mamyngn,) = Al +mymatnin,).

Hence, if A, # Ay, we have Ll,+mm,+nn, = 0, i.e. directions
corresponding to unegual zeros of D, are orthogonal.

If A, is a simple zero of D,, then, from I, equations (5)
have rank 2 when A = ,, and so have a unique solution.
If 4,(= A,) i a double zero, then (5) have rank 1 when 1 = 4,,
and so impose only one condition on l,, m,, n,;, which must
then be equivalent to the condition that (1, m,, n,) is orthogonal
to (l; Mg ny). If A, is & triple zero, then (§) have rank 0 when
A = ,, and so impose no condition on I, m,, n,. Hence we
have the following cases corresponding to those in I:
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(8) A; # A3 # Ay (L My ™), (15 My, 1), (Lsy My, 1) form
a unique lriad of orthogonal directions.

(b) 2, = 4; # 4. (ls, My, n,) 8 unique; (I, m,, n,),
(13 My, ny) can be any directions orthogonal to (1, ms, ns),
and we shall take them so as to be orthogonal also to
each other.

(o) A= 2y =2 (I My 1), (B, My, 1), (lai My, n3) can be
any directions, and we ghall take them so as to be
orthogonal to each other.

In each case we call the directions principal directions of D.

III1. Canonical form. Now let @ be the quadratic form
in rectangular coordinates z, y, z, whose matrix is D, f.e.
Q = azx*+by*+e2*+2fyz+2gz2+ 2hay. . (7)

Rotate the axes to the principal directions of D found in II.
If 2, y’, 2’ are the new coordinates, we have from B (6)

[xyz) = [z'y's’)T, where T=[1, m, n,].
ls my n, (8
ly my n,

Hence the matrix of @ is transformed to TDT’, where T’ is the
transpose of T (see Aitken, 10 11).
Now

DT’ = ["al,4-km,+gn, - aly+hmg-gn, aly+-hms+gn,
hly +-bm,y +fn, hly1+-bmy+fny his-+-bmy--fn,
gl +fmy +en, gls+fms +eng gl +fmyten,

= [ Al Asls lsla ’
Amy, Am, Am,
Any  Ang A,
using (6) with 4 = 1;, 2, 4;. Therefore TDT’ =
_ll(l;'l'm?‘i’”i) ALl +mym, +nyn,) ALl +mymg +nyn,)
A (ldy +memy +nam,y) ’»a(l; -I-m; +”§) As(lgly +mym, +n,n,;)
MLl +mamy+nm,) Ayl +mema+nyn,) zl(’; '*’mg +”§)

== 1‘ » . H]
N
. . 1'
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using & (2), (3). Consequently

Q = A, 2%+ Ayt + A2, . . (9)
giving the canonical form of Q. The algebra can be reversed
to show that conversely, if Q has canonical form in rectangular
coordinates, the axes are along principal directions of Q.
Thus, in rectangular axes and apart from the order of 1,, 4;, 4,,
the canonical form is unique.

1. Verify (8) by direct substitution of 5 (8) in (7), using
(6) and similar relations.

IV, Invariants. Since the canonical form is unique, all
possible forms of Q like (7) are derivable from the canonical
form by some orthogonal transformation. Now, 4,, 4, 2a
being the roota of (2), we have

a+b+c = 1‘+1’+A’, . (10)
A+B+C=bctcatab—fr—g*—h* = LA +hi+Ahi, (11)
D = abc—aft—bg*—ch* +2fgh = 4,2,4,. . . {(12)

Therefore the functions of a, b, ..., h on the Lh.s. of (10)-
(12) depend only on the canonical form of @, and so are
invariant for all orthogonal transformations of Q. Moreover
@ has no other invariants independent of these; for if these
are given, then 4,, 4;, 4, and consequently the canonical form
of @, are completely determined.

Consider further the expression

S = ax*+ by +cz* + 2fyz + 2gzx + 2hay + 2ux + 2vy + 2wz +-d,

where g, b, ..., d are given (real) constants. This may be
regarded as a quadratic form in z, y, z, ¢, where t = 1, with

matrix $ given by (1).
The transformation (8) may now be written :

[zyzt] = [z'y’2’t']JH, where H = [T l]’ and t=1¢ =1,

Under this transformation § becomes a quadratic form in
', ¥, &', ¢’ with matrix HSH’, where H’ is the transpose of H.
Now |H| = |H | =|T| =1, from 4. Therefore

[HSH | = |H[|S|IH | =]|5] =4,

i.e. 4 is invariant under a rotation of axes.
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Further, the change of origin of parallel axes & (1) may be

written :
[zyzt] = [z*y®*z*®]K,

where K=[1 . . .7], and t=i*=1.
l -
L] . 1 .
§ n {1

Since | K| = 1, it follows as before that 4 is invariant under
a change of origin.

Combining these results, we have: A 18 invariant under any
change of rectangular axes.

40. Quadric in Cartesian Coordinates

Using rectangular cartesian coordinates, the general
equation of the second degree considered in 30 becomes

S(z, y, 2) = ax’+bya+czn+2fyz+2gzx+2m

+2uz+2vy+2wz4d =0, (1)

where we have replaced the coefficients ay,, a5, @35, ay4, . . .

bya, h,g,u, ... We continue to denote the determinant

of these coefficients by 4, but shall denote the cofactors of

a, h, ..., din 4 by 4, H, ..., D, instead of A4,
Alﬂ’ s vy A‘Q.

Using 8 (1), change the origin in (1) to (£, %, {) and let

z, ¢, z now denote the new coordinates. Then (1) becomes

222 +-by® -c2® -+ 2fyz 42922+ 2hay +-2(af +-hy gL +u)z

+2(hE+bn+fL+o)y+2(g+ el +w)z+8(€, 7, [) = 0. (2)
Now let £, %, { be chosen, if possible, to satisfy the equations
af'l"hn +9§+“ =0,

hé+by+fl+v =0, }
g+ n+el+w =0.

.0

We then have

8(¢, 9, {) = éaé+-hny+gl+u)+nhé+by+fl4v)
+Lgé+fn+eltw)tué +vntwl+d

= uf+vntwl+d =d', say. 4)
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So (2) becomes
az? by -2 +-2fyz-1-2g2z +2hay +d’ = 0. (5)

Then, if (z, y, z) satisfies (5), so does (—=z, —y, —2), i.e.
S is symmetrical about the new origin, which is therefore
& cenire of S.

1. Translating 33 (2), the polar pla.ne of an ordinary point
(zp y” zl) w.r.t. S 18

(axy +hy, +92; +u)z -+ (ha, + by, +12, +-0)y + (g2, +fin +ez, Hw)z
+uzy +oyy+wz +d = 0. (6)

2. (8) is the plane at infinity if the coefficients of z, y, =
vanish; so we recover (3) as the equations for the centre as
defined in 34.

3. The polar plane of a point at infinity (I, m, n, 0) is

(al+hm+gn)z+(hl+bm+fny +(gl-+fm+en)s+ul+vm+wn = 0. (7)
In accordance with 27, 34 this is the diametral plane
conjugate to the direction (I, m, n).

41. Central Quadrics

We have the following cases in which equations 40 (3)
are consistent.
D + 0|. Here (3) have the unique solution (¢, %, {)
= (U/D, V/D, W/D). Hence from 40 (4)
= (WU +vV+wW+dD)/D = A4/D. . 1)

Now rotate the axes to the principal directions of @, using
39 II1, so that 40 (5) becomes

AR A AR +AD =0, . . (2
where z, y, z refer to the new axes. Here, by 39 (12),
AIAQAa D = 0 glvmg Al’ AQ, AS # 0.

1. The determinant of the coefficients in (2) is ).,l,).,A/D
= 4, thus verifying the invariance of 4
2. The axes in (2) are conjugate diameters. [For, by 40 (7)
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the plane conjugate to the direction (1, 0, 0) is 1,2 = 0, etc.]
These diameters are called the principal azes of the quadrio.

8. The only directions perpendicular to theif conjugate planes
are the principal directions. [For, by 40 (7), the pla.ne con-
jugate to (I, m, n) is Ade+Amy+Amz = 0.] This is perpen-
dicular to (}, m, n) if and only if

Alfl = Amim = Anfn. . . . (3)

If 4, # A, # 1,, (8) aresatisfied only if two of Z, m, n are zero,
¢.e. if (I, m, n) is the direction of one of the axes, and these are
the unique principal directions (39 II).

If 2, = A, % A,, (8) are satisfied only if either I =m =0, or
n = 0, i.e. if (I, m, n) is the z-.direction, or any perpendicular
direction, and these give the principal directions (39 IT).

If 2, = A, = 1, (3) are satisfied for all (I, m, n), and here
every direction is a principal direction (39 II).

D=0,4+ 0| IfAd=+0,equation (2) may bereduced

to one of the following forms which include all possible
combinations of signs of the coefficients (after, if necessary,
a permutation of z, y, 2z). The identification of the surfaces
follows from Table 2, remembering that, from 2, the co-
ordinate planes are con]uga.te diametral planes.

(i) "§+_a _|_... =1. This is an ellipsoid, since the
a® " B2 sections by 2=10, y =0,
z = 0 are ellipses.

2 2 2
(i) “—,+%a—"— =1. This is a hyperboloid of one
@ 7 sheet, since the sections by
- & =0,y = 0 are hyperbolas,
that by z = 0 an ellipse.
N A L .

(i) FTE S =1, This is a hyperboloid of two
sheets, since x == 0 does not
meet 8, and the sections by

- y =0,z = 0 are hyperbolas.
z? gt 28 :

(iv) — G E AT This equation has 2o locus.
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Note that the general appearance * of these surfaces can
be gathered from particular cases in which they are surfaces
of revolution. (i) If § = y, the surface is given by rotating
the ellipse z¥a*+y/f* =1,z =0, about the x-axis. (ii) If
a = f, the surface is given by rotating the hyperbola
z3at—z)fy’ = 1, y = 0, about its ‘‘conjugate axis.” (iii) If
B = y, the surface is given by rotating the same hyperbola
about itas * transverse axis.”

D»0,4=0| I 4=0, equation (2) may be

reduced to one of the following forms (after, if necessary,
permuting z, ¥, 2):

zﬂ y;‘; za
(v) S +%+—=0. This gives the single point
STRTY
(0, 0, 0).
xﬁ yﬁ z2 o .
W) s+m—== 0. Thisis a cone, since the sections
a® ' By by z =0, y =0 are line-

pairs, that by z=0 the
gingle point (0, 0, 0) (¢f.
Table 2).

D=0; rankD =2} If rank D =2, equations

40(3) have no solution unless their rank is 2, f.e.
U,V,W,D =0, so that also 4 =0, in which case they
have & line of solutions given by any two of the equa-
tions (Aitken, 30). Let (£, %, {) be any solution and d’
be given by 40 (4); then, eliminating £, » from

af+hn+gl +u =0,

hé+bnfl +v =0,
u+vn+wl+td—d =0,

we obtain

a b gl+u
h b fL+v
u v wltd—d

® Pictures of quadric surfaces are given in some larger books,
and models are available in many mathematical departmenta.

=0, se. W{H+C—d'C=0,
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giving, since W = 0,
d' =C0/e
Similarly we find
& =AlA=Bl@8=...=HHN . @
showing, incidentally, that 4/ 4, eto., are invariantas in this
case,

Now Mgy =D =0, 80 at least one of A, A, A,
say A;, is zero; also A is then not 4 repeated root, since
otherwise D, = D would have rank < 2, by 39 I. Hence
Ap Ag %= 0, NRota.ting the axes to the principal directions of
@, 40 (5) therefore becomes

A2+ Ayt +d = 0, . . ()

where z, y, z refer to the new axes, and d’ is given by (4).

If4,B,C, F, G, H are not all zero, then d’ # 0 and (5)
may be reduced to one of the following forms (if necessary,
interchanging =, y): :

2
(vii) Zia-%a =1. This is an elliptic cylinder, since
all sections parallel toz = 0 are

similarly situated equal ellipses.
2 gy ‘
(vili) ——7=1. This is a hyperbolic eylinder, for
o? B an analogous reason.
22 g2

(ix) @R~ 1. This equation has no locus.

If 4, B, C, F, G, H all vanish, then d’ = 0 and (5) may
be reduced to one of the forms:

3 3
(x) 3‘-,+%, =0. This gives the single line z = 0,
¢ y=0,
2 gy
(xi) ;—-F =0. This is the pair of intersecting
planes zfa - y/B = 0.
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|D=0; rank D = 1|, Ifrank D = 1, equations 40 (3)

have no solution unless their rank is 1, in which case
they have a plane of solutions given by any one of the
equations (Aitken, 30). Let (£, 3, {) be any solution, and
let d’ be given by 40 (4).

Since rank D = 1, by 39 I two of A,, Ay, A; are zero and
one, say As, is not zero. Therefore, on rotating to principal
directions, 40 (5) becomes

Agzi4d =0. . . N ()]
If @’ # 0, this may be reduced to one of the forms:

(xii) 2! =42 This is the pair of parallel planes
2= 9.
(xiii) 22 = —9%.  This equation has no locus.

If &’ = 0, (6) reduces to

(xiv) 28 = 0. This is the single plane z =0,
counted twice.

4. Derive values of @’ analogous to (4).

| D=0; rank D =0|. Ifrank D = 0,all the elements

of D are zero, and all terms of the second degree in 40 (1)
have zero coefficients.

42. Non-central Quadrics

It remains to consider cases in which 40 (3) have no
solution, so that we cannot choose £, 7, { so as to make the
terms of the first degree in 40 (2) all zero. We shall
therefore first rotate the axes to the principal directions of
Q without change of origin. Letting z, y, z refer to the
new axes, 40 (1) then becomes

A2+ AR+ A+ 2u's 420"y +2u'z+d =0, (1)
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where ', ¢', w' are new constants. The following will be
found to give the cases not already disposed of:

D=0; rankD=2; 4+ 0|. If rankD =2, then
a8 before Ay, A; (say) # 0, A; = 0. 8o (1) may be written
M@ +u'/0)2 Ay +v'[A)0 420" {2+ —u'3 A —v'%A,) 2w} =0,

showing that, by a change of origin, it becomes in new
z, Y 2

A2yt 42wz =0. . . (2
Since, by 39 IV, 4 is invariant, we have

4=\ . . .|=-=Nw? giving-
o — 4

. . w' w' = iJ—— . 3
) w' ) A_lg ( )
Note that w' is necessarily real; the ambiguity of sign
merely corresponds to the two possible choices of the
sense of the z-axis. (2) may now be written in one of the
following forms, according as A,, A; have the same or

opposite signs, The identification follows from Table 2,
using 1 below.

2 0
(xv) a%+z—’-z = 2_z This is an elliptic paraboloid, since
ot " py the sections by z = 0, y = 0 are
parabolas, that by z = ky (with
k > 0) an ellipse.

This is a hyperbolic paraboloid,
since the sections by z =0,
y = 0 are parabolas, that by
z = ky a hyperbola.

The origin in (xv), (xvi) is called the vertex of the
paraboloid. '

(zvi) s"B‘s =
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D=0; rankD=1; 4=0; rank S =3| If rank
D =1, then as before A, A; (say) =0, A; # 0. Also
', v’ are not both zero; otherwise (1) would reduce to a
pair of parallel planes. So (1) may be written, ifv’ (say) # 0,
Doz [ A2+ 20z +20'{y +(d—1w03A;)/20'} = 0, showing
that, by a change of origin, it becomes in new z, y, 2,

Ag22+4-2u'z 420"y = 0. . . @
If w’' # 0, we may, by a rotation of axes in which OZ is kept
fixed, replace u'z-+v'y by vy in new z, y, and so replace (4)
by A;z2+2v"y = 0, or (say) ‘

(xvii) 2z® = 28y. This is a parabolic cylinder, since
all sections parallel to z = 0 are
similarly situated equal parabolas.

1. If A, 2, # 0, 2, = 0, any plane parallel to 0Z is a
diametral plane of (1); if 4, =4,=0, 4, # 0, any plane
parallel to z = 0 is a diametral plane. [(Use (1) and 40 (7).]

2. If a* = p%, (xv) is given by rotating the parabola
z%/a* = 2z]y, y = O about its axis. There is no surface of
revolution which is a hyperbolio paraboloid.

3. S being real and non-si r, &t is a ruled quadric if and
only if 4 > 0.

4. Verify that 41, 42 do in fact give an exhaustive classi-
fication of the algebraic possibilities.

43. Numerical Examples

Given an equation of the form 40 (1) with numerical
coefficients, consider the problem of discovering the type of
the quadric S and reducing its equation to the appropriate one
of the standard forms (i)~(xvii). Chapter V shows that the
type of S can be found by examination of the matrix of its
coefficients (and, since this matrix is symmetric, properties
like those in Aitken, 28 2, 30 5, facilitate the work). But the
methods of the present chapter are usually preferable in
practical cases. The precise procedure depends upon the
amount of information sought, e.g. whether only the standard
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equation, or also the description of the final in terms of the
initial coordinate system, is demanded. In the main, it is
probably best to follow the steps of the general theory in
41, 42. But one naturally looks first for any obvious special
features of the given equation, e.g. it may have obvious
factors (in which case § is a pair of planes whose equations
may be written down at once), or the terms of the second
degree may form a perfect square (when we must have one
of the cases (xii), (xiii), (xiv), or (xvii), and the standard form
can be found directly). The following examples illustrate the
chief features of the problem, but the reader should work
many more, either constructed by himself or taken from other
sources.

In practical examples we keop @, y, z for the original
coordinates, and use X, Y, Z for those giving the standard
form.

1. Tz —8y? —829—2yz —8zz+ 8zy — 162+ 14y — 142—5 = O,
The equations 40 (3) for the centre are
7t+4n—4—-8 =0,

4 —8n— {+7 =0,

giving the unique solution ¢ =0, =1, { = —1. Hence
from 40 (4),
@' = —BE+T—~T,—86 = 9.

The diseriminating oubic is

S —4 |=0,
4 —8-1 -1
—4 -1 —8-2

havingroots —9, —9, 8. Hence by 41 (2) the quadric referred
toits axes is —9X2—9Y*4-9214-9 = 0, 1.6,

X4 Ys—28 =1,
It is therefore by 41 (ii) a hyperboloid (of revolution) of one

sheet.
It will be found that the three equations 39 (5) aro each
equivalent, when 1 = -9, to

d+m—n = 0,
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thus verifying the lemma for the case of a double root of
the diseriminating cubie. This shows that the X., Y-direc-
tions are any two orthogonal directions each orthogonal to
(4, 1, —1), which is therefore the Z-direction. For instanoce,
the X-, Y-directions could be taken as (0, 1, 1), (1, -2, 2).
(We are using d-r's, not d-¢'s.)
2. 18x*+9y'+14z’—-4yz+8z:u+8xy—2z-—6y—l4z+6 = 0.

The equations for the centre are

18t +4n+ 4{—1=0,

4t+9n— 2{-3 =0,

4 —29+14L—7 =0,
giving the unique solution ¢ = —3[14, n = 4/1, { = 9/14.

Hence
d = —£—-3p-70+6 =0.

The diseriminating cubie is
18—A 4 4 =0,
4 9—4 -2
4 —2 14-—2

having roots 6, 14, 21.  Since these are all positive, the quadrio
consists by 41 (v) of the single point (¢, 7, 2).

3. 284220+ 22y —224-2y+2:—2 = 0.
Of the equations for the centre, two only are found to be
independent giving the line of centres

§+1 =0, f)+C—2 = 0.
Hence
& =—f+n+i-2=1
The discriminating cubie is
1-2 1 1
1 -1 .
1 . —2

=0,

having roots —1, 2, 0. 8o the quadric is, in standard form,
X1—-2Y: =1,
and is therefore by 41 (viii) a hyperbolic cylinder.
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The principal direction corresponding to 4 = —1 is, accord-
ing to 39 (6), given by

l+m = 0. l+” = 00

Thus the X-direction is (1, —1, —1); similarly the ¥-direction
is (2, 1, 1). These give the directions of the axes of any
normal section. The Z.direction is then (0, —1, 1), being
that of the axis of the oylinder. The new origin is any point
on this axis. (We are again using d-r's.)

4 2P —Oyr—femilzy—4v—3y4+2—1=0. . (1)

If we form the equations for the centre, we find they are
inconsistent. (The reader should do this.) Hence the quadrie
is non-central. The diseriminating cubio is

1 2—=1 -1
-1 -1 -2
having roots 3, —1, 0.
We have .
4= . 1 -1 -2 |=10/4.
1 2 -1 -3/2
-1 =1 . 1

-2 =32 1 -1

8o by 42(3) w' = +V/(—9/4)/3(—1) = +4/3/2. Therefore
the quadric is, in standard form, by 42 (2),

3X'—Yt=+432, . . . (2

and is, by 42 (xvi), a hyperbolic paraboloid,
The principal direction corresponding to A = 3 is, accord-
ing to 39 (5), given by

—3l+m—n =0, Il—m—n = 0.

Thus the X-direction is (1, 2, —1); the ¥-, Z-directions are
similarly found to be (1, 0, 1), (1, —1, —1), expressed by
d-r's.

This is an expeditious way of getting the form and orienta-
tion of the quadric, but not the position of the new origin.
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The latter can be got as in 42, remembering that the change of
origin is there effected after the rotation of the axes, or as
follows. Using the principal directions found, we write (cf. 5)

X = (z+2y—2+p)ve, Y = (x+=+Q)/\/2.} 3)
Z = (x_y_z'*'r)l\/&

and substitute in (2) and compare with (1). Since an un-
ambiguous sign is taken for Z in (3), the ambiguity in (2) is
removed. We find that (1), (2) agree if the upper sign is
taken and if p = —2, ¢ =1, r = 5/2. Thus the planes
X =0, Y=0, Z =0 are determined, and their common
point, the new origin, is (—1, 3/2, 0), giving the vertex of the
paraboloid in the original coordinate-system.

6. 9z'4y'+420—2yz+6zx—6zy+10z+4+8y—5=0. (4)

We notice that the terms of the second degree form a perfect
square (3z—y-+z)* but that the lLhs. is not reducible.
Hence by 42 (xvii) the quadric is a parabolic cylinder; so we
proceed to express (4) in the form

(3z—y+z+k)+2az+by+ez+d) =0, .  (6)

where the planes 32—y +z = 0, ax+by +cz = 0 are orthogonal,
i.6.
3a—b+c=0. . . . (8)

Comparing coefficients in (4), (5) and using (68), we find
k=1a=2 b=2>5, ¢ = —1, d = —3. Substituting in (5)
and normalising, it becomes in standard form

2 = —2(V30/11)7,
where

Y = (2z+By—2—38)/V30, Z = (3z—y+z+1)VIL.

Hence the parabolic oylinder has semi-latus rectum
+/30/11, and the line of vertices is the meet of the planes
Y =0, Z =0, the former being the tangent plane along
this line.
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44, Properties derived from Standard Forms:
Ellipsoid

Given a quadric of specified type, we may now suppose
the axes 20 chosen that its equation takes the appropriate
standard form amongst (i)-(xvii), and may use this form in
the subsequent study of the quadrie. The following work illus-
trates this; it is not intended as a catalogue of properties.
For definiteness, properties of the sort discussed in the present
section are given in the particular form applicable to the
ellipsoid. But they hold good, with minor changes, for any
non-singular central quadric, and the reader should write out
the corresponding work for other cases. Alternatively, he
should generalise it to apply to any such quadric by taking
its equation in the form 46 (1).

Conjugate diameters. Consider the ellipsoid
2ty 422yt =1, . . (D)

Applying 40 (7) to this case, the diametral plane conjugate
to the direction (J, m, n) is

jattmy[tnzfyt=0. . . (@)

Hence, if (I, m’, #') is any direction in this plane, and
consequently conjugate to the direction (I, m, n), (2) gives
(a)¥'[a)+(m/B)(m'[B)+(n/y)(n'[y) = 0, t.e. the directions
(fa, m/B, nly), ('/a, m'[B, n'[y) are orthogonal, and
conversely. It follows that, if (};, m,, n;), (I, m,, n,),
(s, mg, ny) are the d-c’s of a triad of conjugate diamelers,
then (h/a, my[B, mfy), (lofa, mof B, nofy), (li/a, ms/B, nafy) are
d-r's of three mutually orthogonal directions, and conversely.
Let (L, M, Ny), (Lg, M3, N,), (Ls, My, N) be the d-c’s of the
latter; these we call the ecceniric directions corresponding
to the diameters. It will be seen that we have the analoguse
of a well-known property of eccentric angles of conjugate
diameters of an ellipse. We may now suppose the
eccentrio directions ordered so as to form a r.h set.

The point A(aL,, BM,, yN,) is an extremity of the
diameter with direction (},, m;, #,); for OA has the
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required direction, and A4 lies on the ellipsoid. We
deduce:

(i) The sum of the squares of three conjugate semi-diameters
is constant and equal to a2+B+y® For the required
sum is

(PL3+ M3+ WD) + (a3 + B M3 +y*N3) (a2 L3+ M3+ N3)
= a¥(L3+ L3+ L3) + B M+ M3+ M) +y* (N 1+ N3+ ND)
= a?+B+y",

using the property & (4) of orthogonal directions.

(i) The volume of the parallelepiped having three con-
jugate semi-diameters as adjacent edges 18 constant and equal
to aBy. For the volume is

oL, BM, yN,|= afy| Ly M, N,|= aBy,
aL, ﬁM s YNy 2 3 3
al, ﬂM 3 ‘)’N 3 L, M, N,

using the property 85 4.

1. The ellipsoid referred to any triad of conjugate diameters
as oblique axes is z%/R}+y*/R}+2'/R} = 1, where Ry, Ry Ry
are the lengths of the semi-diameters.

2. Lot the space undergo a homogeneous strain so that
lengths parallel to OX, 0Y, OZ are multiplied by 1/a, 1/, 1/,
respectively. Then the ellipsoid becomes a unit sphere, while
a triad of conjugate diameters becomes a triad of orthogonal
diameters of the sphere having the corresponding eccentric
directions, and conversely.

8. A pair of polar lines which meet at a point P on the
quadric are parallel to & pair of conjugate diameters each
conjugate to OP.

Principal axes of central section. Consider the
problem of finding the principal axes of the (elliptical)
section of (1) by a given plane

M+py+vz=0. . . . 3

We use the known property that these constitute the
unique pair of diameters in the plane which are both
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conjugate and orthogonal. Let their eccentric directions
be (Ly, My, Ny), (Ly, M, Ny), and let (Zy, M, Ny) be thet
of the diameter conjugate to both, ¢.e. conjugate to the
plane (3). Since these directions are mutually orthogonal,
by & 6, )

Ly,= M,N,—M,N,, M2=N3L1—N1La»} "
Ns = Lle—LlMa. ( )

Since the diameters corresponding to (L,, M,, N,),
(Lg, My, N,) are to be orthogonal, we have

oLy Ly 4-B°M M, +9°N, Ny =0,
or, using (4) and rearranging,
(B —y") M\ Ny Ly +-(y*—a)N [y My+(a*~B%) L, M,Ny = 0. (5)
Also (L, M,, N,), (L;, M, N,) are orthogonal, so that
L L+ M M;4+NN;=0. , A ()]
Solving (6), (8) for L;, M, N,, we obtain
L '
L[N}y —a®) —M(a®—B¥)
M,
UL — )~ N —]
Ny
277 e

Now let R; be the length of the semi-diameter with
direction (I, m,, n,). Then

Bl = oL+ fli 4,

whence

Ni(y2—o®) —M}(a*— %)
= a*L{+pM}+y*Ni—c*(Li+ M} +Nj) = R]—c?,
and go on.
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Thus (7) may be written

. . — LS . Ms . N 3
L‘°M‘°N1_R§'—a’ B B (8)
Substituting these values in (8), we get the equation
for R, as
Ly/(R}—a®) +M3/(R1—B) +N/(Rl—y%) = 0. (9)

This is quadratic in R,, for clearly the same equation must
be satisfied by R,, the other semi-axis. Finally, comparing
(2), (3) and recalling the definition of (L,, M;, N;), we have

Ly: Mg:Ny=al:Bu:yv. . . (10

Using (10), our results (8), (9) can now be restated:
If R,, R, are the principal semi-axes of the section of (1) by
the plane (3), then R}, R] are the roots of

ot | B |
.Rz—a.zTR’——ﬁz+R3—yﬁ=o" . (1)

and the d-r’s of these axes are, when R = R,, R, respectively,
a®A Br vy

<R2_a3’ Rg_ﬂa) Ra-—-yz . . . (12)

Since all sections parallel to (3) are similarly situated

ellipses, the latter directions are those of the principal
axes of all such sections,

4, Recover these results thus: Let (I, m, n) be the direc.
tion of the semi-diameter of the section having length R;
then (I3/a®4m?/fr+n?/y*)R? = 1, M+pum-+4wn =0. Theso
give two sets of values of I : m : n, which coincide only if R is
a principal semi-axis. The condition for coincidence is (11),
and when this is satisfied I: m : n is given by (12).

Circular sections. The central section just con-
gidered is a circle if and only if R, = R,, t.e. (11) has equal
roots in R2. Suppose a®> B2 > 93 Then, if p + 0, it is
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easily seen that (11) has one root greater and one less than
B®. Hence it cannot have equal roots unless p =0, in
which case one root is 82 The other root is also g2 if and
only if a?(f2—92)A%+93(B2—a)® = 0, i.e. (3) is either of

the planes
JEapeGmp=o -

Therefore only planes parallel to these meet (1) in ciroular
sections.

6. The centres of the circular sections lie on the diameters
conjugate to the planes (13), f.e.

z[av/(a*—p*) = y[0 = Lzly+/(B*—pY).
These meet (1) in the points

{£aV(a'—p)/(a*—y), 0, LyV(B—pY)(a*—p%)},

at which the tangent planes are parallel to (13). These points
may be regarded as point-circles belonging to the systems of
circular sections, and are called umbilics.

6. A necessary and sufficient condition for a quadric to
possess (real) umbilics is that it should not possess (real)
generators,

7. In the limit when y —+ 0 the ellipsoid becomes the dise
bounded by the ellipse x*/a*+y?/f* =1, z =0, and the
umbilics become the foci of this ellipse.

Model of ellipsoid. The properties of the circular
sections can instructively be employed in msking a model
of an ellipsoid as follows; the reader is recommended to devote
some little time to it. Draw the ellipse (fig. 6) which is to be
the central section perpendicular to the circular sections.
Insert two sets of symmetrically placed parallel chords as
shown (about eight in each set) and number the intersections;
these chords are to be the diameters, in this plane, of the
circular sections. From thin cardboard cut circular discs
of these diameters. Consider the disc (fig. 6) corresponding
to A4’ in fig. 6. Draw its diameter 44’ and mark the points
1, ..., 6; through these draw chords perpendicular to A4’
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Cut slits, of width about the thickness of the card, along half
of each chord. Repeat for each disc, making the slits for

(]
-5.1

—wecocccecwewewd
P L

Fia. 6.

the two sets on opposite sides of the diameters, as viewed
from, say, X. Fit the discs together so that the points bearing
the same number on intersecting dises coincide. If necessary,
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hinges made of gummed paper may be fixed along the inter-
sections of the discs. A model having the general appearance
of fig. 7 results.

Fia. 7.

The model is deformable by varying the angle between the
intersecting sections, and, in particular, it collapses into s
pPlane in two ways. That it always retains the form of an
ellipsoid is easily proved. For a simple discussion of collapsible
models the reader is referred to H. W. Turnbull, Edinburgh
Math. Notes, No. 32 (1941), pp. xvi-xix.

8. Ellipsoids with semi-axes @, 8, ¥ and a’, #’, y’ can be
deformed into one another in the manner described if

B=p and F(a'—a")—(y'—y"}—atptta’iy = .
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45. Hyperboloid of One Sheet
Generators. Writing the equation 41 (ii) in the form

B35 « (- (3o

we see that every point of each of the lines
z y 2 z
A IR
B o/l (9 By M\ a 3)
‘ y 2

y z_l(l+x> n _1(1 a:)
B v N 'a BT h\ ta
lies on (1) for all values of the parameters A, p. Hence, as

A, n vary, (2), (3) give the two reguli of generators of (1).
The A., p-generators intersect where

z = y(A—p)/(Ap+1),

and thus we obtain a particular rational parametric repre-
sentation of the surface (cf. 31 4).

Each generator meets the principal elliptic section
2%/a®4y2/B2 =1, 2=0, in a single point; let this be
P(acos®, Bsinf, 0). Any line s through P is given in
parametric form by

N

<

z=gqocos0+lr, y=Peinftmr, z=mnr, (b

and so its points of intersection with the quadric correspond
to the values of r satisfying

(a cos 8+41r)%/a®+(B sin 0+mr)? /B2 —nPri[? = 1.
This gives either r = 0, corresponding to P itself, or
(13/a®+4m2/ B2 —n2[y)r+2(! cos 6/a+m sin §/B) = 0.
If s is a generator, this must be satisfied for all r, {.e.
13/a3+m3/B2—ntfyt = 0, lcos 8/a-+m sin §/8 = 0,
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whence l/a sin § = m/—pBcos § = n/+y. Bubstituting in
(5), we obtain

z—acosf y—Psind 2 6

aginf ~ —Bcosf Lty - @

for the equations of the two generators through P, As @
varies from 0 to 27, (6) gives the two reguli.

1. (2), (3) are equivalent to (6) if A = u = cot §/2.

2. A non-rational parametric representation of (1) is
*=acosysecy, y=pPfeingsecy, z=ytany, the point
(¢, x) o defined being the meet of two generators given by (6)
when § = ¢ 1y, and when 4y, —y, respectively, are taken in
the last member.

3. The distances intercepted on the generators in 2 between
(¢, x) and the plane z = 0 are

{(a*+9?) ein® (¢4 2) +(B*+»*) cos? (¢ £ 7)}Vs tan g.

With given ¢, x these distancs are constant if a'+y9,
B*+y* are constans, If therefore in the family of hyper-
boloids z3/(a*+-k)+y8/(B3+k)+23/(—ys+k) = 1 (k < %), we
let points having the same ¢, y correspond, then the distances
between corresponding points on corresponding generators’
are independent of k. It follows that, if a model of one of
these surfacea be made with thin rigid rods, swivel-jointed at
their intersections, as generators, it can be deformed into any
other of the surfaces. [This was discovered by O. Henrici
(1874) and models designed by him are preserved in the Royal
College of Science.]

4. The generators through the point on the principal
elliptic section with eccentric angle 6 meet the section by the
plane z = « in the points with eccentric angles 0+, where
x = y tan y. ’

Model of hyperboloid.* For definiteness of description
we consider the construction of a model of a central frustum
of the surface

430yt —32% = 4&* . . (7)
showing twenty-four generators of each system.

* Another method is described by A. G. Walker, Edinburgh
Math. Notes, No. 36 (1946), pp. 20-23.
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The frustum is to be bounded by the elliptic sections in
the planes z = +2k. The latter can conveniently be provided
by opposite sides of a cardboard box, k being then determined
by the size of the box. Draw on paper a circle (fig. 8) on &
diameter A4’ of length 4k. Starting from 4, divide the
circumference into 24 equal arcs and through the points of

AT T T
AL LTS
A 9 8 6 o \

N
[~

A3 1A
14 2

\'6 7 e lg2of 2 2
N //

N |~

\/
Fia. 8.

division draw chords perpendicular to 44’. On each cherd
mark the points whose distances from A4’ are one-third of its
length; number these 1, 2, ..., 24 as shown. Trace these
points on to the two sides of the box so that similarly numbered
points are directly opposite each other, and pierce the card
at every point. Lace a coloured silk thread through the holes
go that it joins 1, 2, ..., 24 in one side to 9, 10, ..., 8 in the
other; this shows one set of generators. BSimilarly, join
9, 10, ..., 8 in the first side to 1, 2, ..., 24 in the second by
o differently coloured thread; this shows the other set of
generators. Fig. 9 shows an oblique view of such a model
(with one half the number of generators), thicker lines
indicating generators in the front part.
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Using results proved in the preceding examples, we verify
that this construction does yield the required surfacs. For the
elliptic section given by fig. 8 has principal semi-axes 2k,
4k(3, and so its equation referred to these axes is 4x*--8y*
=16k%. As required, this is given by putting z=3-2k in (7).

Moreover, the construction is such that the point marked n
has eccentric angle (n—1)n/12, and so the method of joining
points of the two ellipses yields lines meeting them in points
with eccentric angles of the form 6 +«/3. From 4, these lines
are generators of the required type of surface. In the notation
of 4 we have =2k, y=n/8, giving y=2k/V'3, in agreement
with (7).

46. Central Quadric : Normals

Properties common to non-singular central quadrics can
be studied by taking the equation of the surface § as

(¢f. 41 (2))
axd4-byt+cz? = 1. (@, b, ¢ » 0) (1)

The polar planes of P'(z’, ', 2), P*(2", y°, 2") are
axx’ +byy' 422’ =1, azz"+byy tex' = 1.
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Their intersection is the polar line of P'P*, which con-
sequently has d-r's bc(y'z"—z'y"), etc. So P'P” is per-
pendicular to its polar line if Zbe(x'—2")(y'z"—z'y") = 0.
Hence, if P’ is fixed, P* must lie on the locus

. Zbe(z' —z)(y'z—2'y) = 0,
i.e.
Za(b—c)2' (y—y')z—2') =0, . (2
which is a quadric cone with vertex P’,

Normals.—The normal at P,(z;, ¥;, 2z,) on 8 is the
normal at P, to the tangent plane of S at that point, i.e.

(z—=))/az, = (y—y))/by, = (z—2))/cz)(= ¢, say). (3)
Let this contain the point P’. Then from (3)

z=2(1+al), y,=y'[1+bt), 2z =2'[(1+ct), (4)
and hence, since (z,, y,, z,) satisfies (1),
az'®)(1+4at)®+-by'*/(1 +bt)d +cz'2/(1 +-ct)t = 1.

This is an equation of degree siz for ¢; if any real root is
substituted in (4) we get & point of S the normal at which
passes through P’. Hence at most siz (real) normals of S
pass through any given point. Moreover, since the polar
line of the normal at P, lies in the tangent plane at P,,
the normal is perpendicular to its polar line. Hence the
normals through P' are sncluded amongst the generators of
the cone (2).

Now let P, Q be points of 8 such that the normals at
P, Q intersect. Then the tangent planes at PQ meet in a
line perpendicular to PQ, t.e. PQ is perpendicular to its
polar line. Conversely, if the latter condition holds, the
tangent planes at P, Q meet in a line perpendicular to P@Q,
s.e. the normals at P, @ intersect. If P is fixed, the locus
of @ is therefore the intersection, say &, of (1), (2) when
P=P,
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As @ approaches P, PQ becomes in the limit & tangent
line ¢ of ¥, and so also of S, at P. But, if a line is tangent
to § at P, so too is its polar line. Then the pair are by
44 8 parallel to a pair of conjugate diameters of any section
of § parallel to the tangent plane at P, Moreover, since
PQ is perpendicular to its polar line, these conjugate
diameters are orthogonal and are therefore the principal
axes of the section. So ¢ can be parallel to either of these
axes. Hence P is, in general, & double point of & at which
the tangents are parallel to the principal axes of any
section of § parallel to their plane. Their directions are
~ called the principal directions at P. A curve * on S whose
direction at each point is a principal direction there is
called t a line of curvature. There are thus two families
of lines of curvature, one of each family in general passing
through each point P of § and intersecting orthogonally
the other line of curvature through P. A ocase of exception
occurs when P is an umbilic; for then the tangent plane
at P is parallel to circular sections of S, so that every pair
of polar lines through P is an orthogonal pair and the
preceding discussion fails.} §

1. Writing a, b, 0 = 1/4, 1/B, 1/0, the condition 40 (5)
shows that the normals at P'(z’, ¥, 2'), P"(x", ¥, 2°) on (1)
intersect if and only if TA(z’—2)(yz”—y“2’) = 0. Letting
i, m, n), (I, m,, n,) be the d-c's of P'P”, and of the normal
to the plane OP’P”, this becomes

Al +Bmm, +Cnn; = 0.

But I, +mm,+nn, = 0, and so for any values of «, 4,
(xA+2)Uy 4+ (xB+A)mm, +(«C + Ajnn, = 0.

* This is not the curve K.

+ This is the single exception to our restriction of the term *'line”
to mean straight line.

t For the treatment of this case see, e.g., Salmon, Analytic
Geometry of Thres Dimensions, § 301.

§ For a treatment of principal directions and lines of curvature
from a different point of view see D. E. Rutherford, Vector Methods
(in this eeries), § 24.
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Therefore, if the normals at the meets of any line with a
central quadrio intersect, so also do the normals at its meeta
with any confocal * (x = 1), or with any similar coaxial
quadric (1 = 0).

We shall see ®* that there are three confocals S,, §;, S,
meeting orthogonally at any point P. Let a line g through
P meet 8,, 8, 9, again in @,, @,, @;, and let the normals to S,
at P, Q, intersect. Then the normals to S, at P, Q,, and to
8, at P, Q,, also intersect. Clearly a possible choice of s is
the normal to 8, at P; by the orthogonality property, this
normal is tangent to S,, S, and 8o to their curve of intersection.
Therefore, when 8 approaches this position, @,, @, approach P,
and so in the limit the direction of ¢ is a principal direction
at P on S,;, 8,. It follows that the curve of intersection of two
confocals ia a line of curvature on each.

2. Consider the extension of the work of this section to
other types of quadric.

47. Cone
‘We shall take the general quadric cone 41 (vi) in the form
az®+-byl+cz? = 0. . . (1)
The d-¢’s (I, m, n) of any generator then satisfy
al*4bm?+cnt = 0. . . (2
Orthogonalgenerators and tangent planes. Suppose
(I, m, n) is perpendiocular to a given direction (l,, m,, n,).
Then eliminating n between (2) and U, 4-mm;+nn, =0

gives
(and +cB)B+2chmylm +-(em) +-bnj)m® = 0. (3)
Let the roots of (3) correspond to values (I, m,, n,),
(I3, mg, ny) of (I, m, n); then from (3) and similar relations
Llal(cm}+bnd) = mymsf(an}-cli) = nyny/(b +ami). (4)
Hence the condition llg+mgms+ngan, = 0 for these direc-
tions to be themselves orthogonal is
a(m}+nd)+b(n]+B) @ +m}) =0. .  (5)
¢ Chapter VII.
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If now the direction (1,, m,, n,) also is that of a generabor,
addmg a3 +bm} +onl = Oto (5) gives

a+b+e = . . . (6

Noticing the reversibility of the algebra, we see that (6)
18 the necessary and sufficient condition for (1) to have a triad
of mutually orthogonal gemerators. This condition being
independent of (},, m,, %;), we see further that, if (1)
possesses one such triad, then it possesses an infinite
number,

1. The same result holds if the cone is given by
axt byt o2t +fyz+-2gzz+2hay = 0. . (T)

{(6) is an example of an invariant condition. 8ince intrinsic
propertles of a cone depend only on the roots of the discriminat-
ing eubie, such properties must ke expressnble in terms of the
invariants 39 (10)-(12).]

2. The reality of the cone (1) and its orthogonal generators
is ensured by (6). [(3) has real roots if Ebcl] < 0. Using
Zal} = 0, Za = 0, this requires zz’(z’_ml)(z’—nl) > 0, which
is easily verified.]

The polar plane of (', y', 2') wr.t. (1) is
azx’ +byy’ 4-cz2’ = 0;

if az'f/l = by'/m = c2’/n, this is lx+my+nz ==0. Hence
the latter contains its poles, and so is a tangent plane,
if

Bla4m?b+n2fc = 0, . . (8)
giving the tangential equation of the cone.

The normal at the vertex O to the tangent plane is
zfl = y/m = z/n. Its locus, called the reciprocal cone, is
therefore from (8)

x22ja+y%fb+22fc = 0. . )]

The cone (1) has three mutually orthogonal tangent
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planes if and only if the cone (9) has three mutually ortho-
gonal generators, t.e., by comparison with (6),

l/a4-1/b+1fc = 0. . . (10)
8. The cone reciprocal to (7) is
A2+ By +Cer +-2Fy2 + 2822 +-2 Nxy = 0.

Consequently (7) has three mutually orthogonal tangent planes
if and only if

A+B+C=betcatab—f1—gt—ht = 0,
which expreases (10) in invariant form.

Cone of revolution. The cone (7), assumed real, is
right circular if the discriminating cubic has a double root,
A, (say). By 39, a necessary and sufficient condition for
this, in the case f, g, 5 + 0, is Fp Gy M, = 0. Elimi-
nating A, gives ,
Fif = &lg = Afh. . . (11

It is not immediately obvious that (11) is invariant. But
it can be shown that the discriminant of D, i.e. the con-
dition for a double zero, is expressible as the sum of squares
of funotions of its coefficients 39 (10)-(12). The vanishing
of this discriminant does in fact yield (11). These are also
the conditions for the general quadric 40 (1), assumed real,
to be a surface of revolution.

48. Hyperbolic Paraboloid

Generators. The equation 42 (xvi) may be written
(w/a—y/B)=/aty/B) =22y, . . (1)

whence, as in 45, we see that its systems of generators are
x/a_y/B = A) } (2) a7/“"*'3//3 = K (3)
afa-t+y/B = 22/ )y. ala—y[B = 22/uy.

All the lines (2), (3) are parallel, respectively, to the fixed
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planes z/a F y/B = 0. Thence, or otherwise, the reader
can verify the following constructions for models.

Model of portion bounded by four generators.
Take a four-sided cardboard box, not necessarily rectangular
but with opposite sides parailel. On the meets of these sides
take four non-coplanar points 4, B, 0, D (fig. 10). Join

D

Fia. 10.

points of AB, CD by threads parallel to the faces containing
AD, BC; join points of AD, BO by threads parallel to the
faces containing AB, OD. These show generators of the
unique paraboloid containing the skew quadrilateral ABCD.
(In fig. 10 perspective is indicated by the varying thickness of
the lines. The model should comprise more generators than
are shown in the drawing.)
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Portion of surface near vertex. Draw on cardboard
the diagram in fig. 11 consisting of a rectangle ABCD,
sides 2a, 28, with four symmetrically placed parabolic arcs,
all of equal height }y. Inscribe in ABCD a series of parallelo-
grams like KLK'L’; erect KP perpendicular to AB meeting
the corresponding arc in P, and so on. Make holes where

Q’

Fra. 11.

KL, KL’, eto. cross BD, AQ. Cut round the outer boundary
and fold along 4B, eto., so that the planes of the parabolas
become perpendicular to ABCD, the arcs on AB, OD being
on one side, those on BC, DA on the other side, of ABCD.
Stretch threads between P, @; P, Q’, etc., passing through the
appropriate holes on BD, AC. The result is such as that shown
in fig. 12, the thicker lines indicating the front part. (The
model should comprise about twice as many generators as
appear in the figure.) It represents part of the surface
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z*[at—y?/p* = 2z[y, the tangent plane at the vertex being
ABCD, [The reader may prefer to draw the boundary on
the sides of a box, or to make it of wire.}

-
-
\ L T

il T

-~
7 7~

o/
a1

1. A stack of cards may be piled so that one set of corners
lie above each other and the edges through them lie on para-
boloids 2z = ky, 2y = —kx, the cards being parallel to the

plane z = 0.



OHAPTER VIl

INTERSECTION OF QUADRICS: SYSTEMS
OF QUADRICS

49. Space Quartic

Let ', 8" be distinct quadrics in & ; if they are reducible,
let them have no common plane. Suppose there are points
common to ', 87; their aggregate .2, say, consists of all
points satisfying simultaneously

8§ =0 & =0, A )

which, taken together, are the equations of 2.

Let IT, A be fixed planes (whose meet lies in neither
8, 8”) and consider the meets of <2 with the plane wll +pA.
These are given by

8=0 8§8=0 wll4+pA=0, . (2

which are three equations of degrees 2, 2, 1 for the three
ratios * 2, : 25 : %3 : 2,. By elementary algebra they havein
general 2X2x1 = 4 solutions, not necessarily real. 8o
they give in general at most four points belonging to 2
in the plane wll+pA. By suitably choosing @ : p this
plane can be made to contain any point of &, and so of 2.
Thus a variable point of .2 is a function, at most 4-valued,
of the single parameter w:p. By 11, 2 is therefore a
curve, as we naturally expect.

We define the order of & curve as the degree of the
equation determining its intersections with an arbitrary

* Since the work applies to &, itis supposed that homogeneous
coordinates are employed.
128
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plane, whether or not the roots are all real. Hence 2 is
of order 4, s.e. & quartic. A quartic given by the meet of
two quadrics is said to be of the first species; there is a
second species of algebraio quartio not so given.* In what
follows, ““quartic” will mean an algebraic quartic of the
first species.

By a familiar argument, every quadric § whose equation
can be put in the form § = A'8'+A"8" = 0, where X', A*
are any numbers, contains 2. 8o 2 is determined by
any two distinct quadrics of this system.

Nowlet =, ..., %® be eight given points. Substituting
their coordinates in the equation e,,z,2, = 0 of the general
quadric we get eight homogeneous linear equations for the
ten coefficients a,,, These equations have, in general,
rank 8 and their solution is of the form a,, = X'a},+A"ay,,
where q,,, @, (r, 6=1, .., 4) are two linearly inde-
pendent sets of constants, and X', A" are arbitrary. Hence
every quadrio through the given points is of the form

8= XNS8+A"8" =0,
where
S'=dqzxz, 8 =agzz,

and every quadric of this form passes through those
points. But we have just seen that every such § passes
through a fixed quartic (provided &’, §* have no common
plane, which is the case if no six of the given points are
coplanar). Hence there 18 a quartic 2 through any eight
given poinis and 2 is, in general, unique.

1. All the quadrics through seven given points may in
general be written S = 1S’ 4 1°S° 418" = 0, where §’, S*, $”
are fixed quadrics. These all contain every point satisfying
simultaneously 8’ =8* = 8" = 0. These equations have
eight solutions, of which seven are the given points. Hence

* Salmon, Analytic Geometry of Three Dimensions, §347. It
must be pointed out that only a bare introduction to these topics
is within the scope of this text. A fairly full account from an
elementary standpoint is given by Salmon,
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every quartic through seven given points passes also through an
eighth fixed point.

2, &2 meets a quadric, which does not contain it, in at
most eight (real) points.

If an arbitrary plane @ meets 8, 8* it does so in conics
I, T'*, say. These in general meet in 0, 2, or 4 (real)
points giving the points of .2 in @, and so we verify the
previous result that there are in general at most four points
of 2 in any plane. We now see that the only exceptions
ocour :

(i) If I'', I'* coincide (=T, say). We can take A’ : X*
so that 8 = A’8'4A"8” contains any given point; let it
contain a point of @ not on I'. By 30 4, 8 then contains
©, and the rest of S (if any) is another plane ®. If ® meets
&' it does so in a conic A, say. But 2 is the meet of S, &',
and hence in this case 2 reduces to the two conics I, A.

(ii) If IV, I’ reduce to line-pairs 8, 8’ and s, 8" having one
line ¢in common. Then &', 8* have the common generator
8, and this supplies one of the solutions of (2) for all @ : p.
The rest of 2 accounts for the other three solutions and
8o is a curve of order 3, i.e. a cubic @. We suppose @ not
to reduce further, for, if it does, we get back to case (i).

8. If in (i) I', A meet, they do so in one or two points, or
else coincide; if S’, 8" are not reducible, they touch at every
common point of T', A.

4. &, @ are not plane curves. [A plane cannot mest
a quadric in & quartic or cubic.]

50. Space Cubic

A space cubic € is not the complete intersection of any
two algebraic eurfaces. For the intersection of surfaces
of degrees m, n has order mn (by the argument applied
to equations 49 (2)); so it has order 3 only if m =1,
n = 3, or vice versa. But then one of the surfaces is a
plane and the intersection is a plane curve.

Thus the simplest possibility is for @ to be the residual
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intersection of two surfaces which have also merely a
line in common. This is precisely how @ has arisen here,
the surfaces being quadrics. Every algebraio space cubic
can be so given (see Salmon, op. cit., § 333).

Let, then, @ be given as in 49 (ii). The lines &', 8" meet
in a point M, say, giving the only point in ® not on s
which is common to §’, 8%, and M is a point of G. Thus,
in every plane @ containing & there is, in general, a unique
point P -of @ not on 8; conversely, through every point P
of @ not on s there is & unique plane @ containing s. If
®,, O, are any two planes through s, and if we write
O = A\, @, +A,D,, then to every value of ¢ = A; : A, there
corresponds a unique plane ¢ containing s, and to every
plane ¢ containing & there corresponds & unique value of
t. Thus we can establish a (1-1) correspondence between
the points P and the values of the parameter . Moreover
the equations determining P are algebraic. Therefore
the coordinates of P are one-valued algebraic functions of
t, i.c. rational functions of ¢. Hence, by using a suitable
common denominator, the homogeneous coordinates z,
of P are proportional to polynomials in £. Substituting
these in the equation £z, = 0 of an arbitrary plane II,
we get an algebraic equation for the values of ¢ correspond-
ing to the points in which @ meets II. But, by the definition
of a cubic curve, this equation must have degree 3. Hence
the coordinates of P must be expressible in the form
z,(t), (r =1, .., 4), where ,(f) is, in general, a polynomial
of degree 3 in ¢.

Now let S =a,z,2z,=0 be an arbitrary quadric.
Substituting x, = z,(), we get an equation of degree at
most 6 in ¢. Its roots, when substituted back in z,(¢),
give the coordinates of the points of intersection of @, S.
But there is certainly a quadric 8 (not unique) through any
seven given points; take these to be points of €. Then
the equation of degree < 6 is satisfied by seven values of ¢,
and so by every value. Thus a quadric which meets @ in
seven points entirely contains C.
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Take any seven points Py, P,, ..., P, of @, and let @
be any other point on P,P,. By 49 there is a “pencil”’ *
of quadrics § = A'8'4-A"S” through these eight points.
By the preceding result, every S contains . Also the
line P,P, meets every § in three points P,, P,, @ and so
is a generator s of 8. Hence the quartio 2 determined by
&', 8° consists of @ ands. Thus there is a pencil of quadrics
which contain @ and any fized chord of @.

1. In general, a plane meets ( in one or three (real) points,
[The cubic equation for the intersections has real coefficients,
and so has at least one real root; the other two roots are both
real or both not real.]

2. If the plane ¢) mests (@ elsewhere than at P it does so in
two points on s. [P is the only intersection not on s; if there
are other intersections they must be on s, and by 1 there
must be two of them.] '

8. (@ has no trisecants and no double points; a tangent p
at a point P on ¢ meets (in no other point; any plane through
P meets € in one and only one other point; two bisecants of @
meet either on (2 or not at all. [Observe that the contrary
of any of these would imply that the equation determining
the intersections of (2 with some plane has four roots; since
QC is a cubic, this would mean that @ lies entirely in that
plane, contradicting 49 4.]

4. All the quadrics S of the above pencil touch at P,, P,,
[Clies on S; so the tangent line p, of € at P, is a tangent line
of S; s is a generator of S through P,; since it meets ( again
at P, it is, by 3, distinct from p,. Therefore the plane of
Py, 8 is the tangent plane at P, of every § (unless P, is a
singularity of S).]

Now let R be any other point on P,P,; we can choose
A’: A% so that 8 contains R. Then § contains the line
P,P; giving a second generator r of § through P,. By
3, 4, s, r, p, are not coplanar. Hence three non-coplanar
tangent lines of 8 go through P,, which is therefore a
singularity of 8. Also § cannot have any other singularity;

* See 51.
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otherwise it would be reducible, but we know that it
contains @, which is not a plane curve. Hence § is a
quadric cone with vertex P, and the join of every point
of @, being a point of 8, to P, is a generator of 8. More-
over, every generator g of S meets (; for the plane of g, &
meets @ in P,, P, on 8; therefore, by 1, it meets @ in a
third point P; by 3, P is not on 8; but P must be on §;
therefore Pis on g. Thus the chords of @ through any fixed
point of @ generate a quadric cone. Consequently, @ s
determined by the intersection of any two such cones, the rest
of the intersection being the join of their vertices. Now, if
P,, ..., P, are any six points of @, there is a unigue quadric
cone with vertex P, containing P,, ..., Pg; for the joins
of P, to Py, ..., P, meet an arbitrary plane in five distinct
points (distinot, on account of 3); there is a unique conio
through these five points, and this is a section of the
required cone. Similarly, there is a unique quadric cone
with vertex P, containing P,, ..., P;. The intersection
of these cones determines @ uniquely. It follows that
@ 8 complelely determined when any siz of its poinis are
given.

51. Pencil of Quadrics

8’ = a,zx, = 0,8" = a,z,z,~0 being distinct quadrics,
the family (S)

SN, A)= A8 +X"8" =0 (X, X" any numbers) (1)

is called a pencil of quadrics.* There is a unique quadric S
corresponding to each value of A’ : A”. If 8, 8 intersect,
they define a quartic <2 and every 8 contains 2. The
following properties are true in general, but they are
subject to exceptions which we have not space to enumerate.

The coefficients of S are linear in A’, A’. Hence

¢ & or 5 need not contain any points, e.g. S’, 8° may be positive
definite forms; then there are no points aatxsfymg 8=0 or §°=0
but there are points satisfying (1) if 4, A° have opposite signa,
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a unique S goes through any given point (not on 2, if this
exists). The polar plane of a fized point y w.r.t. S, being

Nazy+Xazy, =0, . . (2
contains in general the fixed line a,xy, =0, a,z,y, =0,
forall A, A°. This is called the conjugate line of y w.r.t. (8).
However, the plane (2) is independent of A’ ; A* if y is such
that there exists a number p giving

’ ”
BpsYy = UGyyYse (f =1,.., 4) (3)
(3) have a solution if and only if the determinant

| @, —par, | =0. . S L)

This gives in general four values of x, not necessarily
real.* If they are real and distinct, substitution in (3) gives
four points y, .., y'¥ each having the same polar plane
w.r.t. every 8; no other point has this property. But
the meet of the polar planes of yt®, y(®, y¥9, being the pole
of their plane w.r.t. every S, has this property and is
therefore y1), and so on. Hence y1, . ., y'4 are the vertices
of a unique tetrahedron self-polar w.r.t. every S.

The condition for S to be singular is

| Xa,, +Xay, | = 0;

this is (4), if A’/A" = —pu, and (3) are then the equations
for the singularity. Hence, corresponding to each point of
the self-polar tetrad there 18 a cone belonging to (8) and having
that point as vertex.

The coefficients of the tangential equation (37 (6)) of
8 are of degree three in those of the point equation (1), and
so are cubic forms in A’, A". Hence, by 37 2, the pole
of a fixed plane II w.r.t. § are cubic forms in A’, A”. There-
fore, as X’: A" varies, the pole generates a space cubic @
called the polar cubic of II. In general, @ meets Il in
three points, each corresponding to a quadric of the pencil
with respect to which the pole of II lies in II, and which
therefore touches II. The pole of II w.r.t. any cone being

® Turnbull and Aitken, Canonical Malrices (1932), 108, Ex. 6.
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the vertex (see 35), C contains the points of the self-polar
tetrad. IfII = Q, then @ becomes the centre-locus.

As an instance of the application of these properties, lot S,
be a given quadric and O a given point. Take any sphere S,
centre O, and consider the pencil 4,8,--4,5, = 0; let @ beits
centre-loous. (@ meets 8, in at most six pointa (see 50); let
P be one of these. The polar plane of P w.r.t. &, is 7T, the
tangent plane at P. But P is the centre of some quadric S
of the pencil, 8o the polar plane of P w.r.t. § is Q. Let T,
Q meet in ¢; then ¢ is the conjugate line of P. Therefore the
polar plane of P w.r.t. S, contains ¢ and so is parallel to 7.
But this plane is normal to OP. Therefore OP is normal to S,
at P. Conversely, if OP is normal to S, at P, then P is on @C.
Hence at most six normals of 8, contain 0. Since O is on G,
the chords of (@ through O generate a quadric cone. Hence
the normals from O to S, lie on a quadric cone which containa the
cenlre of Sy (cf. 46).

1. The coefficients of the line-equation of .S (see 33 (4)) are
quadratio in those of the point-equation; hence at most two
quadrics of the pencil touch a given line.

2. The sections of (S) by any plane II form a pencil of
conics (I').” If .2 exists and if Il meets £ in four points,
every I' contains these points; (I') then includes three line-
pairs, being the sections of three quadrics S touching II.

3. (8) includes one or three paraboloids.

4. If y varies on a fixed line s, its conjugate line generates a
quadrie, the polar quadric of a8 w.r.t. (S). [Take y = uz-st,
(z, t fixed).] The polar lines of & w.r.t. (S) are the other
generators of this quadrie,

5. Consider some cases of exception in regard to the self-
polar tetrahedron, e.g. where 2 reduces to a conic-pair or
a skew quadrilateral.

52. Range of Quadrics

Let X', X" be distinct quadrics having langential
equations X' = 0, " = 0. Then the family of quadrics
(2) given by

z(#r’ p‘l) = ‘LIZI_I_FIZI —_ O
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is called a range of quadrics. The properties of a range are
therefore dual to those of a pencil, and the reader should
write them out.

63. Confocal Quadrics
Consider a given central quadric *
8 = 23A+4+y3/B+23/C—1=0, (4>B>0) (1)
Let P(£, n, {) be any point,
I = l(z—§)+mly—)+n(z—l) =0

a plane through P, and @ the pole of II w.rt. 8. We
propose first to find if it is possible to choose II so that PQ
is normal to II.

The coordinates of @ are easily found to be

(A1, Bm, Cn)/(€l-+qm-+{n).
Hence d-r’s of P@ are
(E—A)+Eqm+Eln,  n€l+H(n*—Bym+tain,
LEl+Lqm+(L2—C)n.
Therefore PQ is normal to Il if there exists a number %

such that
€+ (92 —B)m+nin = k‘m.} e . (2
LEl+L{ym+-([2—Cm = kn.

We consequently encounter an application of 39 II.
The *“discriminating cubic” is here

D,=|8£—4—k £ 14
né n*—B—k 7
& In {*—C—k

= —(k-+A)(k-+B)(k+C) +Z£(k+B)(k+C) =0. (3)

Assuming £, 1, { # 0and putting k = o, —C, —B, —4inD,,
it has signs —, 4, —, 4-. Hence (3) has roots %,, k;, &,

* We now revert to rectangular cartesian coordinates.
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such that % > —0O>k> —B>k> —A. By 39811,
their substitution in (2) gives a unique triad of mutually
orthogonal directions corresponding, say, to positions
II,, I, I1; and @, @, Q; of I, Q. Since PQ, is normal to
I1, and PQ,, PQ, are orthogonal to PQ,, I1, contains @,, @,
andsoon. Hence I1,, II,, II; are a unique triad of orthogonal
planes through P conjugate w.r.t. 8.

Now if D, has a double zero, giving, say, k; = kg = k;,
then by 39 II, Il; has a unique direction, while II;, I, can
have any directions orthogonal to II; and to each other.
If this happens, there is a single infinity of triads of ortho-
gonal planes through P conjugate w.r.t. 8. We then call
Pafocus*® of S. But we have just seen that,if £, 9, { # 0,
D, has no repeated zero. Suppose then (say) { =0, so
that

D, = {—(k+A4)(k+B)+£(k+B)+n*(k-+A)}k+C).

The first factor is seen not to have a double zero; hence D,
has a double zero if and only if £ = —C is a zero of the first
factor, s.e. if

& 2

I
T—ot5—5=1 . . @

Hence every point of the conic (4) lying in the plane { = 0
is a focus; this is called a focal conic of S. The other focal
conics are similarly

S

1=0, g=gtg1—g=" . (9

-0 T4 & _
=0, g—yto—a=" . (8
However, B—A4, C—A <0, 80 (6) is not real; (4) is an
ellipse and (5) a hyperbola.

1. One and only one of the focal conics intersecta S; it
does so in four points.

* Compare the analogous definition of a foous of a vonio, e.g.
Filon, Projective Geometry (19806), § 115.
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2. If P is outside S, then II,, I,, I1, are the principal planes
of the tangent cone from P.

8. Discarding the assumption 4 > B > 0, when §, ,{ # 0,
D, has a repeated zero if and onlyif 4 =B = 0. ThenSisa
sphere, and every point is a focus of S.

4. By 391, D, has a triple zero if and only if

WN=¢=n=0, $#—A4 =n—B={[-0C.

This requires 7 = { =0, B =0, &' = A—B, or analogous
relations given by oyclic permutation. In this case every
orthogonal triad through P is conjugate; P is called a principal
Jocus of 8. It follows that 8 has principal foci if and only
if it is a quadrio of revolution; they are then the foci of the
meridian section on the axis of symmetry.

Two quadrics 8, ' are said to be confocal if they have
the same foci and so the same focal conics. This requires
8, 8' to have the same principal planes. Hence if S is
given by (1), 8’ must be of the form

S’ = 2?/A'4y¥/B’'+23/0C'—1 = 0.
Then, by (4)-(6), S, 8’ have the same focal conics if and
only if
B—-C=B-C, (C—-A4=C(C-4', A—-B=A4'-F.
Theseareequivalent to4d —4’ = B—B' = C—C' = A (say).
Hence all the quadrics confocal to 8 are given by
22 y® 22
IntERtom
This is called a confocal systen.
Taking an arbitrary plane in the form
lz4+my+nz+p =0,
the tangential equation of (7) is

(A4 +(B+-A)m?+4-(C+-Ani—p? = 0,
Al 4+ Bm®4-Cnt—p*+-A(R+m2+4n?) = 0. . (8)

=1, (Aarbitraryy (7)

1.e.
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Hence this is a particular instance of a range of quadrics.
Moreover, if X = 0 is the tangential equation of 8 in any
rectangular system, since I2--m34-n? is invariant (being
interpretable as the square of the length of a vector),
the confocal system is simply

SHME4mE4n) =0. . . (9)

5. The last result can be shown to hold whether or not § is
central. Deduce that the system confocal to the paraboloid
23/A+y*/B = 2zfc'is

2 9 % i
A+}.+B+). T e +c" _

If the quadric (7) contains a given point P(£, 7, ),

we have

(A+4)(A+B)(A+0)—Z£(A+B)(A+0) = 0.  (10)

This is just (3), with & = A, and so has the roots %,, %y, %3
with the properties already derived, which may be written,
when &, 7, § # 0,

A+k >0, B4k >0, C+k >0;
A+4ky>0, Btky>0, Cky< o;} . (1)
A+ky >0, B4k <0, C+k <O

Therefore through any point P there pass tn general three
quadrics of the system, these being from (11) an ellipsoid,
a hyperboloid of one sheet, a hyperboloid of two shests.
Moreover, solving (2) with & = &y, k&, &y, we find

Lim:n=E{/(A+k): 9/(B+k) : [/(C+E); eto. (12)

Hence I, is the plane through (£, %, ) with normal having
d-r's given by (12), and this is seen from (7) to be the
tangent plane of (7) at (£, %, {) when A =k. Thus tke
planes 11, I1;, 11, are the tangent planes of the confocals
through P; therefore these confocals meet orthogonally at P,
Further, the definition of @,, Q,, @; shows that Q,Q,
is the polar line of P@;. Now let P be on 8, so that (say)
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k, =0, and II, is the tangent plane of 8 at P. Then
@, coincides with P, and so PQ,, PQ; become orthogonal
polar lines in II;,. By 44 3, they therefore have the direc-
tions of the principal axes of any section of 8 parallel to II,.
Putting then A = &, = 0 in (10), we geb

ABC—-X£BC =0, . . (13)
whence
ABCI(A—£) = TEBC(B+0),
ABCZ[(BC—£(B+0))] = EFB*C’.}

Subtracting (13) from (10) and dividing by A, we obtain as
the equation for %,, ks,

A4+AZ(4~£)+Z(BC—£4(B+C)) = 0.
Multiplying by ABC and using (13), (14) this becomes
MZ£BCH4-AZEBC(B+C)+ZE2B%C? = 0,
which may be written in the form
£2/A(A+4)+7*/B(A+B)+{3/C(A+0) = 0. (15)
Using (12) with ¥, = 0, and writing A = —R?, (15) becomes
Al3/(R?*— A)+Bm?/(R*—B)+-Cn?/(R2—C) = 0. (16)

Now this is equivalent to 44 (11) applied to 8, showing that
—k,, —k; are the squares of the semi-axes of the central
section of S parallel to IT;. ,

Combining these results and restating them for the
case k, + 0, we have therefore proved: If 8,, S;, S, with
paramelers ky, kg, ks are confocals meeting in P and if I1, is
the tangent plane of 8, at P, then the principal semi-axes
of the central section of S, parallel to I1, have the directions
of the normals at P lo S,, S; and their squares are ky—k,,
ky—k,.

Finally, if P is on 8 and is also a focus of .S, the ortho-
gonal polar lines PQ,, PQ; become indeterminate. This
means that the sections parallel to II, are circles. Hence

(14)
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the points in which a focal conic meets S are umbilics on 8
(see 1). It is seen that the converse is also frue, t.e. every
umbilic is on a focal conie. Thus the properties of circular
sections could be recovered from the present work.

6. If S,, S, are intersecting confocals, and if radii of S,
are drawn parallel to the normals of S, along the meet of S, S,
these radii have constant length.

7. The locus of the poles of a given plane II w.r.t. a confocal
system is & line normal to II; one and only one confocal
touches II.

8. If k,, ks, k, are the parameters of the confocals through
P(§ n, ), then

6’ = (ky+A) (ks +A)(ks+4 )//(B —4)C—4),
= (k,+ B)(k,+B)(k, +B)/(0—B)4 —B),
C’ = (k1+0)k;+0)(ks +0)/(4 —C)YB—O).

Thus %, k, %k, constitute a new set of (curvilinear) co-
ordinates in & [Put D, = —(k—k,)(k—k,)(k—k,) and take
k = —A, —B, —C in D, as given by (8).]



NOTE ON ABSTRACT GEOMETRY

Ix this book we have been content to start with an assumed
knowledge of the rudiments of geometry such as most of us
possess at this stage in our studies. This knowledge is
usually a mixture of deductions from euclidean axioms and
of intuitive notions. For instance, we used in 3 the result
that there are two senses for the displacement of a point
along a line. Would the reader care to say if this follows
logically from his axioms, and, if not, to say just what
other assumptions have been introduced ?

Now our goal in geometry is to construct an abstract
deductive system, s.e. to exhibit the logical consequences
of an explicitly stated set of postulates. The result is a
purely mental creation. There can be any number of
abstract geometries, and, moreover, equivalent geometries
may be derivable from various sets of postulates.

More precisely, a geometry G is a collection of pro-
positions having the following properties:

(i) If a finite set 1 of the propositions are selected as
“initial propositions™ the remaining propositions
can be deduced from them.

(i) The propositions I must be logically consistent.

(iii) The propositions I should be independent, f.e. none
can be deduced from the others. (This is a
natural, though not essential, requirement.)

It is desirable that I should be simple in content. They
are the postulates mentioned above and there is no question
of proving them. Also there is no question of defining the
entities or the relations involved in them. We start, in
faot, with indefinable elements which are postulated to
satisfy certain indefinable relations.

139
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"If I is any subset of I then I’ must certainly satisfy
conditions (ii), (iii), All the propositions which can be
deduced from I’ alone constitute a geometry G, and G’ is
inoluded in G. (Here a statement that a set of elements
may or may not satisfy a condition is not regarded as a
proposition.) Now the selection of I is arbitrary, subject
to conditions (i)-(iii). But it is natural in construoting G
to select I in such a manner that it consists of subsets
I, I,, ..., I, which render the geometry G, derived from
L+ ... +1, (r=1,...,n) an ‘“interesting” geometry.
G(= @, is then developed through the interesting stages
Gy, Gy, ..., G,

In the case of the real euclidean geometry of three
dimensions with which this book is concerned two selections
of postulates (apart from minor veriations) have become
traditional. One leads more immediately to the euclidean
expression of results, while the other reaches them through
stages that are interesting in their relation to different
geometries. Here we have opportunity merely to allude
to these stages.

Woe first state a set of initial propositions of sncidence
such as “Two distinct points determine one and only one
line on which they both lie,” and add propositions which
ensure that the number of points is infinite and that the
geometry shall be three dimensional. This yields pure
projective geomelry. We then proceed to express the work
in an algebraic symbolism, and obtain what is sometimes
called analytical projective geometry, though it is merely
a translation into symbols of pure projective geometry.
Coordinates are used, but it is not until initial propositions
of order and continuity are introduced that we can treat the
coordinates as real numbers. When this is done we have
real projective geometry, which is formally identical with the
geometry of & in this text, but is got without using metrical
notions. However, no fresh initial propositions are needed
for its metrical formulation. Any quadric Q in the space
is singled out and the relation of any pair of points to Q is
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used to define the distance between them, and the relation
of any pair of intersecting lines to @ to define the angle
between them. If @ is allowed to degenerate in a par-
ticular manner into a single plane, the ‘“plane at infinity,”
distance and angle so defined acquire their euclidean
character and the geometry expressed in terms of them
becomes real euclidean geometry.,

There is an apparently easier method of getting formally
the same result. In its simplest version it is to define a
point as an ordered set of three real numbers, space as the
set of all such points, a plane as the set of points whose
coordinates satisfy a single linear relation, and a line as the
set of points whose coordinates satisfy two such relations.
Thence we can deduce the properties of parallelism. We
then define the distance between two points by the formula
2 (1), and the angle between two intersecting lines by 4 (3).
The rest of the work is developed in formally much the
same way as in this book (with or without using “points at
infinity,” according to taste).

The outcome is then not itself a geometry in the sense
described above. It contains no initial propositions and
therefore no indefinables. Instead, it starts merely from
definitions and for the rest consists entirely of theorems
deduced from them with the aid of mathematical analysis.
It becomes in fact a branch of such analysis. But analysis
has its own initial propositions and, taken as a whole, does
constitute a geometry in the previous sense. This includes
real euclidean geometry, though partly expressed in a
different mathematical language.

For a simple discussion of these matters the reader is
referred to G. H. Hardy, “What is Geometry?” Math.
Gazette, 12 (1926), 309-316; for a fuller but not too technical
account, to J. W. Young, Projective Geometry, Carus Math.
Monographs, No. 4 (1930); and for a concise technical
account, to G. de B. Robinson, Foundations of Geomelry
(Toronto, 1940). The last supplies adequate further
references.
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As regards further reading on the subject-matter of
the rest of the book the following suggestions are offered :

For a slightly more elementary approach and for
examples :
8. L. Green, Algebraic Solid Geomelry (Cambridge,
1941).
For an introduction to more advanced work :
E. A. Maxwell, General Homogeneous Coordinales tn
Space of Three Dimensions (Cambridge, 1951).
For more advanced work :

J. G. Semple and G. T. Kneebone, Algebratc Projective
Geometry (Oxford, 1952).

J. A. Todd, Projective and Analytical Geomeiry
(Pitman, London, 1947).
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motes understanding of specialized baoks, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8.
0-486-64856-7

COMPLEX VARIABLES, Francis . Flanigan. Unusual approach, delaying com-
plex algebra till harmonic functions have been analyzed from real variable view-
point. Includes problems with answers. 364pp. 5% x 8Y. 0-486-61388-7

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximalions, more. References. 278pp. 5% x 84%.
0-486-65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R. Gelbaum and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
“real variables.” The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xxiv+198pp. 5% x 8%. 0-486-42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.
0-486-67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8%.

0-486-65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%, 0-486-65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8Y%. 0-486-65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden's theorem, the Landau-Schnirelmann hypothesis and Mann's
theorem, and a solution to Waring’s problem. Solutions included. 64pp. 5% x 8%.
0-486-40026-3

THE PHILOSOPHY OF MATHEMATICS: AN INTRODUCTORY ESSAY,
Stephan Kisrner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning
propositions and theories of applied and pure mathematics. Introduction. Two
appendices. Index. 198pp. 5% x 8%. 0-186-25048-2
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, elc. 324pp. 5% x 8%, 0-486-63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Momis Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8% 0-486-64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8Y%. 0-486-64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%.  0-486-63317-9

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural
numbers; complete induction; limit and point of accumulation; remarkable curves;
complex and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8%.

0-486-63317-9

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theary, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi-
tion. ix + 283pp. 5% x 8Y%. 0-486-67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%, 0-486-63069-2

THE CONTINUUM: A CRITICAL EXAMINATION OF THE FOUNDATION

OF ANALYSIS, Hermann Weyl. Classic of 20th-century foundational research deals

with the conceptual problem posed by the continuum. 156pp. 5% x 8%.
0-486-67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 54 x 8%. Two-vol. set.

Vol. I: 0-486-65536-9  Vol. II: 0-486-65537-7

Paperbound unless otherwise indicated. Available at your book dealer, online at
www.doverpublications.com, or by writing to Dept. GI, Dover Publications, Inc., 31 East
2nd Street, Mineola, NY 11301. For current price information or for free catalogues (please indi-
cate field of interest), write 1o Dover Publications or log on to www.doverpublications.com
and see every Dover book in print. Dover publishes more than 500 books each year on science,
elementary and advanced mathematics, biology, music, art, literary history, social sciences, and
other areas.
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